1
|
Xia P, Gui J, Nie C, Yang Y, Zhu J, Abdelbar MF, Wu K. Picosecond Dexter-Type Energy Transfer in Device-Grade InAs Quantum Dot Films. J Phys Chem Lett 2025; 16:3589-3596. [PMID: 40177918 DOI: 10.1021/acs.jpclett.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
InAs quantum dots (QDs) have emerged as a promising replacement for highly toxic lead- and mercury-based QDs for infrared optoelectronic devices. In order to understand the performance of InAs QD-devices and exploit their full potential, it is essential to elucidate the mechanisms of exciton migration or energy transfer in the films of InAs QDs, which, however, have remained lacking. Here we investigate exciton transfer dynamics in device-grade InAs QD films used in infrared photodetectors using femtosecond transient absorption spectroscopy. Interdot distances were precisely controlled by using InAs QDs of different sizes capped with ligands of varying lengths. Through minimizing interdot distances with halide ligands, we observed an energy transfer time constant as short as 1.7 ps. The distance dependence of the energy transfer rates was found to follow a Dexter-like mechanism with a damping coefficient of β = 0.31 ± 0.03 Å-1, which is a relatively small value compared to prior charge/energy transfer studies enabled by the strongly delocalized exciton wave functions of InAs QDs. These results provide hitherto lacking fundamental insights into the energy transfer/migration mechanisms inside device-grade InAs QD films, with direct relevance to optoelectronic devices ranging from photodetectors and solar cells to light-emitting diodes.
Collapse
Affiliation(s)
- Pan Xia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Gui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yupeng Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Mostafa F Abdelbar
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Cho M. Time-resolved nonlinear microspectroscopy with Gaussian beams. J Chem Phys 2025; 162:124201. [PMID: 40130798 DOI: 10.1063/5.0256032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Time-resolved nonlinear microspectroscopy bridges high-resolution imaging and ultrafast spectroscopy, enabling the investigation of spatially localized molecular excited state and exciton dynamics on ultrafast timescales. By integrating ultrafast techniques such as pump-probe and coherent multidimensional spectroscopy with microscopy techniques utilizing high numerical aperture objective lenses and structured beams, these approaches provide label-free chemical contrast and reveal transient phenomena critical to understanding complex systems. Recent advancements, including adaptive optics and tailored beam profiles, have further enhanced spatial and temporal control, unlocking new possibilities for studying heterogeneous systems. This work explores time-resolved nonlinear microspectroscopy using Laguerre-Gaussian beams with orbital angular momentum. Analytical expressions for pump-probe microspectroscopy signals are derived to elucidate how beam parameters influence nonlinear responses reflecting spatial diffusion and ultrafast relaxation processes. The results demonstrate the potential of customized ultrafast pulses and spatial light fields to improve both resolution and sensitivity, advancing dynamic studies in materials science, chemistry, and biology.
Collapse
Affiliation(s)
- Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea and Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Manoj Lena A, Yamauchi M, Murakami H, Kubo N, Masuo S, Matsuo K, Hayashi H, Aratani N, Yamada H. Orderly Arranged Cubic Quantum Dots along Supramolecular Templates of Naphthalenediimide Aggregates. Angew Chem Int Ed Engl 2025; 64:e202423912. [PMID: 39777849 PMCID: PMC11933521 DOI: 10.1002/anie.202423912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template. The original template with a short and tangled fibrous structure is prepared in a low-polarity solvent mixture via self-assembly of a naphthalenediimide-functionalized cholesterol derivative with an adhesion group for QDs. Mixing this template with QDs leads to the co-aggregation into short-range 1D-arrays of QDs on the templates. Notably, subsequent heating and cooling of the co-aggregate solution forms longer-range 1D-arrays of QDs with lateral growth, where arranged QDs are sandwiched between reconstructed SP templates. Furthermore, the longer-range 1D-array of QDs is achieved via an alternative route involving the pre-organization of templates into longer and dispersed fibers by heating and cooling of the original template, succeeded by co-assembly with QDs. Finally, we reveal continuous fluorescence resonance energy transfer between 1D-arranged QDs by an in-depth analysis of the photoluminescence decay curves.
Collapse
Affiliation(s)
- Amrutha Manoj Lena
- Division of Materials ScienceNara Institute of Science and Technology (NAIST)8916-5 Takayama-choIkoma, Nara630-0192Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Hideyuki Murakami
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Naoki Kubo
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen, UegaharaSanda, Hyogo669-1330Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen, UegaharaSanda, Hyogo669-1330Japan
| | - Kyohei Matsuo
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Hironobu Hayashi
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)1-2-1 SengenTsukuba, Ibaraki305-0047Japan
| | - Naoki Aratani
- Division of Materials ScienceNara Institute of Science and Technology (NAIST)8916-5 Takayama-choIkoma, Nara630-0192Japan
| | - Hiroko Yamada
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| |
Collapse
|
4
|
Zhang X, Huang H, Zhao C, Yuan J. Surface chemistry-engineered perovskite quantum dot photovoltaics. Chem Soc Rev 2025; 54:3017-3060. [PMID: 39962988 DOI: 10.1039/d4cs01107d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The discovery and synthesis of colloidal quantum dots (QDs) was awarded the Nobel Prize in Chemistry in 2023. Recently, the development of bulk metal halide perovskite semiconductors has generated intense interest in their corresponding perovskite QDs. QDs, more broadly known as nanocrystals, constitute a new class of materials that differ from both molecular and bulk materials. They have rapidly advanced to the forefront of optoelectronic applications owing to their unique size-, composition-, surface- and process-dependent optoelectronic properties. More importantly, their ultrahigh surface-area-to-volume ratio enables various surface chemistry engineering strategies to tune and optimize their optoelectronic properties. Finally, three-dimensional confined QDs, offering nearly perfect photoluminescent quantum yield, slow hot-carrier cooling time, especially their colloidal synthesis and processing using industrially friendly solvents, have revolutionized the fields of electronics, photonics, and optoelectronics. Particularly, in emerging perovskite QD-based PVs, the advancement of surface chemistry has boosted the record power conversion efficiency (PCE) to 19.1% within a five-year period, surpassing all other colloidal QD photovoltaics (PVs). Given the rapid enhancement of device performances, perovskite QD PVs have attracted significant attention. Further study of semiconducting perovskite QDs will lead to advanced surface structures, a deeper understanding of halide perovskites, and enhanced PCE. In this review article, we comprehensively summarize and discuss the emerging perovskite QD PVs, providing insights into the impact of surface chemical design on their electronic coupling, dispersibility, stability and defect passivation. The limitations of current perovskite QDs mainly arise from their "soft" ionic nature and dynamic surface equilibrium, which lead to difficulties in the large-scale synthesis of monodispersed perovskite QDs and conductive inks for high-throughput printing techniques. We present that the development of surface chemistry is becoming a platform for further improving PCE, aiming to reach the 20% milestone. Additionally, we discuss integrating artificial intelligence to facilitate the mass-production of perovskite QDs for large-area, low-cost PV technology, which could help address significant energy challenges.
Collapse
Affiliation(s)
- Xuliang Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Hehe Huang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Chenyu Zhao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Jianyu Yuan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
5
|
Qi X. Opportunities and challenges in modelling ligand adsorption on semiconductor nanocrystals. Commun Chem 2025; 8:79. [PMID: 40082659 PMCID: PMC11906833 DOI: 10.1038/s42004-025-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Semiconductor nanocrystals, including their superstructures and hybridized systems, have opened up a new realm to design next-generation functional materials creatively. Their great success and unlimited potential should be largely attributed to surface-adsorbed ligands. However, due to a lack of means to probe and understand their roles in experiments, only a handful of effective ligands have been identified through trial-and-error processes. Alternatively, computational and theoretical methods are ideal for providing physical insights and further guidance. Still, their applications in ligand-coated semiconductor nanocrystals are relatively scarce compared to those of other systems, such as biological chemistry. In this perspective, we first highlight the success of ab initio methods in modeling ligand adsorption. Then, we discuss the opportunities of molecular dynamics and theory in accommodating complex colloidal nature, where we unfold the challenges therein. Finally, we emphasize the need for high-quality force fields to resolve these challenges and look forward to simulation-guided inverse design.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College, 41 College St., Hanover, 03755, NH, USA.
| |
Collapse
|
6
|
Zhang M, Hu J, Xi G, Tu J, Yang Q, Fan L, Lu Y, Sui M, Sun X, Zhang L, Tian J. Colloidal Perovskite Nanocrystal Superlattice Films with Simultaneous Polarized Emission and Orderly Electric Polarity via an In Situ Surface Cross-Linking Reaction. ACS NANO 2025; 19:7283-7293. [PMID: 39932160 DOI: 10.1021/acsnano.4c17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Superlattices (SLs) based on colloidal nanocrystals (NCs) represent a fascinating structure with long-range and ordered NCs inside the assembled superstructures, displaying great potential application in electronic devices because of the customizable arrangement of building blocks. It is a great challenge to achieve macroscopical SL films by a solution process due to the inherent sensitivity and difficulty in controlling colloidal NCs. In this study, we propose a controllable strategy to create perovskite CsPbBr3 NC SL films through a surface in situ cross-linking reaction incorporating conjugated linoleic acid (CLA), a naturally polymerizable small molecule. CLA enables the in situ cross-linking of adjacent NCs under polarity-triggered conditions, which effectively arranges the NCs in a solid form at a molecular level to achieve fcc SL structural films. Importantly, we report for the first time NC SL films that are simultaneous with outstanding intrinsically linearly polarized emission and orderly electric polarity, which are derived from consistent dipole alignment, thus showing promising potential for application in information storage and optoelectronics. This method provides a general bottom-up approach, expanding the assembly library for fundamental studies and technological applications.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Guoqiang Xi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Tu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linhan Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Xuejiao Sun
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Qi X, Helland S, Lowe CD, Larson H, Cui J, Zheng R, Monahan M, Chen CL, De Yoreo J, Pfaendtner J, Cossairt B. Toward Computation-Guided Design of Tunable Organic-Inorganic CdS Quantum Dot Binary Superlattices. NANO LETTERS 2025. [PMID: 39999380 DOI: 10.1021/acs.nanolett.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Combining the advantages of structural programmability in sequence-defined biomimetic molecules and the controllable packing geometry in nanoparticle superlattices, we demonstrate a self-assembled organic-inorganic superlattice whose structure can be altered with the slightest change in the sequence of the organic counterpart. Here, oleate-coated CdS quantum dots (QDs) form a square-packed superlattice with a 1:1 molar equivalence of a diblock amphiphilic peptoid (Nbrpe6Dig) in chloroform. In contrast, no apparent structure is observed in the organic solvent alone. Based on theoretical evidence, we show that the assembly is a binary superlattice where both the CdS QDs and the peptoids serve as building blocks and further predict a correlation between the superlattice structure and the peptoid sequence. The computationally guided prediction is validated by experiments where superlattice transformation is observed with modified peptoids. The mechanism identified in our work inspires new ways to control and tune organic-inorganic hybrid nanomaterial self-assembly.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Sarah Helland
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christopher D Lowe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jianming Cui
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical & Biomolecular Engineering, North Carolina State University,Raleigh, North Carolina 27695, United States
| | - Brandi Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Blach DD, Lumsargis-Roth VA, Chuang C, Clark DE, Deng S, Williams OF, Li CW, Cao J, Huang L. Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices. Nat Commun 2025; 16:1270. [PMID: 39894863 PMCID: PMC11788439 DOI: 10.1038/s41467-024-55812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Transport of energy carriers in solid-state materials is determined by their wavefunctions and interactions with the environment. While quantum transport theory has predicted distinct transport in the intermediate coupling regime resulting from the intricate interplay between coherent wave-like and incoherent particle-like mechanisms, these predictions are awaiting experimental evidence. Here we demonstrate quantum transport signatures in perovskite nanocrystal superlattices by imaging exciton propagation with high spatial and temporal resolutions over 7-298 K. At 7 K, coherent propagation of the excitons dominates, with transient ballistic motion within a coherence length of up to 40 nanocrystal sites. The interference of the wave-like motion leads to Anderson Localization in the long-time limit. As temperature increases, a peak in the long-time diffusion constant is observed at a temperature where static disorder and dephasing are balanced, which substantiates evidence for environment-assisted quantum transport. Our results connect theoretical predictions and experiments using a stochastic Anderson localization model, highlighting perovskite nanocrystals as promising building blocks for quantum materials.
Collapse
Affiliation(s)
- Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Chern Chuang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Daniel E Clark
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Shibin Deng
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Filippi U, Toso S, Zaffalon ML, Pianetti A, Li Z, Marras S, Goldoni L, Meinardi F, Brovelli S, Baranov D, Manna L. Cooling-Induced Order-Disorder Phase Transition in CsPbBr 3 Nanocrystal Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410949. [PMID: 39568247 PMCID: PMC11756043 DOI: 10.1002/adma.202410949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Perovskite nanocrystal superlattices are being actively studied after reports have emerged on collective excitonic properties at cryogenic temperatures, where energetic disorder is minimized due to the frozen lattice vibrations. However, an important issue related to structural disorder of superlattices at low temperatures has received little attention to date. In this work, it is shown that CsPbBr3 nanocrystal superlattices undergo a reversible order-disorder transition upon cooling to 90 K. The transition consists of the loss of structural coherence, that is, increased nanocrystal misalignment, and contraction of the superlattices, as revealed by temperature-dependent X-ray diffraction, and is ascribed to the solidification of ligands (on the basis of Raman spectroscopy). Introducing shorter amines on the nanocrystal surface allows to mitigate these changes, improve order, and shorten interparticle distance. It is demonstrated that the low temperature phase of the short ligand-capped nanocrystal superlattices is characterized by a strong exciton migration observable in the photoluminescence decay, which is due to the shrinkage of the inter-nanocrystal distance.
Collapse
Affiliation(s)
- Umberto Filippi
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
- International Doctoral Program in ScienceUniversità Cattolica del Sacro CuoreBrescia25121Italy
| | - Stefano Toso
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Matteo L. Zaffalon
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Andrea Pianetti
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
| | - Zhanzhao Li
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Sergio Marras
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Luca Goldoni
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| | - Francesco Meinardi
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Sergio Brovelli
- Department of Materials ScienceUniversity of Milano‐BicoccaVia R. Cozzi 55Milano20125Italy
| | - Dmitry Baranov
- Division of Chemical Physics and NanoLundDepartment of ChemistryLund UniversityP.O. Box, 124LundSE‐221 00Sweden
| | - Liberato Manna
- Istituto Italiano di TecnologiaVia Morego 30Genova16136Italy
| |
Collapse
|
10
|
Bandaru S, Arora D, Ganesh KM, Umrao S, Thomas S, Bhaskar S, Chakrabortty S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1387. [PMID: 39269049 PMCID: PMC11397018 DOI: 10.3390/nano14171387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| | - Deepshika Arora
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Kalathur Mohan Ganesh
- Star Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai, Puttaparthi 515134, Andhra Pradesh, India
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| |
Collapse
|
11
|
Enomoto K, Miranti R, Liu J, Okano R, Inoue D, Kim D, Pu YJ. Anisotropic electronic coupling in three-dimensional assembly of CsPbBr 3 quantum dots. Chem Sci 2024; 15:13049-13057. [PMID: 39148765 PMCID: PMC11323341 DOI: 10.1039/d4sc01769b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br, or I) perovskite quantum dots (PeQDs) show promise for next-generation optoelectronics. In this study, we controlled the electronic coupling between PeQD multilayers using a layer-by-layer method and dithiol linkers of varying structures. The energy shift of the first excitonic peak from monolayer to bilayer decreases exponentially with increasing interlayer spacer distance, indicating the resonant tunnelling effect. X-ray diffraction measurements revealed anisotropic inter-PeQD distances in multiple layers. Photoluminescence (PL) analysis showed lower energy emission in the in-plane direction due to the electronic coupling in the out-of-plane direction, supporting the anisotropic electronic state in the PeQD multilayers. Temperature-dependent PL and PL lifetimes indicated changes in exciton behaviour due to the delocalized electronic state in PeQD multilayers. Particularly, the electron-phonon coupling strength increased, and the exciton recombination rate decreased. This is the first study demonstrating controlled electronic coupling in a three-dimensional ordered structure, emphasizing the importance of the anisotropic electronic state for high-performance PeQDs devices.
Collapse
Affiliation(s)
- Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Jianjun Liu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Rinkei Okano
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - DaeGwi Kim
- Department of Physics and Electronics, Osaka Metropolitan University Osaka 558-8585 Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| |
Collapse
|
12
|
Rossi A, Zipfel J, Maity I, Lorenzon M, Dandu M, Barré E, Francaviglia L, Regan EC, Zhang Z, Nie JH, Barnard ES, Watanabe K, Taniguchi T, Rotenberg E, Wang F, Lischner J, Raja A, Weber-Bargioni A. Anomalous Interlayer Exciton Diffusion in WS 2/WSe 2 Moiré Heterostructure. ACS NANO 2024; 18:18202-18210. [PMID: 38950893 PMCID: PMC11256890 DOI: 10.1021/acsnano.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS2/WSe2 van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K. While the measured exciton diffusivity decreases with temperature, it surprisingly plateaus below 90 K. Our observations cannot be explained by classical models like hopping in the moiré potential. A combination of ab initio theory and molecular dynamics simulations suggests that low-energy phonons arising from the mismatched lattices of moiré heterostructures, also known as phasons, play a key role in describing and understanding this anomalous behavior of exciton diffusion. Our observations indicate that the moiré potential landscape is dynamic down to very low temperatures and that the phason modes can enable efficient transport of energy in the form of excitons.
Collapse
Affiliation(s)
- Antonio Rossi
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Center
for Nanotechnology Innovation @ NEST, Instituto
Italiano di Tecnologia, 56127 Pisa, Italy
| | - Jonas Zipfel
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Indrajit Maity
- Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Monica Lorenzon
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Medha Dandu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Elyse Barré
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Luca Francaviglia
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emma C. Regan
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Zuocheng Zhang
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Jacob H. Nie
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
- Department
of Physics, University of California at
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Edward S. Barnard
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Feng Wang
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - Johannes Lischner
- Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Archana Raja
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander Weber-Bargioni
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Thiebes JJ, Grumstrup EM. Quantifying noise effects in optical measures of excited state transport. J Chem Phys 2024; 160:124201. [PMID: 38516971 DOI: 10.1063/5.0190347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
Time-resolved microscopy is a widely used approach for imaging and quantifying charge and energy transport in functional materials. While it is generally recognized that resolving small diffusion lengths is limited by measurement noise, the impacts of noise have not been systematically assessed or quantified. This article reports modeling efforts to elucidate the impact of noise on optical probes of transport. Excited state population distributions, modeled as Gaussians with additive white noise typical of experimental conditions, are subject to decay and diffusive evolution. Using a conventional composite least-squares fitting algorithm, the resulting diffusion constant estimates are compared with the model input parameter. The results show that heteroscedasticity (i.e., time-varying noise levels), insufficient spatial and/or temporal resolution, and small diffusion lengths relative to the magnitude of noise lead to a surprising degree of imprecision under moderate experimental parameters. Moreover, the compounding influence of low initial contrast and small diffusion length leads to systematic overestimation of diffusion coefficients. Each of these issues is quantitatively analyzed herein, and experimental approaches to mitigate them are proposed. General guidelines for experimentalists to rapidly assess measurement precision are provided, as is an open-source tool for customizable evaluation of noise effects on time-resolved microscopy transport measurements.
Collapse
Affiliation(s)
- Joseph J Thiebes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Erik M Grumstrup
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
14
|
Shcherbakov-Wu W, Saris S, Sheehan TJ, Wong NN, Powers ER, Krieg F, Kovalenko MV, Willard AP, Tisdale WA. Persistent enhancement of exciton diffusivity in CsPbBr 3 nanocrystal solids. SCIENCE ADVANCES 2024; 10:eadj2630. [PMID: 38381813 PMCID: PMC10881049 DOI: 10.1126/sciadv.adj2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seryio Saris
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Thomas John Sheehan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric R. Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Li B, Xu J, Kocoj CA, Li S, Li Y, Chen D, Zhang S, Dou L, Guo P. Dual-Hyperspectral Optical Pump-Probe Microscopy with Single-Nanosecond Time Resolution. J Am Chem Soc 2024; 146:2187-2195. [PMID: 38216555 DOI: 10.1021/jacs.3c12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 μm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film-substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joy Xu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
16
|
Yamauchi M, Nakatsukasa K, Kubo N, Yamada H, Masuo S. One-Dimensionally Arranged Quantum-Dot Superstructures Guided by a Supramolecular Polymer Template. Angew Chem Int Ed Engl 2024; 63:e202314329. [PMID: 37985221 DOI: 10.1002/anie.202314329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Colloidal quantum dots (QDs) exhibit important photophysical properties, such as long-range energy diffusion, miniband formation, and collective photoluminescence, when aggregated into well-defined superstructures, such as three-dimensional (3D) and two-dimensional (2D) superlattices. However, the construction of one-dimensional (1D) QD superstructures, which have a simpler arrangement, is challenging; therefore, the photophysical properties of 1D-arranged QDs have not been studied previously. Herein, we report a versatile strategy to obtain 1D-arranged QDs using a supramolecular polymer (SP) template. The SP is composed of self-assembling cholesterol derivatives containing two amide groups for hydrogen bonding and a carboxyl group as an adhesion moiety on the QDs. Upon mixing the SP and dispersed QDs in low-polarity solvents, the QDs self-adhered to the SP and self-arranged into 1D superstructures through van der Waals interactions between the surface organic ligands of the QDs, as confirmed by transmission electron microscopy. Furthermore, we revealed efficient photoinduced fluorescence resonance energy transfer between the 1D-arranged QDs by an in-depth analysis of the emission spectra and decay curves.
Collapse
Affiliation(s)
- Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kanako Nakatsukasa
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Naoki Kubo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
17
|
Moral RF, Malfatti-Gasperini AA, Bonato LG, Vale BRC, Fonseca AFV, Padilha LA, Oliveira CLP, Nogueira AF. Self-assembly of perovskite nanoplates in colloidal suspensions. MATERIALS HORIZONS 2023; 10:5822-5834. [PMID: 37842783 DOI: 10.1039/d3mh01401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.
Collapse
Affiliation(s)
- Raphael F Moral
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Luiz G Bonato
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Brener R C Vale
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André F V Fonseca
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Lazaro A Padilha
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana F Nogueira
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
18
|
Li S, Hu F, Bi Y, Yang H, Lv B, Zhang C, Zhang J, Xiao M, Wang X. Micrometer-Scale Carrier Transport in the Solid Film of Giant CdSe/CdS Nanocrystals Imaged by Transient Absorption Microscopy. NANO LETTERS 2023; 23:9887-9893. [PMID: 37870769 DOI: 10.1021/acs.nanolett.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
For the practical applications in solar cells and photodetectors, semiconductor colloidal nanocrystals (NCs) are assembled into a high-concentration film with carrier transport characteristics, the full understanding and effective control of which are critical for the achievement of high light-to-electricity conversion efficiencies. Here we have applied transient absorption microscopy to the solid film of giant CdSe/CdS NCs and discovered that at high pump fluences the carrier transport could reach a long distance of ∼2 μm within ∼30 ps after laser pulse excitation. This intriguing behavior is attributed to the metal-insulator transition and the associated bandlike transport, which are promoted by the enhanced electronic coupling among neighboring NCs with extended wave functions overlap of the excited-state charge carriers. Besides providing fundamental transport information in the regime of high laser pump fluences, the above findings shed light on the rational design of high-power light detecting schemes based on colloidal NCs.
Collapse
Affiliation(s)
- Si Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Fengrui Hu
- College of Engineering and Applied Sciences, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Yanfeng Bi
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hongyu Yang
- Advanced Photonic Center, Southeast University, Nanjing 210096, China
| | - Bihu Lv
- Department of Scientific Facilities Development and Management, Zhejiang Lab, Hangzhou 311121, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiayu Zhang
- Advanced Photonic Center, Southeast University, Nanjing 210096, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Tenney SM, Tan LA, Tan X, Sonnleitner ML, Coffey B, Williams JA, Ronquillo R, Atallah TL, Ahmed T, Caram JR. Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion. J Phys Chem Lett 2023; 14:9456-9463. [PMID: 37830914 DOI: 10.1021/acs.jpclett.3c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1-10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R-4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting.
Collapse
Affiliation(s)
- Stephanie M Tenney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Lauren A Tan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Xuanheng Tan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Mikayla L Sonnleitner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Belle Coffey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Jillian A Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Ricky Ronquillo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, Denison University, 500 West Loop, Granville, Ohio 43023, United States
| | - Tasnim Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
20
|
Magdaleno AJ, Cutler MM, Suurmond JJ, Meléndez M, Delgado-Buscalioni R, Seitz M, Prins F. Boosting the efficiency of transient photoluminescence microscopy using cylindrical lenses. NANOSCALE 2023; 15:14831-14836. [PMID: 37664969 DOI: 10.1039/d3nr03587e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Transient Photoluminescence Microscopy (TPLM) allows for the direct visualization of carrier transport in semiconductor materials with sub nanosecond and few nanometer resolution. The technique is based on measuring changes in the spatial distribution of a diffraction limited population of carriers using spatiotemporal detection of the radiative decay of the carriers. The spatial resolution of TPLM is therefore primarily determined by the signal-to-noise-ratio (SNR). Here we present a method using cylindrical lenses to boost the signal acquisition in TPLM experiments. The resulting asymmetric magnification of the photoluminescence emission of the diffraction limited spot can increase the collection efficiency by more than a factor of 10, significantly reducing acquisition times and further boosting spatial resolution.
Collapse
Affiliation(s)
- Alvaro J Magdaleno
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mercy M Cutler
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesse J Suurmond
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Marc Meléndez
- Condensed Matter Physics Center (IFIMAC) and Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Condensed Matter Physics Center (IFIMAC) and Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Michael Seitz
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Ferry Prins
- Condensed Matter Physics Center (IFIMAC) and Department of Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Catalano AG, Mattiotti F, Dubail J, Hagenmüller D, Prosen T, Franchini F, Pupillo G. Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model. PHYSICAL REVIEW LETTERS 2023; 131:053401. [PMID: 37595217 DOI: 10.1103/physrevlett.131.053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
We analyze the propagation of excitons in a d-dimensional lattice with power-law hopping ∝1/r^{α} in the presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show that in the strong dephasing (quantum Zeno) regime the dynamics is described by a classical master equation for an exclusion process with long jumps. In this limit, we analytically compute the spatial distribution, whose shape changes at a critical value of the decay exponent α_{cr}=(d+2)/2. The exciton always diffuses anomalously: a superdiffusive motion is associated to a Lévy stable distribution with long-range algebraic tails for α≤α_{cr}, while for α>α_{cr} the distribution corresponds to a surprising mixed Gaussian profile with long-range algebraic tails, leading to the coexistence of short-range diffusion and long-range Lévy flights. In the many-exciton case, we demonstrate that, starting from a domain-wall exciton profile, algebraic tails appear in the distributions for any α, which affects thermalization: the longer the hopping range, the faster equilibrium is reached. Our results are directly relevant to experiments with cold trapped ions, Rydberg atoms, and supramolecular dye aggregates. They provide a way to realize an exclusion process with long jumps experimentally.
Collapse
Affiliation(s)
- A G Catalano
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - F Mattiotti
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
| | - J Dubail
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Université de Lorraine and CNRS, LPCT (UMR 7019), 54000 Nancy, France
| | - D Hagenmüller
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
| | - T Prosen
- Faculty for Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia
| | - F Franchini
- Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - G Pupillo
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
22
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
23
|
Mireles Villegas N, Hernandez JC, John JC, Sheldon M. Promoting solution-phase superlattices of CsPbBr 3 nanocrystals. NANOSCALE 2023. [PMID: 37171143 DOI: 10.1039/d3nr00693j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a size-selective method for purifying and isolating perovskite CsPbBr3 nanocrystals (NCs) that preserves their as-synthesized surface chemistry and extremely high photoluminescence quantum yields (PLQYs). The isolation procedure is based on the stepwise evaporation of nonpolar co-solvents with high vapor pressure to promote precipitation of a size-selected product. As the sample fractions become more uniform in size, we observe that the NCs self-assemble into colloidally stable, solution-phase superlattices (SLs). Small angle X-ray scattering (SAXS) and dynamic light scattering (DLS) studies show that the solution-phase SLs contain 1000s of NCs per supercrystal in a simple cubic, face-to-face packing arrangement. The SLs also display systematically faster radiative decay dynamics and improved PLQYs, as well as unique spectral absorption features likely resulting from inter-particle electronic coupling effects. This study is the first demonstration of solution-phase CsPbBr3 SLs and highlights their potential for achieving collective optoelectronic phenomena previously observed from solid-state assemblies.
Collapse
Affiliation(s)
| | - Josue C Hernandez
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Joshua C John
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Matthew Sheldon
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
24
|
Das A, Acharjee D, Panda MK, Mahato AB, Ghosh S. Dodecahedron CsPbBr 3 Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. J Phys Chem Lett 2023; 14:3953-3960. [PMID: 37078668 DOI: 10.1021/acs.jpclett.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This Letter reports the facile harvesting of hot carriers (HCs) in a composite of 12-faceted dodecahedron CsPbBr3 nanocrystal (NC) and a scavenger molecule. We recorded ∼3.3 × 1011 s-1 HC cooling rate in NC when excited with ∼1.4 times the band gap energy (Eg), increasing to >3 × 1012 s-1 in the presence of scavengers at high concentration due to the HC extractions. Since the observed intrinsic charge transfer rate (∼1.7 × 1012 s-1) in our NC-scavenger complex is about an order of magnitude higher than the HC cooling rate (∼3.3 × 1011 s-1), carriers are harvested before their cooling. Further, a fluorescence correlation spectroscopy study reveals NC tends to form a quasi-stable complex with a scavenger molecule, ensuring charge transfer completed (τct ≈ 0.6 ps) much before the complex breaks apart (>600 μs). The overall results of our study highlight the promise shown by 12-faceted NCs and their implications in modern applications, including hot carrier solar cells.
Collapse
Affiliation(s)
- Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
25
|
Nette J, Montanarella F, Zhu C, Sekh TV, Boehme SC, Bodnarchuk MI, Rainò G, Howes PD, Kovalenko MV, deMello AJ. Microfluidic synthesis of monodisperse and size-tunable CsPbBr 3 supraparticles. Chem Commun (Camb) 2023; 59:3554-3557. [PMID: 36880408 DOI: 10.1039/d3cc00093a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm).
Collapse
Affiliation(s)
- Julia Nette
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Federico Montanarella
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V Sekh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Simon C Boehme
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Philip D Howes
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
26
|
Zhou J, Gashi A, Riminucci F, Chang B, Barnard E, Cabrini S, Weber-Bargioni A, Schwartzberg A, Munechika K. Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033902. [PMID: 37012819 DOI: 10.1063/5.0104012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.
Collapse
Affiliation(s)
- Junze Zhou
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Arian Gashi
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Fabrizio Riminucci
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Boyce Chang
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Edward Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Alexander Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Keiko Munechika
- HighRI Optics, Inc., 5401 Broadway Ter 304, Oakland, California 94618, USA
| |
Collapse
|
27
|
Chan WK, Chen J, Zhou D, Ye J, Vázquez RJ, Zhou C, Bazan GC, Rao A, Yu Z, Tan TTY. Hybrid Organic-Inorganic Perovskite Superstructures for Ultrapure Green Emissions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:815. [PMID: 36903695 PMCID: PMC10005548 DOI: 10.3390/nano13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.
Collapse
Affiliation(s)
- Wen Kiat Chan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiawei Chen
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo Carlos Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Zhongzheng Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Timothy Thatt Yang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
28
|
Boehme S, Bodnarchuk MI, Burian M, Bertolotti F, Cherniukh I, Bernasconi C, Zhu C, Erni R, Amenitsch H, Naumenko D, Andrusiv H, Semkiv N, John RA, Baldwin A, Galkowski K, Masciocchi N, Stranks SD, Rainò G, Guagliardi A, Kovalenko MV. Strongly Confined CsPbBr 3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices. ACS NANO 2023; 17:2089-2100. [PMID: 36719353 PMCID: PMC9933619 DOI: 10.1021/acsnano.2c07677] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.
Collapse
Affiliation(s)
- Simon
C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Max Burian
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Federica Bertolotti
- Department
of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Caterina Bernasconi
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Hordii Andrusiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Nazar Semkiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Alan Baldwin
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Krzysztof Galkowski
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Norberto Masciocchi
- Department
of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Antonietta Guagliardi
- Istituto
di Cristallografia and To.Sca.Lab, Consiglio
Nazionale delle Ricerche, via Valleggio 11, 22100 Como, Italy
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
29
|
Nie X, Wu X, Wang Y, Ban S, Lei Z, Yi J, Liu Y, Liu Y. Surface acoustic wave induced phenomena in two-dimensional materials. NANOSCALE HORIZONS 2023; 8:158-175. [PMID: 36448884 DOI: 10.1039/d2nh00458e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW)-matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
Collapse
Affiliation(s)
- Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Xiaoyue Wu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Siyuan Ban
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Ying Liu
- College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
30
|
Nagaya Wong N, Ha SK, Williams K, Shcherbakov-Wu W, Swan JW, Tisdale WA. Robust estimation of charge carrier diffusivity using transient photoluminescence microscopy. J Chem Phys 2022; 157:104201. [DOI: 10.1063/5.0100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transient microscopy has emerged as a powerful tool for imaging the diffusion of excitons and free charge carriers in optoelectronic materials. In many excitonic materials, extraction of diffusion coefficients can be simplified because of the linear relationship between signal intensity and local excited state population. However, in materials where transport is dominated by free charge carriers, extracting diffusivities accurately from multidimensional data is complicated by the nonlinear dependence of the measured signal on the local charge carrier density. To obtain accurate estimates of charge carrier diffusivity from transient microscopy data, statistically robust fitting algorithms coupled to efficient 3D numerical solvers that faithfully relate local carrier dynamics to raw experimental measurables are sometimes needed. Here, we provide a detailed numerical framework for modeling the spatiotemporal dynamics of free charge carriers in bulk semiconductors with significant solving speed reduction and for simulating the corresponding transient photoluminescence microscopy data. To demonstrate the utility of this approach, we apply a fitting algorithm using a Markov chain Monte Carlo sampler to experimental data on bulk CdS and methylammonium lead bromide (MAPbBr3) crystals. Parameter analyses reveal that transient photoluminescence microscopy can be used to obtain robust estimates of charge carrier diffusivities in optoelectronic materials of interest, but that other experimental approaches should be used for obtaining carrier recombination constants. Additionally, simplifications can be made to the fitting model depending on the experimental conditions and material systems studied. Our open-source simulation code and fitting algorithm are made freely available to the scientific community.
Collapse
Affiliation(s)
- Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kristopher Williams
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenbi Shcherbakov-Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
31
|
McClintock L, Song Z, Travaglini HC, Senger RT, Chandrasekaran V, Htoon H, Yarotski D, Yu D. Highly Mobile Excitons in Single Crystal Methylammonium Lead Tribromide Perovskite Microribbons. J Phys Chem Lett 2022; 13:3698-3705. [PMID: 35439010 DOI: 10.1021/acs.jpclett.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excitons are often given negative connotation in solar energy harvesting in part due to their presumed short diffusion lengths. We investigate exciton transport in single-crystal methylammonium lead tribromide (MAPbBr3) microribbons via spectrally, spatially, and temporally resolved photocurrent and photoluminescence measurements. Distinct peaks in the photocurrent spectra unambiguously confirm exciton formation and allow for accurate extraction of the low temperature exciton binding energy (39 meV). Photocurrent decays within a few μm at room temperature, while a gate-tunable long-range photocurrent component appears at lower temperatures (about 100 μm below 140 K). Carrier lifetimes of 1.2 μs or shorter exclude the possibility of the long decay length arising from slow trapped-carrier hopping. Free carrier diffusion is also an unlikely source of the highly nonlocal photocurrent, due to their small fraction at low temperatures. We attribute the long-distance transport to high-mobility excitons, which may open up new opportunities for novel exciton-based photovoltaic applications.
Collapse
Affiliation(s)
- Luke McClintock
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ziyi Song
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - H Clark Travaglini
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| | - R Tugrul Senger
- Department of Physics, Izmir Institute of Technology, 35430 Izmir, Turkey
- ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Vigneshwaran Chandrasekaran
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry Yarotski
- Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dong Yu
- Department of Physics, University of California─Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
32
|
Lichtenegger MF, Drewniok J, Bornschlegl A, Lampe C, Singldinger A, Henke NA, Urban AS. Electron-Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films. ACS NANO 2022; 16:6317-6324. [PMID: 35302740 DOI: 10.1021/acsnano.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer in NPL films. To realize efficient devices, it is imperative to understand how exciton transport progresses therein. We employ spatially and temporally resolved optical microscopy to map exciton diffusion in perovskite nanocrystal (NC) thin films between 15 °C and 55 °C. At room temperature (RT), we find the diffusion length to be inversely correlated to the thickness of the nanocrystals (NCs). With increasing temperatures, exciton diffusion declines for all NC films, but at different rates. This leads to specific temperature turnover points, at which thinner NPLs exhibit higher diffusion lengths. We attribute this anomalous diffusion behavior to the coexistence of excitons and free electron hole-pairs inside the individual NCs within our temperature range. The organic ligand shell surrounding the NCs prevents charge transfer. Accordingly, any time an electron-hole pair spends in the unbound state reduces the FRET-mediated inter-NC transfer rates and, consequently, the overall diffusion. These results clarify how exciton diffusion progresses in strongly confined halide perovskite NC films, emphasizing critical considerations for optoelectronic devices.
Collapse
Affiliation(s)
- Michael F Lichtenegger
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Jan Drewniok
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Andreas Bornschlegl
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Andreas Singldinger
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Nina A Henke
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany
| |
Collapse
|
33
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
34
|
Liu J, Zheng X, Mohammed OF, Bakr OM. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Acc Chem Res 2022; 55:262-274. [PMID: 35037453 PMCID: PMC8811956 DOI: 10.1021/acs.accounts.1c00651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Over the past decade, the impressive development
of metal halide
perovskites (MHPs) has made them leading candidates for applications
in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes
(LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic
properties using a low-cost approach is critical to realizing their
commercial potential. Self-assembly and regrowth techniques provide
a simple and powerful “bottom-up” platform for controlling
the structure, shape, and dimensionality of MHP NCs. The soft ionic
nature of MHP NCs, in conjunction with their low formation energy,
rapid anion exchange, and ease of ion migration, enables the rearrangement
of their overall appearance via self-assembly or regrowth. Because
of their low formation energy and highly dynamic surface ligands,
MHP NCs have a higher propensity to regrow than conventional hard-lattice
NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously.
The self-assembly of NCs into close-packed, long-range-ordered mesostructures
provides a platform for modulating their electronic properties (e.g.,
conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit
collective properties (e.g., superfluorescence, renormalized emission,
longer phase coherence times, and long exciton diffusion lengths)
that can translate into dramatic improvements in device performance.
Further regrowth into fused MHP nanostructures with the removal of
ligand barriers between NCs could facilitate charge carrier transport,
eliminate surface point defects, and enhance stability against moisture,
light, and electron-beam irradiation. However, the synthesis strategies,
diversity and complexity of structures, and optoelectronic applications
that emanate from the self-assembly and regrowth of MHPs have not
yet received much attention. Consequently, a comprehensive understanding
of the design principles of self-assembled and fused MHP nanostructures
will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly
and regrowth of MHP NCs. We begin with a survey of the mechanisms,
driving forces, and techniques for controlling MHP NC self-assembly.
We then explore the phase transition of fused MHP nanostructures at
the atomic level, delving into the mechanisms of facet-directed connections
and the kinetics of their shape-modulation behavior, which have been
elucidated with the aid of high-resolution transmission electron microscopy
(HRTEM) and first-principles density functional theory calculations
of surface energies. We further outline the applications of assembled
and fused nanostructures. Finally, we conclude with a perspective
on current challenges and future directions in the field of MHP NCs.
Collapse
Affiliation(s)
- Jiakai Liu
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Zhang C, Zhang Y, Fang Z, Chen Y, Chen Z, He H, Zhu H. Near-Unity-Efficiency Energy Transfer from Perovskite to Monolayer Semiconductor through Long-Range Migration and Asymmetric Interfacial Transfer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41895-41903. [PMID: 34432427 DOI: 10.1021/acsami.1c11753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
van der Waals heterostructures combining perovskites of strong light absorption with atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) hold great potential for light-harvesting and optoelectronic applications. However, current research studies integrating TMDs with low-dimensional perovskite nanomaterials generally suffer from poor carrier/energy transport and harnessing, stemming from poor interfacial interaction due to the nanostructured nature and ligands on surface/interface. To overcome the limitations, here, we report prototypical three-dimensional (3D)/2D perovskite/TMD heterostructures by combing highly smooth and ligand-free CsPbBr3 film with a WSe2 monolayer. We show that the energy transfer at interface occurs through asymmetric two-step charge-transfer process, with ultrafast hole transfer in ∼200 fs and subsequent electron transfer in ∼10 ps, driven by the asymmetric type I band alignment. The energy migration and transfer from CsPbBr3 film to WSe2 can be well described by a one-dimensional diffusion model with a carrier diffusion length of ∼500 nm in CsPbBr3 film. Thanks to the long-range carrier migration and ultrafast interfacial transfer, highly efficient (>90%) energy transfer to WSe2 can be achieved with CsPbBr3 film as thick as ∼180 nm, which can capture most of the light above its band gap. The efficient light and energy harvesting in perovskite/TMD 3D/2D heterostructures suggest great promise in optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhishan Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yuzhong Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haiping He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
36
|
Shcherbakov-Wu W, Sercel PC, Krieg F, Kovalenko MV, Tisdale WA. Temperature-Independent Dielectric Constant in CsPbBr 3 Nanocrystals Revealed by Linear Absorption Spectroscopy. J Phys Chem Lett 2021; 12:8088-8095. [PMID: 34406780 DOI: 10.1021/acs.jpclett.1c01822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fundamental photophysical behavior in CsPbBr3 nanocrystals (NCs), especially at low temperatures, is under active investigation. While many studies have reported temperature-dependent photoluminescence, comparatively few have focused on understanding the temperature-dependent absorption spectrum. Here, we report the temperature-dependent (35-300 K) absorption and photoluminescence spectra of zwitterionic ligand-capped CsPbBr3 NCs with four different edge lengths (d = 4.9, 7.2, 8.1, and 13.2 nm). The two lowest-energy excitonic transitions are quantitatively modeled over the full temperature range within the effective mass approximation considering the quasi-cubic NC shape and nonparabolicity of the electronic bands. Significantly, we find that the effective dielectric constant determined from the best fit model parameters is independent of temperature. Moreover, we observe a temperature-dependent Stokes shift that saturates at a finite value of Δ ≈ 10 meV at low temperatures for d = 7.2 nm NCs, which is absent in bulk CsPbBr3 films. Overall, these observations highlight differences between the temperature-dependent dielectric behavior of NC and bulk perovskites and point to the need for a more unified theoretical understanding of absorption and emission in halide perovskites.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, Colorado 80401, United States
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
|
38
|
Feldmann S, Gangishetty MK, Bravić I, Neumann T, Peng B, Winkler T, Friend RH, Monserrat B, Congreve DN, Deschler F. Charge Carrier Localization in Doped Perovskite Nanocrystals Enhances Radiative Recombination. J Am Chem Soc 2021; 143:8647-8653. [PMID: 33993693 PMCID: PMC8297723 DOI: 10.1021/jacs.1c01567] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Nanocrystals based on halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased charge carrier localization through lattice periodicity breaking from Mn dopants, which increases the overlap of electron and hole wave functions locally and thus the oscillator strength of excitons in their vicinity. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.
Collapse
Affiliation(s)
- Sascha Feldmann
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
| | - Mahesh K. Gangishetty
- Rowland
Institute, Harvard University, Cambridge, Massachusetts 02142, United States
- Department
of Chemistry and Physics, Mississippi State
University, Mississippi State, Mississippi 39762, United States
| | - Ivona Bravić
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
| | - Timo Neumann
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
- Walter
Schottky Institute, Technical University
of Munich, Garching 85748, Germany
| | - Bo Peng
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
| | - Thomas Winkler
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
| | - Bartomeu Monserrat
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB30FS, U.K.
| | - Daniel N. Congreve
- Rowland
Institute, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Felix Deschler
- Cavendish
Laboratory, University of Cambridge, Cambridge CB30HE, U.K.
- Walter
Schottky Institute, Technical University
of Munich, Garching 85748, Germany
| |
Collapse
|
39
|
Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:046401. [PMID: 33730709 DOI: 10.1088/1361-6633/abefba] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.
Collapse
Affiliation(s)
- Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou University City, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
| | - Thomas R Hopper
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
40
|
Dursun I, Guzelturk B. Exciton diffusion exceeding 1 µm: run, exciton, run! LIGHT, SCIENCE & APPLICATIONS 2021; 10:39. [PMID: 33612821 PMCID: PMC7897718 DOI: 10.1038/s41377-021-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exciton diffusion lengths reaching the micrometer length scale have long been desired in solution-processed semiconductors but have remained unattainable using conventional materials to date. Now halide perovskite nanocrystal films show unprecedented exciton migration with diffusion lengths approaching 1 µm owing to the efficient combination of radiative and nonradiative energy transfer.
Collapse
Affiliation(s)
- Ibrahim Dursun
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
41
|
Baranov D, Fieramosca A, Yang RX, Polimeno L, Lerario G, Toso S, Giansante C, Giorgi MD, Tan LZ, Sanvitto D, Manna L. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS NANO 2021; 15:650-664. [PMID: 33350811 DOI: 10.1021/acsnano.0c06595] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.
Collapse
Affiliation(s)
- Dmitry Baranov
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Ruo Xi Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Dipartimento di Matematica e Fisica "E. de Giorgi", Università Del Salento, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Giovanni Lerario
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Stefano Toso
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, Brescia 25121, Italy
| | - Carlo Giansante
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liberato Manna
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
42
|
Sun Q, Yin Z, Wang S, Zhao C, Leng J, Tian W, Jin S. Long-Range Exciton Transport in Perovskite-Metal Organic Framework Solid Composites. J Phys Chem Lett 2020; 11:9045-9050. [PMID: 33044078 DOI: 10.1021/acs.jpclett.0c02974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The encapsulation of perovskite quantum dots (PQDs) in metal organic frameworks (MOFs) is a promising strategy for fabricating stable and functional perovskite solid composites (denoted as PQDs@MOF), which have exhibited great potential for optoelectronics, catalysis, and luminesce applications. However, the exciton diffusion distance, one of the key factors determining the performance of PQDs@MOF in these applications, remains unknown. Herein, by using time-resolved and photoluminescence-scanned imaging microscopy, we report the observation of long-distance exciton transport (278 ± 12.6 nm) and high diffusion coefficient (0.0428 ± 0.0039 cm2/s) in MAPbBr3 PQDs@MOF microcrystals. We show that the long exciton diffusion length, which is seven times longer than that in colloid MAPbBr3 PQD solid films, can be attributed to the strong dipole-dipole coupling between adjacent PQDs embedded in the MOF matrix and their long carrier lifetimes. These findings demonstrate the great potential of PQDs@MOF crystals for optoelectronic applications.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyi Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
43
|
Uddin SZ, Kim H, Lorenzon M, Yeh M, Lien DH, Barnard ES, Htoon H, Weber-Bargioni A, Javey A. Neutral Exciton Diffusion in Monolayer MoS 2. ACS NANO 2020; 14:13433-13440. [PMID: 32909735 DOI: 10.1021/acsnano.0c05305] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDCs) are promising materials for next generation optoelectronic devices. The exciton diffusion length is a critical parameter that reflects the quality of exciton transport in monolayer TMDCs and limits the performance of many excitonic devices. Although diffusion lengths of a few hundred nanometers have been reported in the literature for as-exfoliated monolayers, these measurements are convoluted by neutral and charged excitons (trions) that coexist at room temperature due to natural background doping. Untangling the diffusion of neutral excitons and trions is paramount to understand the fundamental limits and potential of new optoelectronic device architectures made possible using TMDCs. In this work, we measure the diffusion lengths of neutral excitons and trions in monolayer MoS2 by tuning the background carrier concentration using a gate voltage and utilizing both steady state and transient spectroscopy. We observe diffusion lengths of 1.5 μm and 300 nm for neutral excitons and trions, respectively, at an optical power density of 0.6 W cm-2.
Collapse
Affiliation(s)
- Shiekh Zia Uddin
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United State
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyungjin Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United State
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Lorenzon
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew Yeh
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United State
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Der-Hsien Lien
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United State
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Edward S Barnard
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Material Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander Weber-Bargioni
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United State
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Peng S, Wei Q, Wang B, Zhang Z, Yang H, Pang G, Wang K, Xing G, Sun XW, Tang Z. Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shaomin Peng
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Hongcheng Yang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guotao Pang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Kai Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Xiao Wei Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| |
Collapse
|
45
|
Peng S, Wei Q, Wang B, Zhang Z, Yang H, Pang G, Wang K, Xing G, Sun XW, Tang Z. Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angew Chem Int Ed Engl 2020; 59:22156-22162. [DOI: 10.1002/anie.202009193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Shaomin Peng
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Hongcheng Yang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guotao Pang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Kai Wang
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| | - Xiao Wei Sun
- Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macao SAR 999078 China
| |
Collapse
|
46
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|