1
|
Lobertti CA, Cabezudo I, Gizzi FO, Blancato V, Magni C, Furlán RLE, García Véscovi E. An allosteric inhibitor of the PhoQ histidine kinase with therapeutic potential against Salmonella infection. J Antimicrob Chemother 2024; 79:1820-1830. [PMID: 38853496 DOI: 10.1093/jac/dkae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.
Collapse
Affiliation(s)
- Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000, Argentina
| | - Fernán O Gizzi
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Víctor Blancato
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Ricardo L E Furlán
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| |
Collapse
|
2
|
Diehl CJ, Salerno A, Ciulli A. Ternary Complex-Templated Dynamic Combinatorial Chemistry for the Selection and Identification of Homo-PROTACs. Angew Chem Int Ed Engl 2024; 63:e202319456. [PMID: 38626385 DOI: 10.1002/anie.202319456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Dynamic combinatorial chemistry (DCC) leverages a reversible reaction to generate compound libraries from constituting building blocks under thermodynamic control. The position of this equilibrium can be biased by addition of a target macromolecule towards enrichment of bound ligands. While DCC has been applied to select ligands for a single target protein, its application to identifying chimeric molecules inducing proximity between two proteins is unprecedented. In this proof-of-concept study, we develop a DCC approach to select bifunctional proteolysis targeting chimeras (PROTACs) based on their ability to stabilize the ternary complex. We focus on VHL-targeting Homo-PROTACs as model system, and show that the formation of a VHL2 : Homo-PROTAC ternary complex reversibly assembled using thiol-disulfide exchange chemistry leads to amplification of potent VHL Homo-PROTACs with degradation activities which correlated well with their biophysical ability to dimerize VHL. Ternary complex templated dynamic combinatorial libraries allowed identification of novel Homo-PROTAC degraders. We anticipate future applications of ternary-complex directed DCC to early PROTAC screenings and expansion to other proximity-inducing modalities beyond PROTACs.
Collapse
Affiliation(s)
- Claudia J Diehl
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ, Dundee, Scotland, U.K
| | - Alessandra Salerno
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ, Dundee, Scotland, U.K
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, DD1 5JJ, Dundee, Scotland, U.K
| |
Collapse
|
3
|
Kenanova D, Visser EJ, Virta JM, Sijbesma E, Centorrino F, Vickery HR, Zhong M, Neitz RJ, Brunsveld L, Ottmann C, Arkin MR. A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers. ACS CENTRAL SCIENCE 2023; 9:937-946. [PMID: 37252362 PMCID: PMC10214524 DOI: 10.1021/acscentsci.2c01449] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Dysregulation of protein-protein interactions (PPIs) commonly leads to disease. PPI stabilization has only recently been systematically explored for drug discovery despite being a powerful approach to selectively target intrinsically disordered proteins and hub proteins, like 14-3-3, with multiple interaction partners. Disulfide tethering is a site-directed fragment-based drug discovery (FBDD) methodology for identifying reversibly covalent small molecules. We explored the scope of disulfide tethering for the discovery of selective PPI stabilizers (molecular glues) using the hub protein 14-3-3σ. We screened complexes of 14-3-3 with 5 biologically and structurally diverse phosphopeptides derived from the 14-3-3 client proteins ERα, FOXO1, C-RAF, USP8, and SOS1. Stabilizing fragments were found for 4/5 client complexes. Structural elucidation of these complexes revealed the ability of some peptides to conformationally adapt to make productive interactions with the tethered fragments. We validated eight fragment stabilizers, six of which showed selectivity for one phosphopeptide client, and structurally characterized two nonselective hits and four fragments that selectively stabilized C-RAF or FOXO1. The most efficacious fragment increased 14-3-3σ/C-RAF phosphopeptide affinity by 430-fold. Disulfide tethering to the wildtype C38 in 14-3-3σ provided diverse structures for future optimization of 14-3-3/client stabilizers and highlighted a systematic method to discover molecular glues.
Collapse
Affiliation(s)
- Dyana
N. Kenanova
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Johanna M. Virta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Eline Sijbesma
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Holly R. Vickery
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Mengqi Zhong
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| |
Collapse
|
4
|
Thurairajah B, Hudson AJ, Doveston RG. Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions. Front Mol Biosci 2022; 9:1043673. [PMID: 36425654 PMCID: PMC9679655 DOI: 10.3389/fmolb.2022.1043673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2024] Open
Abstract
14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.
Collapse
Affiliation(s)
| | | | - Richard G. Doveston
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. Angew Chem Int Ed Engl 2022; 61:e202211510. [PMID: 36112310 PMCID: PMC9827864 DOI: 10.1002/anie.202211510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/12/2023]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
6
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202211510. [PMID: 38505687 PMCID: PMC10947266 DOI: 10.1002/ange.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
7
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
8
|
Bagnolini G, Balboni B, Schipani F, Gioia D, Veronesi M, De Franco F, Kaya C, Jumde RP, Ortega JA, Girotto S, Hirsch AKH, Roberti M, Cavalli A. Identification of RAD51–BRCA2 Inhibitors Using N-Acylhydrazone-Based Dynamic Combinatorial Chemistry. ACS Med Chem Lett 2022; 13:1262-1269. [PMID: 35978685 PMCID: PMC9377020 DOI: 10.1021/acsmedchemlett.2c00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
![]()
RAD51 is an ATP-dependent recombinase, recruited by BRCA2
to mediate
DNA double-strand breaks repair through homologous recombination and
represents an attractive cancer drug target. Herein, we applied for
the first-time protein-templated dynamic combinatorial chemistry on
RAD51 as a hit identification strategy. Upon design of N-acylhydrazone-based dynamic combinatorial libraries, RAD51 showed
a clear templating effect, amplifying 19 N-acylhydrazones.
Screening against the RAD51–BRCA2 protein–protein interaction
via ELISA assay afforded 10 inhibitors in the micromolar range. Further 19F NMR experiments revealed that 7 could bind
RAD51 and be displaced by BRC4, suggesting an interaction in the same
binding pocket of BRCA2. These results proved not only that ptDCC
could be successfully applied on full-length oligomeric RAD51, but
also that it could address the need of alternative strategies toward
the identification of small-molecule PPI inhibitors.
Collapse
Affiliation(s)
- Greta Bagnolini
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Beatrice Balboni
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Fabrizio Schipani
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Dario Gioia
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Marina Veronesi
- Structural Biophysics and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | | | - Cansu Kaya
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Ravindra P. Jumde
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Jose Antonio Ortega
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Stefania Girotto
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Anna K. H. Hirsch
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Yu N, Xuan Quan W, Li Li J, Shu M, Wang R, Shen Y, Hua Lin Z, Ying Sun J. 3D‐QSAR, Molecular Docking and Molecular Dynamics Analysis of 1,2,3,4‐Tetrahydroquinoxalines as BRD4/BD2 Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Na Yu
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
| | - Wen Xuan Quan
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
| | - Jia Li Li
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
| | - Mao Shu
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
- Key Laboratory of Screening and activity evaluation of targeted drugs Chongqing 400054 China
| | - Rui Wang
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
- Key Laboratory of Screening and activity evaluation of targeted drugs Chongqing 400054 China
| | - Yan Shen
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
| | - Zhi Hua Lin
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
- Key Laboratory of Screening and activity evaluation of targeted drugs Chongqing 400054 China
| | - Jia Ying Sun
- School of Pharmacy and Bioengineering Chongqing University of Technology Chongqing 400054 China
- Key Laboratory of Screening and activity evaluation of targeted drugs Chongqing 400054 China
| |
Collapse
|
10
|
Gay M, Diaz-Lobo M, Gusi-Vives M, Arauz-Garofalo G, Vilanova M, Giralt E, Vilaseca M, Guardiola S. Proteomic tools for the quantitative analysis of artificial peptide libraries: detection and characterization of target-amplified PD-1 inhibitors. Chembiochem 2022; 23:e202200152. [PMID: 35362647 DOI: 10.1002/cbic.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Indexed: 11/07/2022]
Abstract
We report a quantitative proteomics data analysis pipeline which, coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Marina Gay
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Gusi-Vives
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Vilanova
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, mas, SPAIN
| | - Ernest Giralt
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Marta Vilaseca
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Salvador Guardiola
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, Baldiri Reixac, 4, 08028, Barcelona, SPAIN
| |
Collapse
|
11
|
Srdanović S, Hegedüs Z, Warriner SL, Wilson AJ. Towards Identification of Protein-Protein Interaction Stabilizers via Inhibitory Peptide-Fragment Hybrids Using Templated Fragment Ligation. RSC Chem Biol 2022; 3:546-550. [PMID: 35656480 PMCID: PMC9092428 DOI: 10.1039/d2cb00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Using the hDMX/14-3-3 interaction, acylhydrazone-based ligand-directed fragment ligation was used to identify protein-protein interaction (PPI) inhibitory peptide-fragment hybrids. Separation of the peptide-fragment hybrids into the components yielded fragments that stabilized...
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Zsofia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
12
|
Zhao S, Wu Y, Hu L. Identification and synthesis of selective cholesterol esterase inhibitor using dynamic combinatorial chemistry. Bioorg Chem 2021; 119:105520. [PMID: 34864280 DOI: 10.1016/j.bioorg.2021.105520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
In this study, the concept of dynamic combinatorial chemistry (DCC) was applied to explore novel cholesterol esterase (CEase) inhibitors. In the presence of enzyme, two substrates (A1H3 and A2H3) were amplified from the dynamic combinatorial library (DCL), which was generated through reversible acylhydrazone formation reaction. In the in vitro biological evaluation, compound A1H3 exhibited not only potent (IC50 in nanomolar range) but also selective inhibition (>120 folds of selectivity for CEase over AChE). Furthermore, the binding pattern and possible binding mechanism were investigated in the kinetic experiment and molecular docking study, respectively.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 301 Xuefu Rd., Zhenjiang, China
| | - Yao Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, Zhenjiang, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
13
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
14
|
Dewey JA, Azizi SA, Lu V, Dickinson BC. A System for the Evolution of Protein-Protein Interaction Inducers. ACS Synth Biol 2021; 10:2096-2110. [PMID: 34319091 DOI: 10.1021/acssynbio.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecules that induce interactions between proteins, often referred to as "molecular glues", are increasingly recognized as important therapeutic modalities and as entry points for rewiring cellular signaling networks. Here, we report a new PACE-based method to rapidly select and evolve molecules that mediate interactions between otherwise noninteracting proteins: rapid evolution of protein-protein interaction glues (rePPI-G). By leveraging proximity-dependent split RNA polymerase-based biosensors, we developed E. coli-based detection and selection systems that drive gene expression outputs only when interactions between target proteins are induced. We then validated the system using engineered bivalent molecular glues, showing that rePPI-G robustly selects for molecules that induce the target interaction. Proof-of-concept evolutions demonstrated that rePPI-G reduces the "hook effect" of the engineered molecular glues, due at least in part to tuning the interaction affinities of each individual component of the bifunctional molecule. Altogether, this work validates rePPI-G as a continuous, phage-based evolutionary technology for optimizing molecular glues, providing a strategy for developing molecules that reprogram protein-protein interactions.
Collapse
Affiliation(s)
- Jeffrey A. Dewey
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Vivian Lu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| |
Collapse
|
15
|
Jumde RP, Guardigni M, Gierse RM, Alhayek A, Zhu D, Hamid Z, Johannsen S, Elgaher WAM, Neusens PJ, Nehls C, Haupenthal J, Reiling N, Hirsch AKH. Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase. Chem Sci 2021; 12:7775-7785. [PMID: 34168831 PMCID: PMC8188608 DOI: 10.1039/d1sc00330e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.
Collapse
Affiliation(s)
- Ravindra P Jumde
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Melissa Guardigni
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- D3-PharmaChemistry, Istituto Italiano di Tecnologia Via Morego 30 16163 Genoa Italy
| | - Robin M Gierse
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Di Zhu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Zhoor Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Sandra Johannsen
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Philipp J Neusens
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Christian Nehls
- RG Biophysics, Research Center Borstel, Leibniz Lung Center Borstel Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
16
|
Zhao S, Xu J, Zhang S, Han M, Wu Y, Li Y, Hu L. Multivalent butyrylcholinesterase inhibitor discovered by exploiting dynamic combinatorial chemistry. Bioorg Chem 2021; 108:104656. [PMID: 33548731 DOI: 10.1016/j.bioorg.2021.104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
In this study, we report the generation of a polymer-based dynamic combinatorial library (DCL) incorporating exchangeable side chains using acylhydrazone formation reaction. In combination with tetrameric butyrylcholinesterase (BChE), the most potent binding side chain was identified, and the information obtained was further used for the synthesis of a multivalent BChE inhibitor. In the in vitro biological evaluation, this multivalent inhibitor exhibited not only better inhibitory effect than the commercial reference but also high selectivity on BChE over acetylcholinesterase (AChE).
Collapse
Affiliation(s)
- Shuang Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Jintao Xu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Shixin Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Maochun Han
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Yao Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Yusi Li
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
17
|
Reznichenko O, Cucchiarini A, Gabelica V, Granzhan A. Quadruplex DNA-guided ligand selection from dynamic combinatorial libraries of acylhydrazones. Org Biomol Chem 2021; 19:379-386. [PMID: 33325973 DOI: 10.1039/d0ob01908a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic combinatorial libraries of acylhydrazones were prepared from diacylhydrazides and several cationic or neutral aldehydes in the presence of 5-methoxyanthranilic acid catalyst. Pull-down experiments with magnetic beads functionalized with a G-quadruplex (G4)-forming oligonucleotide led to the identification of putative ligands, which were resynthesized or emulated by close structural analogues. G4-binding properties of novel derivatives were assessed by fluorimetric titrations, mass spectrometry and thermal denaturation experiments, giving evidence of strong binding (Kd < 10 nM) for two compounds.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anne Cucchiarini
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, 33600 Pessac, France
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Hartman AM, Jumde VR, Elgaher WAM, Te Poele EM, Dijkhuizen L, Hirsch AKH. Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase. ChemMedChem 2020; 16:113-123. [PMID: 32542998 PMCID: PMC7818428 DOI: 10.1002/cmdc.202000222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/15/2020] [Indexed: 12/21/2022]
Abstract
We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure‐based strategy, we designed a series of 36 glucose‐ and maltose‐based acylhydrazones as substrate mimics. Synthesis of the required mono‐ and disaccharide‐based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC‐MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose‐acceptor maltose at the C1‐hydroxy group act as glucose‐donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4–10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF‐activity assays. The early‐stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors.
Collapse
Affiliation(s)
- Alwin M Hartman
- Department of Drug Design and Optimization Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747, AG Groningen, The Netherlands
| | - Varsha R Jumde
- Department of Drug Design and Optimization Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747, AG Groningen, The Netherlands
| | - Walid A M Elgaher
- Department of Drug Design and Optimization Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Evelien M Te Poele
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen (The, Netherlands.,CarbExplore Research BV, Zernikepark 1, 9747 AN, Groningen (The, Netherlands
| | - Lubbert Dijkhuizen
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen (The, Netherlands.,CarbExplore Research BV, Zernikepark 1, 9747 AN, Groningen (The, Netherlands
| | - Anna K H Hirsch
- Department of Drug Design and Optimization Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747, AG Groningen, The Netherlands
| |
Collapse
|