1
|
Nguyen HV, Hwang S, Lee SW, Jin E, Lee MH. Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9. Bioelectrochemistry 2025; 162:108861. [PMID: 39608317 DOI: 10.1016/j.bioelechem.2024.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Cervical cancer, closely linked to Human Papillomavirus (HPV) infection, remains a significant health threat for women worldwide. Conventional HPV detection methods, such as reverse transcription polymerase chain reaction (RT-PCR), rely on nucleic acid amplification (NAA), which can be costly and time-consuming. This study introduces an NAA-free electrochemical Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based biosensor designed to detect HPV 16 and HPV 18 L1 genes simultaneously. The system utilizes a Cas9-single guided RNA complex to initiate a selective cleavage reaction, releasing Methylene blue or Ferrocene-labeled fragments correlate to L1 gene concentrations. These fragments then interact with modified gold electrodes immobilized with a complementary probe, allowing precise electrochemical signal measurement during hybridization. The biosensor offers a wide detection range from 1 fM to 10 nM, with detection limits as low as 0.4 fM for HPV 16 L1 and 0.51 fM for HPV 18 L1, providing a sensitive and efficient solution for L1 gene detection. Additionally, its specificity and sensitivity closely match RT-PCR results in clinical testing, highlighting its potential for molecular diagnostics and point-of-care applications.
Collapse
Affiliation(s)
- Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam.
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sang Wook Lee
- PCL Inc, 128, Beobwon-ro, Songpa-gu, Seoul 08510, Republic of Korea
| | - Enjian Jin
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Lai Z, Wang F, Cui Y, Li Z, Lin J. Innovative strategies for enhancing AuNP-based point-of-care diagnostics: Focus on coronavirus detection. Talanta 2025; 285:127362. [PMID: 39675069 DOI: 10.1016/j.talanta.2024.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Highly pathogenic coronaviruses have consistently threatened humanity, encompassing SARS-CoV, MERS-CoV, SARS-CoV-2 and others. Swift detection and accurate diagnosis play a crucial role in promptly identifying high-risk populations, enabling timely intervention, and effectively breaking the transmission chain to reduce casualties. However, the diagnostic "gold standard" reverse transcription-polymerase chain reaction (RT-PCR) failed to meet the overwhelming demand during the pandemic due to insufficient equipment and trained personnel, impeding the effective control of viral spread. Undoubtedly, there is an urgent need for the development of convenient, rapid, and sensitive point-of-care (POC) diagnostic technology. Gold nanoparticles (AuNPs) satisfy the substantial market demand for biosensors owing to their exceptional optical properties and stability. In this comprehensive review, we summarize the potential advantages of AuNPs in visual solution colorimetry and lateral flow assays (LFAs) for the diagnosis of COVID-19. We delve into the techniques for enhancing LFA signals, with the goal of increasing both detection sensitivity and specificity. Furthermore, we include the application of smartphones for unbiased and objective interpretation of results. The examples presented in this review are anticipated to inspire researchers in designing AuNPs biosensors to address current and potential outbreaks of infectious diseases in the future.
Collapse
Affiliation(s)
- Zhenquan Lai
- College of Materials Science & Engineering, HuaQiao University, Amoy, Fujian, 361021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Fucai Wang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Zhaofa Li
- School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Junsheng Lin
- College of Materials Science & Engineering, HuaQiao University, Amoy, Fujian, 361021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China.
| |
Collapse
|
3
|
Qiu Y, Chen S, Li J, Liu DA, Hu R, Xu Y, Chen K, Yuan J, Zhang X, Li X. Crispr-cas biosensing for rapid detection of viral infection. Clin Chim Acta 2025; 567:120071. [PMID: 39638020 DOI: 10.1016/j.cca.2024.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
With the frequent outbreaks of viral diseases globally, accurate and rapid diagnosis of viral infections is of significant importance for disease prevention and control. The CRISPR-Cas combined biosensing strategy, as an emergent nucleic acid detection technology, exhibits notable advantages including high specificity, elevated sensitivity, operational simplicity, and cost-effectiveness, thereby demonstrating significant potential in the domain of rapid viral diagnostics. This paper summarizes the principles of the CRISPR-Cas system, the novel biotechnologies, and the latest research progress in virus detection using the combined biosensing strategy. Additionally, this paper discusses the challenges faced by CRISPR-Cas biosensing strategies and outlines future development directions, which provides a reference for further research and clinical applications in the rapid diagnosis of viral infections.
Collapse
Affiliation(s)
- Yuting Qiu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Shiyu Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Juezhuo Li
- Wycombe Abbey School Hangzhou, Hangzhou, 311261, PR China
| | - Dong-Ang Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Ruiyao Hu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Yue Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Keyi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jinghua Yuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Xinling Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| |
Collapse
|
4
|
Yang Y, Zhai S, Zhang L, Wu Y, Li J, Li Y, Li X, Zhu L, Xu W, Wu G, Gao H. A gold nanoparticle-enhanced dCas9-mediated fluorescence resonance energy transfer for nucleic acid detection. Talanta 2025; 282:126978. [PMID: 39366243 DOI: 10.1016/j.talanta.2024.126978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies μL-1. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Hubei Provincial Key Laboratory for the Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Zhang
- Hubei Provincial Key Laboratory for the Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaofei Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
5
|
Zhao L, Zhao Z, Li N, Wang X. The nucleic acid detection using CRISPR/Cas biosensing system with micro-nano modality for point-of-care applications. Talanta 2024; 286:127457. [PMID: 39724853 DOI: 10.1016/j.talanta.2024.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based diagnostics offer a promising alternative for nucleic acid detection. These methods provide gene sequence-specific targeting, multiplexing capability, rapid result disclosure, and ease of operation, making them suitable for point-of-care (POC) applications. CRISPR-Cas-based nucleic acid detection leverages the intrinsic gene-editing capabilities of CRISPR systems to detect specific DNA or RNA sequences with high precision, ensuring high specificity in identifying pathogens. When integrated with micro- and nano-technologies, CRISPR-based diagnostics gain additional benefits, including automated microfluidic processes, enhanced multiplexed detection, improved sensitivity through nanoparticle integration, and combined detection strategies. In this review, we analyze the motivations for tailoring the CRISPR-Cas system with microfluidic formats or nanoscale materials for nucleic acid biosensing and detection. We discuss and categorize current achievements in such systems, highlighting their differences, commonalities, and opportunities for addressing challenges, particularly for POC diagnostics. Micro- and nano-technologies can significantly enhance the practical utility of the CRISPR-Cas system, enabling more comprehensive diagnostic and surveillance capabilities. By integrating these technologies, CRISPR-based diagnostics can achieve higher levels of automation, sensitivity, and multiplexing, making them invaluable tools in the global effort to diagnose and control infectious diseases.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Ning Li
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
6
|
Song SF, Zhang XW, Chen S, Shu Y, Yu YL, Wang JH. CRISPR-based dual-aptamer proximity ligation coupled hybridization chain reaction for precise detection of tumor extracellular vesicles and cancer diagnosis. Talanta 2024; 280:126780. [PMID: 39191105 DOI: 10.1016/j.talanta.2024.126780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Tumor cell-derived extracellular vesicles (TEVs) contain numerous cellular molecules and are considered potential biomarkers for non-invasive liquid biopsy. However, due to the low abundance of TEVs secreted by tumor cells and their phenotypic heterogeneity, there is a lack of sensitive and specific methods to quantify TEVs. Here, we developed a dual-aptamer proximity ligation-coupled hybridization chain reaction (HCR) method for tracing TEVs, exploiting CRISPR to achieve highly sensitive detection. Taking advantage of the high binding affinity of aptamers, the two aptamers (AptEpCAM, AptHER2) exhibited the high selectivity for TEVs recognition. HCR generated long-repeated sequence containing multiple crRNA targetable barcodes, and the signals were further amplified by CRISPR upon recognizing the HCR sequences, thereby enhancing the sensitivity. Under optimal conditions, the developed method demonstrated a favorable linear relationship in the range of 2 × 103-107 particles/μL, with a limit of detection (LOD) of 3.3 × 102 particles/μL. We directly applied our assay to clinical plasma analysis, achieving 100 % accuracy in cancer diagnosis, thus demonstrating the potential clinical applications of TEVs. Due to its simplicity and rapidity, excellent sensitivity and specificity, this method has broad applications in clinical medicine.
Collapse
Affiliation(s)
- Shi-Fan Song
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
7
|
Xie S, Yue Y, Yang F. Recent Advances in CRISPR/Cas System-Based Biosensors for the Detection of Foodborne Pathogenic Microorganisms. MICROMACHINES 2024; 15:1329. [PMID: 39597141 PMCID: PMC11596558 DOI: 10.3390/mi15111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Foodborne pathogens pose significant risks to food safety. Conventional biochemical detection techniques are facing a series of challenges. In recent years, with the gradual development of CRISPR (clustered regularly interspaced short palindromic repeats) technology, CRISPR/Cas system-based biosensors, a newly emerging technology, have received much attention from researchers because of their supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have a broad application in the field of environmental monitoring, food safety, and point-of-care diagnosis, they remain in high demand to summarize recent advances in CRISPR/Cas system-based biosensors for foodborne pathogen detection. In this paper, we briefly classify and discuss the working principles of CRISPR/Cas systems with trans-cleavage activity in applications for the detection of foodborne pathogenic microorganisms. We highlight the current status, the unique feature of each CRISPR system and CRISPR-based biosensing platforms, and the integration of CRISPR-Cas with other techniques, concluding with a discussion of the advantages, disadvantages, and future directions.
Collapse
Affiliation(s)
- Sanlei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yuehong Yue
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| |
Collapse
|
8
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39434421 DOI: 10.1080/10408398.2024.2416473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| |
Collapse
|
9
|
Li X, Li H, Zhu JY, Yu D, Abulaiti T, Zeng J, Wen CY. Au@Pt nanoparticles-based signal-enhanced lateral flow immunoassay for ultrasensitive naked-eye detection of SARS-CoV-2. Mikrochim Acta 2024; 191:657. [PMID: 39382589 DOI: 10.1007/s00604-024-06697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
With SARS-CoV-2 N protein as a model target, a signal-enhanced LFIA based on Au@Pt nanoparticles (NPs) as labels is proposed. This Au@Pt NPs combined the distinguished localized surface plasma resonance (LSPR) effect of Au NPs and the ultrahigh peroxidase-like catalytic activity of Pt NPs. Au@Pt NPs could trigger substrate chromogenic reaction, generating a color signal orders of magnitude darker than their intrinsic color. In the detection, after the coloration of the strips, 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 were added, and a dark blue chelate (OxTMB) was produced soon, enhancing the band color significantly. After the signal amplification, the naked-eye detection limit for N protein reached 40 pg/mL. The detection sensitivity enhanced more than 1000 times than that without signal amplification. Compared with mainstream LFIA requiring complex readout instruments, the Au@Pt-based LFIA achieved a comparable sensitivity using naked eyes detection. This point is crucial, especially for unprofessional users or low-resource areas. Hence, this signal-enhanced LFIA may serve as a sensitive, cost-effective, and user-friendly detection method. It can shorten the testing window period and help identify early infections.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jin-Yue Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | | | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
10
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
11
|
Zhu Y, Zhang M, Jie Z, Guo S, Zhu Z, Tao SC. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics. Vet Res 2024; 55:131. [PMID: 39375775 PMCID: PMC11460097 DOI: 10.1186/s13567-024-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic. The dynamics of the ASF virus load and antibody response necessitate the adoption of various detection strategies at different stages of infection, a topic that has received limited attention to date. This review offers detailed guidance for choosing appropriate ASF diagnostic techniques tailored to the clinical manifestations observed from the acute to chronic phases, including asymptomatic cases. We comprehensively summarize and evaluate the latest advancements in ASFV detection methods, such as CRISPR-based diagnostics, biosensors, and microfluidics. Additionally, we address the challenges of false negatives or positives due to ASF variants or the use of injected live attenuated vaccines. This review provides an exhaustive list of diagnostic tests suitable for detecting each stage of symptoms and potential target genes for developing new detection methods. In conclusion, we highlight the current challenges and future directions in ASFV detection, underscoring the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Son H. Harnessing CRISPR/Cas Systems for DNA and RNA Detection: Principles, Techniques, and Challenges. BIOSENSORS 2024; 14:460. [PMID: 39451674 PMCID: PMC11506544 DOI: 10.3390/bios14100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The emergence of CRISPR/Cas systems has revolutionized the field of molecular diagnostics with their high specificity and sensitivity. This review provides a comprehensive overview of the principles and recent advancements in harnessing CRISPR/Cas systems for detecting DNA and RNA. Beginning with an exploration of the molecular mechanisms of key Cas proteins underpinning CRISPR/Cas systems, the review navigates the detection of both pathogenic and non-pathogenic nucleic acids, emphasizing the pivotal role of CRISPR in identifying diverse genetic materials. The discussion extends to the integration of CRISPR/Cas systems with various signal-readout techniques, including fluorescence, electrochemical, and colorimetric, as well as imaging and biosensing methods, highlighting their advantages and limitations in practical applications. Furthermore, a critical analysis of challenges in the field, such as target amplification, multiplexing, and quantitative detection, underscores areas requiring further refinement. Finally, the review concludes with insights into the future directions of CRISPR-based nucleic acid detection, emphasizing the potential of these systems to continue driving innovation in diagnostics, with broad implications for research, clinical practice, and biotechnology.
Collapse
Affiliation(s)
- Heyjin Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Pandya K, Jagani D, Singh N. CRISPR-Cas Systems: Programmable Nuclease Revolutionizing the Molecular Diagnosis. Mol Biotechnol 2024; 66:1739-1753. [PMID: 37466850 DOI: 10.1007/s12033-023-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
CRISPR-Cas system has evolved as a highly preferred genetic engineering tool to perform target gene manipulation via alteration of the guide RNA (gRNA) sequence. The ability to recognize and cleave a specific target with high precision has led to its applicability in multiple frontiers pertaining to human health and medicine. From basic research focused on understanding the molecular basis of disease to translational approach leading to early and precise disease diagnosis as well as developing effective therapeutics, the CRISPR-Cas system has proved to be a quite versatile tool. The coupling of CRISPR-Cas mediated cleavage with isothermal amplification (ISA) of target DNA, followed by a read-out using fluorescent or colorimetric reporters appears quite promising in providing a solution to the urgent need for nucleic acid-based point-of-care diagnostic. Hence, it has been recognized as a highly sophisticated molecular diagnostic tool for the detection of disease-specific biomarkers not limited to nucleic acids-based detection but also of non-nucleic acid targets such as proteins, exosomes, and other small molecules. In this review, we have presented salient features and principles of class 2 type II, V, and VI CRISPR-Cas systems represented by Cas9, Cas12, and Cas13 endonucleases which are frequently used in molecular diagnosis. The article then highlights different medical diagnostic applications of CRISPR-Cas systems focusing on the diagnosis of SARS-CoV-2, Dengue, Mycobacterium tuberculosis, and Listeria monocytogenes. Lastly, we discuss existing obstacles and potential future pathways concerning this subject in a concise manner.
Collapse
Affiliation(s)
- Kavya Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Deep Jagani
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
14
|
Zhang J, Yan C, Liu G. Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification. Mikrochim Acta 2024; 191:491. [PMID: 39066913 DOI: 10.1007/s00604-024-06557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
15
|
Wang C, Yu Q, Zheng S, Shen W, Li J, Xu C, Gu B. Phenylboronic Acid-Modified Membrane-Like Magnetic Quantum Dots Enable the Ultrasensitive and Broad-Spectrum Detection of Viruses by Lateral Flow Immunoassay. ACS NANO 2024; 18:16752-16765. [PMID: 38901038 DOI: 10.1021/acsnano.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Although lateral flow immunochromatographic assay (LFIA) is an effective point-of-care testing technology, it still cannot achieve broad-spectrum and ultrasensitive detection of viruses. Herein, we propose a multiplex LFIA platform using a two-dimensional graphene oxide (GO)-based magnetic fluorescent nanofilm (GF@DQD) as a multifunctional probe and 4-aminophenylboronic acid (APBA) as a broad-spectrum recognition molecule for viral glycoprotein detection. GF@DQD-APBA with enhanced magnetic/fluorescence properties and universal capture ability for multiple viruses was easily prepared through the electrostatic adsorption of one layer of density-controlled Fe3O4 nanoparticles (NPs) and thousands of small CdSe/ZnS-MPA quantum dots (QDs) on a monolayer GO sheet followed by chemical coupling with APBA on the QD surface. The GF@DQD-APBA probe enabled the universal capture and specific determination of different target viruses on the test strip through an arbitrary combination with the antibody-modified LFIA strip, thus greatly improving detection efficiency and reducing the cost and difficulty of multiplex LFIA for viruses. The proposed technique can simultaneously and sensitively diagnose three newly emerged viruses within 20 min with detection limits down to the pg/mL level. The excellent practicability of GF@DQD-APBA-LFIA was also demonstrated in the detection of 34 clinical specimens positive for SARS-CoV-2, revealing its potential for epidemic control and on-site viral detection.
Collapse
Affiliation(s)
- Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Wanzhu Shen
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Changyue Xu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
16
|
Zhou L, Simonian AL. CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics. Annu Rev Biomed Eng 2024; 26:247-272. [PMID: 38346278 DOI: 10.1146/annurev-bioeng-081723-013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.
Collapse
Affiliation(s)
- Lang Zhou
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| | - Aleksandr L Simonian
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
17
|
Wei C, Lei X, Yu S. Multiplexed Detection Strategies for Biosensors Based on the CRISPR-Cas System. ACS Synth Biol 2024; 13:1633-1646. [PMID: 38860462 DOI: 10.1021/acssynbio.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.
Collapse
Affiliation(s)
- Cong Wei
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Rafiq MS, Shabbir MA, Raza A, Irshad S, Asghar A, Maan MK, Gondal MA, Hao H. CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. BioDrugs 2024; 38:387-404. [PMID: 38605260 DOI: 10.1007/s40259-024-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Shahzad Rafiq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Ahmed Raza
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Shoaib Irshad
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mushtaq Ahmed Gondal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Zhu D, Su T, Sun T, Qin X, Su S, Bai Y, Li F, Zhao D, Shao G, Chao J, Feng Z, Wang L. Enhancing Point-of-Care Diagnosis of African Swine Fever Virus (ASFV) DNA with the CRISPR-Cas12a-Assisted Triplex Amplified Assay. Anal Chem 2024; 96:5178-5187. [PMID: 38500378 DOI: 10.1021/acs.analchem.3c05364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/μL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tong Su
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tao Sun
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xingcai Qin
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yun Bai
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
20
|
Wu M, Wu H, Chen X, Wu F, Ma G, Du A, Yang Y. RPA-CRISPR/Cas9-based method for the detection of Toxoplasma gondii: A proof of concept. Vet Parasitol 2024; 327:110115. [PMID: 38232511 DOI: 10.1016/j.vetpar.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Toxoplasma gondii is a widespread and specialized intracellular protozoan pathogen that affects one third of the world' s population, posing a great threat to public health. As the definitive host, cats excrete oocysts and play a crucial role in the transmission of toxoplasmosis. The current diagnostic tools usually require bulky equipment and expertize, which hinders the efficient diagnosis and intervention of Toxoplasma infection in cats. In this study, we combined (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique to establish an easier method for the detection of T. gondii oocysts in cat fecal samples. The sensitivity, specificity, and practicability of the established RPA-CRISPR/Cas9 method were evaluated using a lateral flow strip, with the limitation of detection determined at 10 plasmid copies/μL (corresponding to about one oocyst), cross reactivity to none of Giardia lamblia, Cryptosporidium sp., Microsporidium biberi and Blastocystis hominis that also commonly found in cats, and comparable performance in detecting T. gondii in clinical samples to conventional PCR amplification. This RPA-CRISPR/Cas9 method provides an alternative to conventional molecular tools used in the clinical diagnosis of Toxoplasma infection in cats and other animals.
Collapse
Affiliation(s)
- Mengchen Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; South Taihu Modern Agricultural Technology Promotion Center of Huzhou & Zhejiang University, Huzhou, China.
| |
Collapse
|
21
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
22
|
Wu Q, Xu J, Yao L, Chen Q, Yao B, Zhang Y, Chen W. Accuracy and stability enhanced honey authenticity visual tracing method via false positive-eradicating PCR assisted nucleic acid-capturing lateral flow strip. Food Chem 2024; 435:137587. [PMID: 37778253 DOI: 10.1016/j.foodchem.2023.137587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Honey authenticity guarantee is crucial for consumer health and fair-trading commerce. New visual false-positive-free molecular lateral flow strip (LFS), termed 5'-3' exonuclease activity -directed false positive-eradicating PCR assisted lateral flow strip (FPE-PCR-LFS) was developed. This FPE-PCR-LFS explored the availability of using a signal-probe as the mediator to integrate the efficient amplification module with visual LFS module. With the genomic DNA extracted from target honey, the designed signal probe would be hydrolyzed and exhausted by the 5'-3' exonuclease activity of Taq DNA polymerase in the amplification process. The hydrolyzed signal probe would not be recognized and capture on the T line with only C line of LFS, reflecting the authenticity of the tested honey. And as low as 0.5% authenticity can be accurately identified in commercial honey samples. Significantly, the false-positive-interference was successfully eradicated for the final visual results judgement, which would greatly widen the application of molecular PCR-LFS in various fields.
Collapse
Affiliation(s)
- Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qi Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, PR China
| | - Yan Zhang
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Food Inspection and Research Institute, Shijiazhuang 050227, PR China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
23
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
24
|
Zhou J, Li Z, Seun Olajide J, Wang G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon 2024; 10:e26179. [PMID: 38390187 PMCID: PMC10882038 DOI: 10.1016/j.heliyon.2024.e26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
CRISPR/Cas systems have become integral parts of nucleic acid detection apparatus and biosensors. Various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/Cas12, CRISPR/Cas13, CRISPR/Cas14 and CRISPR/Cas3 utilize different mechanisms to detect or differentiate biological activities and nucleotide sequences. Usually, CRISPR/Cas-based nucleic acid detection systems are combined with polymerase chain reaction, loop-mediated isothermal amplification, recombinase polymerase amplification and transcriptional technologies for effective diagnostics. Premised on these, many CRISPR/Cas-based nucleic acid biosensors have been developed to detect nucleic acids of viral and bacterial pathogens in clinical samples, as well as other applications in life sciences including biosecurity, food safety and environmental assessment. Additionally, CRISPR/Cas-based nucleic acid detection systems have showed better specificity compared with other molecular diagnostic methods. In this review, we give an overview of various CRISPR/Cas-based nucleic acid detection methods and highlight some advances in their development and components. We also discourse some operational challenges as well as advantages and disadvantages of various systems. Finally, important considerations are offered for the improvement of CRISPR/Cas-based nucleic acid testing.
Collapse
Affiliation(s)
- Jian Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Zhuo Li
- Department of Laboratory Medicines, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, People's Republic of China
| | - Joshua Seun Olajide
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| | - Gang Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
25
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
26
|
He Y, Zhan Z, Yan L, Wu C, Wang Y, Shen C, Huang K, Wei Z, Lin F, Ying B, Li W, Chen P. Single-Cell Liquid Biopsy of Lung Cancer: Ultra-Simplified Efficient Enrichment of Circulating Tumor Cells and Hand-Held Fluorometer Portable Testing. ACS NANO 2024; 18:5017-5028. [PMID: 38305181 DOI: 10.1021/acsnano.3c11147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Herein, we propose a paper-based laboratory via enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs) assisted single-cell-level analysis (PLACS). This method allowed for the rapid detection of mucin 1 and trace circulating tumor cells (CTCs) in the peripheral blood of lung cancer patients. Initially, an independently developed method requiring one centrifuge, two reagents (lymphocyte separation solution and erythrocyte lysate), and a three-step, 45 min sample pretreatment was employed. The core of the detection approach consisted of two competitive selective identifications: copper sulfide nanoparticles (CuS NPs) to C-Ag+-C and Ag+, and dual quantum dots (QDs) to Cu2+ and CuS NPs. To facilitate multimodal point-of-care testing (POCT), we integrated solution visualization, test strip length reading, and a self-developed hand-held fluorometer readout. These methods were detectable down to ag/mL of mucin 1 concentration and the single-cell level. Forty-seven clinical samples were assayed by fluorometer, yielding 94% (30/32) sensitivity and 100% (15/15) specificity with an area under the curve (AUC) of 0.945. Nine and 15 samples were retested by a test strip and hand-held fluorometer, respectively, with an AUC of 0.95. All test results were consistent with the clinical imaging and the folate receptor (FR)-PCR kit findings, supporting its potential in early diagnosis and postoperative monitoring.
Collapse
Affiliation(s)
- Yaqin He
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zixuan Zhan
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yan
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengyong Wu
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congcong Shen
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zeliang Wei
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Lin
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weimin Li
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Department of Thoracic Surgery, Med+X Center for Manufacturing, Out-patient Department, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
28
|
Li Y, Jia J, Man S, Ye S, Ma L. Emerging programmable nuclease-based detection for food safety. Trends Biotechnol 2024; 42:151-155. [PMID: 37806898 DOI: 10.1016/j.tibtech.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Food safety issues are an important challenge across the world. Programmable nucleases are emerging as new tools because of their significant biological advantages. This forum article provides an overview of recent advances and challenges in the novel paradigm of programmable nuclease-based detection for food safety.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jingyu Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300142, China.
| | - Long Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
29
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
30
|
Chung MC, Liu YQ, Jian BL, Xu SQ, Syu JJ, Lee CF, Tan KT. Affinity-Switchable Interaction of Biotin and Streptavidin for the Signal-ON Detection of Small Molecules. ACS Sens 2023; 8:4226-4232. [PMID: 37871282 DOI: 10.1021/acssensors.3c01572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lateral flow assay (LFA) based on gold nanoparticles (AuNPs) is a widely used analytical device for the rapid analysis of environmental hazards and biomarkers. Typically, a sandwich-type format is used for macromolecule detection, in which the appearance of a red test line indicates a positive result (Signal-ON). In contrast, small molecule detection usually relies on a competitive assay, where the absence of a test line indicates positive testing (Signal-OFF). However, such a "Signal-OFF" reading is usually detected within a narrower dynamic range and tends to generate false-negative signals at a low concentration. Moreover, inconsistent readings between macromolecule and small molecule testing might lead to misinterpretation when used by nonskilled individuals. Herein, we report a "Signal-ON" small molecule competitive assay based on the sterically modulated affinity-switchable interaction of biotin and streptavidin. In the absence of a small molecule target, a large steric hindrance can be imposed on the biotin to prevent interaction with streptavidin. However, in the presence of the small molecule target, this steric effect is removed, allowing the biotin to bind to streptavidin and generate the desired test line. In this article, we demonstrate the selective detection of two small molecule drugs, sulfonamides and trimethoprim, using this simple and modular affinity-switchable lateral flow assay (ASLFA). We believe that this affinity-switchable approach can also be adapted in drug discovery and clinical diagnosis, where the competitive assay format is always used for the rapid analysis of small molecules.
Collapse
Affiliation(s)
- Min-Chi Chung
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Yun-Qiao Liu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Bo-Lin Jian
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Shun-Qiang Xu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Jhih-Jie Syu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung ,Taiwan 402202, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, Taiwan 300044, Republic of China
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung ,Taiwan 80708, Republic of China
| |
Collapse
|
31
|
Wang H, Sun Y, Zhou Y, Liu Y, Chen S, Sun W, Zhang Z, Guo J, Yang C, Li Z, Chen L. Unamplified system for sensitive and typing detection of ASFV by the cascade platform that CRISPR-Cas12a combined with graphene field-effect transistor. Biosens Bioelectron 2023; 240:115637. [PMID: 37669587 DOI: 10.1016/j.bios.2023.115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
At present, the 100% case fatality and the cross-infection of virus strains make the ASFV 's harm to society continue to expand. The absence of an effective commercial vaccine poses early detection remains the most effective means of curbing ASFV infection. Here, we report a cascaded detection platform based on the CRISPR-Cas12a system combined with graphene field-effect transistor sensors. The cascade platform could detect ASFV as low as 0.5 aM within 30 min and achieve typing of wild and vaccine strains of ASFV in a single detection system. The evaluation of 16 clinical samples proved that, compared with the gold standard Real-time PCR method, this platform has outstanding advantages in sensitivity, specificity and typing. Combining CRISPR-Cas12a's high specificity with the bipolar electric field effect of graphene field-effect transistor, the cascade platform is expected to achieve clinical application in the field of DNA disease detection, and provides a new direction for multi-strain disease typing.
Collapse
Affiliation(s)
- Hua Wang
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Yang Sun
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yuan Zhou
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Yujie Liu
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Shuo Chen
- Department of Physics and Electronics, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Wenbo Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Zidong Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, No. 17923 Jing Shi Road, Jinan, 250061, PR China
| | - Junqing Guo
- Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, 450099, PR China
| | - Cheng Yang
- Department of Physics and Electronics, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Zhengping Li
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Lei Chen
- Department of Life Sciences, Shandong Normal University, 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| |
Collapse
|
32
|
Liang T, Qin X, Zhang Y, Yang Y, Chen Y, Yuan L, Liu F, Chen Z, Li X, Yang F. CRISPR/dCas9-Mediated Specific Molecular Assembly Facilitates Genotyping of Mutant Circulating Tumor DNA. Anal Chem 2023; 95:16305-16314. [PMID: 37874695 DOI: 10.1021/acs.analchem.3c03481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Breakthroughs in circulating tumor DNA (ctDNA) analysis are critical in tumor liquid biopsies but remain a technical challenge due to the double-stranded structure, extremely low abundance, and short half-life of ctDNA. Here, we report an electrochemical CRISPR/dCas9 sensor (E-dCas9) for sensitive and specific detection of ctDNA at a single-nucleotide resolution. The E-dCas9 design harnesses the specific capture and unzipping of target ctDNA by dCas9 to introduce a complementary reporter probe for specific molecular assembly and signal amplification. By efficient homogeneous assembly and interfacial click reaction, the assay demonstrates superior sensitivity (up to 2.86 fM) in detecting single-base mutant ctDNA and a broad dynamic range spanning 6 orders of magnitude. The sensor is also capable of measuring 10 fg/μL of a mutated target in excess of wild-type ones (1 ng/μL), equivalent to probing 0.001% of the mutation relative to the wild type. In addition, our sensor can monitor the dynamic expression of cellular genomic DNA and allows accurate analysis of blood samples from patients with nonsmall cell lung cancer, suggesting the potential of E-dCas9 as a promising tool in ctDNA-based cancer diagnosis.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuyuan Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| | - Feng Liu
- Department of Blood Transfusion, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Zhizhong Chen
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rhumatic Diseases, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
33
|
Lim JW, Vu TTH, Le VP, Yeom M, Song D, Jeong DG, Park SK. Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses 2023; 15:2169. [PMID: 38005846 PMCID: PMC10674204 DOI: 10.3390/v15112169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever (ASF) is one of the most lethal infectious diseases affecting domestic pigs and wild boars of all ages. Over a span of 100 years, ASF has continued to spread over continents and adversely affects the global pig industry. To date, no vaccine or treatment has been approved. The complex genome structure and diverse variants facilitate the immune evasion of the ASF virus (ASFV). Recently, advanced technologies have been used to design various potential vaccine candidates and effective diagnostic tools. This review updates vaccine platforms that are currently being used worldwide, with a focus on genetically modified live attenuated vaccines, including an understanding of their potential efficacy and limitations of safety and stability. Furthermore, advanced ASFV detection technologies are presented that discuss and incorporate the challenges that remain to be addressed for conventional detection methods. We also highlight a nano-bio-based system that enhances sensitivity and specificity. A combination of prophylactic vaccines and point-of-care diagnostics can help effectively control the spread of ASFV.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Thi Thu Hang Vu
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam;
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
34
|
Kulkarni A, Tanga S, Karmakar A, Hota A, Maji B. CRISPR-Based Precision Molecular Diagnostics for Disease Detection and Surveillance. ACS APPLIED BIO MATERIALS 2023; 6:3927-3945. [PMID: 37788375 DOI: 10.1021/acsabm.3c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sensitive, rapid, and portable molecular diagnostics is the future of disease surveillance, containment, and therapy. The recent SARS-CoV-2 pandemic has reminded us of the vulnerability of lives from ever-evolving pathogens. At the same time, it has provided opportunities to bridge the gap by translating basic molecular biology into therapeutic tools. One such molecular biology technique is CRISPR (clustered regularly interspaced short palindromic repeat) which has revolutionized the field of molecular diagnostics at the need of the hour. The use of CRISPR-Cas systems has been widespread in biology research due to the ease of performing genetic manipulations. In 2012, CRISPR-Cas systems were, for the first time, shown to be reprogrammable, i.e., capable of performing sequence-specific gene editing. This discovery catapulted the field of CRISPR-Cas research and opened many unexplored avenues in the field of gene editing, from basic research to therapeutics. One such field that benefitted greatly from this discovery was molecular diagnostics, as using CRISPR-Cas technologies enabled existing diagnostic methods to become more sensitive, accurate, and portable, a necessity in disease control. This Review aims to capture some of the trajectories and advances made in this arena and provides a comprehensive understanding of the methods and their potential use as point-of-care diagnostics.
Collapse
Affiliation(s)
- Akshara Kulkarni
- Ashoka University, Department of Biology, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - Sadiya Tanga
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - Arkadeep Karmakar
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| | - Arpita Hota
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| | - Basudeb Maji
- Ashoka University, Department of Biology, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| |
Collapse
|
35
|
Ji S, Wang X, Wang Y, Sun Y, Su Y, Lv X, Song X. Advances in Cas12a-Based Amplification-Free Nucleic Acid Detection. CRISPR J 2023; 6:405-418. [PMID: 37751223 DOI: 10.1089/crispr.2023.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
In biomedicine, rapid and sensitive nucleic acid detection technology plays an important role in the early detection of infectious diseases. However, most traditional nucleic acid detection methods require the amplification of nucleic acids, resulting in problems such as long detection time, complex operation, and false-positive results. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR) systems have been widely used in nucleic acid detection, especially the CRISPR-Cas12a system, which can trans cleave single-stranded DNA and can realize the detection of DNA targets. But, amplification of nucleic acids is still required to further improve detection sensitivity, which makes Cas12a-based amplification-free nucleic acid detection methods a great challenge. This article reviews the recent progress of Cas12a-based amplification-free detection methods for nucleic acids. These detection methods apply electrochemical detection methods, fluorescence detection methods, noble metal nanomaterial detection methods, and lateral flow assay. Under various optimization strategies, unamplified nucleic acids have the same sensitivity as amplified nucleic acids. At the same time, the article discusses the advantages and disadvantages of each method and further discusses the current challenges such as off-target effects and the ability to achieve high-throughput detection. Amplification-free nucleic acid detection technology based on CRISPR-Cas12a has great potential in the biomedical field.
Collapse
Affiliation(s)
- Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Yangkun Wang
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingqi Sun
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingying Su
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiaosong Lv
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| |
Collapse
|
36
|
Zhang J, Liang X, Zhang H, Ishfaq S, Xi K, Zhou X, Yang X, Guo W. Rapid and Sensitive Detection of Toxigenic Fusarium asiaticum Integrating Recombinase Polymerase Amplification, CRISPR/Cas12a, and Lateral Flow Techniques. Int J Mol Sci 2023; 24:14134. [PMID: 37762436 PMCID: PMC10531391 DOI: 10.3390/ijms241814134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fusarium head blight (FHB) is a global cereal disease caused by a complex of Fusarium species. Both Fusarium graminearum and F. asiaticum are the causal agents of FHB in China. F. asiaticum is the predominant species in the Middle-Lower Reaches of the Yangtze River (MLRYR) and southwest China. Therefore, detecting F. asiaticum in a timely manner is crucial for controlling the disease and preventing mycotoxins from entering the food chain. Here, we combined rapid genomic DNA extraction, recombinase polymerase amplification, Cas12a cleavage, and lateral flow detection techniques to develop a method for the rapid detection of F. asiaticum. The reaction conditions were optimized to provide a rapid, sensitive, and cost-effective method for F. asiaticum detection. The optimized method demonstrated exceptional specificity in detecting F. asiaticum while not detecting any of the 14 other Fusarium strains and 3 non-Fusarium species. Additionally, it could detect F. asiaticum DNA at concentrations as low as 20 ag/μL, allowing for the diagnosis of F. asiaticum infection in maize and wheat kernels even after 3 days of inoculation. The developed assay will provide an efficient and robust detection platform to accelerate plant pathogen detection.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (X.Z.)
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.L.); (S.I.)
| | - Xiaoyan Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.L.); (S.I.)
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (X.Z.)
| | - Shumila Ishfaq
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.L.); (S.I.)
| | - Kaifei Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.L.); (S.I.)
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (X.Z.)
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.Z.); (X.Z.)
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (X.L.); (S.I.)
| |
Collapse
|
37
|
Xiao J, Li J, Quan S, Wang Y, Jiang G, Wang Y, Huang H, Jiao W, Shen A. Development and preliminary assessment of a CRISPR-Cas12a-based multiplex detection of Mycobacterium tuberculosis complex. Front Bioeng Biotechnol 2023; 11:1233353. [PMID: 37711452 PMCID: PMC10497956 DOI: 10.3389/fbioe.2023.1233353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Since the onset of the COVID-19 pandemic in 2020, global efforts towards tuberculosis (TB) control have encountered unprecedented challenges. There is an urgent demand for efficient and cost-effective diagnostic technologies for TB. Recent advancements in CRISPR-Cas technologies have improved our capacity to detect pathogens. The present study established a CRISPR-Cas12a-based multiplex detection (designated as MCMD) that simultaneously targets two conserved insertion sequences (IS6110 and IS1081) to detect Mycobacterium tuberculosis complex (MTBC). The MCMD integrated a graphene oxide-assisted multiplex recombinase polymerase amplification (RPA) assay with a Cas12a-based trans-cleavage assay identified with fluorescent or lateral flow biosensor (LFB). The process can be performed at a constant temperature of around 37°C and completed within 1 h. The limit of detection (LoD) was 4 copies μL-1, and no cross-reaction was observed with non-MTBC bacteria strains. This MCMD showed 74.8% sensitivity and 100% specificity in clinical samples from 107 patients with pulmonary TB and 40 non-TB patients compared to Xpert MTB/RIF assay (63.6%, 100%). In this study, we have developed a straightforward, rapid, highly sensitive, specific, and cost-effective assay for the multiplex detection of MTBC. Our assay showed superior diagnostic performance when compared to the widely used Xpert assay. The novel approach employed in this study makes a substantial contribution to the detection of strains with low or no copies of IS6110 and facilitates point-of-care (POC) testing for MTBC in resource-limited countries.
Collapse
Affiliation(s)
- Jing Xiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jieqiong Li
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuting Quan
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yacui Wang
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Guanglu Jiang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Hairong Huang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiwei Jiao
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Adong Shen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, National Center for Children’s Health, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Pal P, Anand U, Saha SC, Sundaramurthy S, Okeke ES, Kumar M, Radha, Bontempi E, Albertini E, Dey A, Di Maria F. Novel CRISPR/Cas technology in the realm of algal bloom biomonitoring: Recent trends and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:115989. [PMID: 37119838 DOI: 10.1016/j.envres.2023.115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
In conjunction with global climate change, progressive ocean warming, and acclivity in pollution and anthropogenic eutrophication, the incidence of harmful algal blooms (HABs) and cyanobacterial harmful algal blooms (CHABs) continue to expand in distribution, frequency, and magnitude. Algal bloom-related toxins have been implicated in human health disorders and ecological dysfunction and are detrimental to the national and global economy. Biomonitoring programs based on traditional monitoring protocols were characterised by some limitations that can be efficiently overdone using the CRISPR/Cas technology. In the present review, the potential and challenges of exploiting the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology for early detection of HABs and CHABs-associated toxigenic species were analysed. Based on more than 30 scientific papers, the main results indicate the great potential of CRISPR/Cas technology for this issue, even if the high sensitivity detected for the Cas12 and Cas13 platforms represents a possible interference risk.
Collapse
Affiliation(s)
- Pracheta Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (affiliated to the University of Kalyani), Nabadwip, West Bengal, 741302, India
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Francesco Di Maria
- Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
39
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
40
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
41
|
Huang Z, Lyon CJ, Wang J, Lu S, Hu TY. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301697. [PMID: 37162202 PMCID: PMC10369298 DOI: 10.1002/advs.202301697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Numerous groups have employed the special properties of CRISPR/Cas systems to develop platforms that have broad potential applications for sensitive and specific detection of nucleic acid (NA) targets. However, few of these approaches have progressed to commercial or clinical applications. This review summarizes the properties of known CRISPR/Cas systems and their applications, challenges associated with the development of such assays, and opportunities to improve their performance or address unmet assay needs using nano-/micro-technology platforms. These include rapid and efficient sample preparation, integrated single-tube, amplification-free, quantifiable, multiplex, and non-NA assays. Finally, this review discusses the current outlook for such assays, including remaining barriers for clinical or point-of-care applications and their commercial development.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Jin Wang
- Tolo Biotechnology Company Limited333 Guiping RoadShanghai200233China
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
| | - Tony Y. Hu
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| |
Collapse
|
42
|
Tian T, Zhou X. CRISPR-Based Biosensing Strategies: Technical Development and Application Prospects. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:311-332. [PMID: 37018798 DOI: 10.1146/annurev-anchem-090822-014725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biosensing based on CRISPR-Cas systems is a young but rapidly evolving technology. The unprecedented properties of the CRISPR-Cas system provide an innovative tool for developing new-generation biosensing strategies. To date, a series of nucleic acid and non-nucleic acid detection methods have been developed based on the CRISPR platform. In this review, we first introduce the core biochemical properties underpinning the development of CRISPR bioassays, such as diverse reaction temperatures, programmability in design, high reaction efficiency, and recognition specificity, and highlight recent efforts to improve these parameters. We then introduce the technical developments, including how to improve sensitivity and quantification capabilities, develop multiplex assays, achieve convenient one-pot assays, create advanced sensors, and extend the applications of detection. Finally, we analyze obstacles to the commercial application of CRISPR detection technology and explore development opportunities and directions.
Collapse
Affiliation(s)
- Tian Tian
- School of Life Sciences, South China Normal University, Guangzhou, China;
| | - Xiaoming Zhou
- School of Life Sciences, South China Normal University, Guangzhou, China;
| |
Collapse
|
43
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
44
|
Zhai S, Yang Y, Wu Y, Li J, Li Y, Wu G, Liang J, Gao H. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta 2023; 257:124318. [PMID: 36796171 DOI: 10.1016/j.talanta.2023.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Specific and economical nucleic acid detection is crucial for molecular diagnoses in resource-limited settings. Various facile readout approaches have been developed for nucleic acid detection, but they have limited specificity. Herein, nuclease-dead Cas9 (dCas9)/sgRNA was used as an excellent DNA recognition probe system to develop a visual clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated enzyme-linked immunosorbent assay (ELISA) for specific and sensitive detection of cauliflwer mosaic virus 35s (CaMV35S) promoter in genetically modified (GM) crops. In this work, the CaMV35S promoter was amplified with biotinylated primers, and then precisely bound with dCas9 in the presence of sgRNA. The formed complex was captured by antibody-coated microplate and bound to a streptavidin-labeled horseradish peroxidase probe for the visual detection. Under the optimal conditions, dCas9-ELISA could detect CaMV35s promoter as low as 12.5 copies μL-1. Moreover, the proposed method was capable to distinguish the target sequence with single-base specificity. Coupled with one-step extraction and recombinase polymerase amplification, dCas9-ELISA can identify actual GM rice seeds within 1.5 h from sampling to results without expensive equipment and technical expertise. Therefore, the proposed method offers a specific, sensitive, rapid and cost-effective detection platform for molecular diagnoses.
Collapse
Affiliation(s)
- Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
45
|
Zhu R, Jiang H, Li C, Li Y, Peng M, Wang J, Wu Q, Yan C, Bo Q, Wang J, Shen C, Qin P. CRISPR/Cas9-based point-of-care lateral flow biosensor with improved performance for rapid and robust detection of Mycoplasma pneumonia. Anal Chim Acta 2023; 1257:341175. [PMID: 37062563 DOI: 10.1016/j.aca.2023.341175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Screening of acute respiratory infections causes serious challenges in urgent point-of-care scenarios where conventional methods are impractical and alternative techniques suffer from low accuracy, poor robustness, and reliance on sophisticated instruments. As an improvement to this paradigm, we report a point-of-care lateral flow biosensor (LFB) based on the recognition property of clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (Cas9) and apply it to the detection of Mycoplasma pneumoniae (M. pneumoniae). The designed biosensor employs CRISPR/Cas9 for secondary recognition after preamplification of target gene using specific primer set, avoiding false positives caused by nontarget factors. The high amplification efficiency and low applicable temperatures of recombinase polymerase amplification brings the detection limit of the biosensor to 3 copies even at a preamplification temperature of 25 °C. Its practical application is further demonstrated with 100% accuracy by testing with 43 M. pneumoniae-infected specimens and 80 uninfected specimens. Additionally, the entire detection, including pretreatment, preamplification, CRISPR/Cas9 recognition, and visual analysis, can be completed in 30 min. Featured with the combination of CRISPR/Cas9 and LFB, the biosensor we developed herein ensures excellent convenience, accuracy, and robustness, which endows promising point-of-care screening potential for infectious pathogens.
Collapse
|
46
|
Fu R, Xianyu Y. Gold Nanomaterials-Implemented CRISPR-Cas Systems for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300057. [PMID: 36840654 DOI: 10.1002/smll.202300057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Indexed: 05/25/2023]
Abstract
Due to their superiority in the simple design and precise targeting, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have attracted significant interest for biosensing. On the one hand, CRISPR-Cas systems have the capacity to precisely recognize and cleave specific DNA and RNA sequences. On the other hand, CRISPR-Cas systems such as orthologs of Cas9, Cas12, and Cas13 exhibit cis-cleavage or trans-cleavage activities after recognizing the target sequence. Owing to the cleavage activities, CRISPR-Cas systems can be designed for biosensing by degrading tagged nucleic acids to produce detectable signals. To meet the requirements of point-of-care detection and versatile signal readouts, gold nanomaterials with excellent properties such as high extinction coefficients, easy surface functionalization, and biocompatibility are implemented in CRISPR-Cas-based biosensors. In combination with gold nanomaterials such as gold nanoparticles, gold nanorods, and gold nanostars, great efforts are devoted to fabricating CRISPR-Cas-based biosensors for the detection of diverse targets. This review focuses on the current advances in gold nanomaterials-implemented CRISPR-Cas-based biosensors, particularly the working mechanism and the performance of these biosensors. CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas13a are discussed and highlighted. Meanwhile, prospects and challenges are also discussed in the design of biosensing strategies based on gold nanomaterials and CRISPR-Cas systems.
Collapse
Affiliation(s)
- Ruijie Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, P. R. China
| |
Collapse
|
47
|
Fang L, Yang L, Han M, Xu H, Ding W, Dong X. CRISPR-cas technology: A key approach for SARS-CoV-2 detection. Front Bioeng Biotechnol 2023; 11:1158672. [PMID: 37214290 PMCID: PMC10198440 DOI: 10.3389/fbioe.2023.1158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
The CRISPR (Clustered Regularly Spaced Short Palindromic Repeats) system was first discovered in prokaryotes as a unique immune mechanism to clear foreign nucleic acids. It has been rapidly and extensively used in basic and applied research owing to its strong ability of gene editing, regulation and detection in eukaryotes. Hererin in this article, we reviewed the biology, mechanisms and relevance of CRISPR-Cas technology and its applications in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis. CRISPR-Cas nucleic acid detection tools include CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, CRISPR-Cas14, CRISPR nucleic acid amplification detection technology, and CRISPR colorimetric readout detection system. The above CRISPR technologies have been applied to the nucleic acid detection, including SARS-CoV-2 detection. Common nucleic acid detection based on CRISPR derivation technology include SHERLOCK, DETECTR, and STOPCovid. CRISPR-Cas biosensing technology has been widely applied to point-of-care testing (POCT) by targeting recognition of both DNA molecules and RNA Molecules.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Huimei Xu
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Wenshuai Ding
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Xuejun Dong
- Medical Laboratory, Zhejiang University Shaoxing Hospital, Shaoxing, China
| |
Collapse
|
48
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
49
|
Lv Y, Sun Y, Zhou Y, Khan IM, Niazi S, Yue L, Zhang Y, Wang Z. Cascade DNA Circuits Mediated CRISPR-Cas12a Fluorescent Aptasensor based on Multifunctional Fe 3 O 4 @hollow-TiO 2 @MoS 2 Nanochains for Tetracycline Determination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206105. [PMID: 36683240 DOI: 10.1002/smll.202206105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Herein, for the first time, the CRISPR-Cas12a system is combined with aptamer, cascaded dynamic DNA network circuits, and Fe3 O4 @hollow-TiO2 @MoS2 nanochains (Fe3 O4 @h-TiO2 @MoS2 NCs) to construct an efficient sensing platform for tetracycline (TC) analysis. In this strategy, specific recognition of the target is transduced and amplified into H1-H2 duplexes containing the specific sequence of Cas12a-crRNA through an aptamer recognition module and the dual amplification dynamic DNA network. Subsequently, the obtained activated Cas12a protein non-specifically cleaves the adjacent reporter gene ssDNA-FAM to dissociate the FAM molecule from the quencher Fe3 O4 @h-TiO2 @MoS2 NCs, resulting in the recovery of the fluorescence signal and further signal amplification. Particularly, the synthesized multifunctional Fe3 O4 @h-TiO2 @MoS2 NCs composites also exhibit superb magnetic separability and photocatalytic degradation ability. Under optimal conditions, the aptasensor displays a distinct linear relationship with the logarithm of TC concentration, and the limit of detection is as low as 0.384 pg mL-1 . Furthermore, the results of spiked recovery confirm the viability of the proposed aptasensor for TC quantification in real samples. This study extends the application of the CRISPR-Cas12a system in the field of analytical sensing and contributes new insights into the exploration of reliable tools for monitoring and treating hazards in food and environment.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - You Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
50
|
Lee H, Lee S, Park C, Yeom M, Lim JW, Vu TTH, Kim E, Song D, Haam S. Rapid Visible Detection of African Swine Fever Virus Using Hybridization Chain Reaction-Sensitized Magnetic Nanoclusters and Affinity Chromatography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207117. [PMID: 36960666 DOI: 10.1002/smll.202207117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
African swine fever virus (ASFV) is a severe and persistent threat to the global swine industry. As there are no vaccines against ASFV, there is an immense need to develop easy-to-use, cost-effective, and rapid point-of-care (POC) diagnostic platforms to detect and prevent ASFV outbreaks. Here, a novel POC diagnostic system based on affinity column chromatography for the optical detection of ASFV is presented. This system employs an on-particle hairpin chain reaction to sensitize magnetic nanoclusters with long DNA strands in a target-selective manner, which is subsequently fed into a column chromatography device to produce quantitatively readable and colorimetric signals. The detection approach does not require expensive analytical apparatus or immobile instrumentation. The system can detect five genes constituting the ASFV whole genome with a detection limit of ≈19.8 pm in swine serum within 30 min at laboratory room temperature. With an additional pre-amplification step using polymerase chain reaction (PCR), the assay is successfully applied to detect the presence of ASFV in 30 suspected swine samples with 100% sensitivity and specificity, similar to quantitative PCR. Thus, this simple, inexpensive, portable, robust, and customizable platform for the early detection of ASFV can facilitate the timely surveillance and implementation of control measures.
Collapse
Affiliation(s)
- Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Thu Hang Vu
- Department of Preclinical Science, College of Pharmacy, Korea University Sejong Campus, Sejong City, 30019, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|