1
|
Wang Q, Peng X, Feng N, Chen Y, Deng C. Kernel representation-based End-to-End network-enabled decoding strategy for precise and medical diagnosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137233. [PMID: 39823885 DOI: 10.1016/j.jhazmat.2025.137233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Artificial intelligence-assisted imaging biosensors have attracted increasing attention due to their flexibility, allowing for the digital image analysis and quantification of biomarkers. While deep learning methods have led to advancements in biomarker identification, the diversity in the density and adherence of targets still poses a serious challenge. In this regard, we propose CellNet, a neural network model specifically designed for detecting dense targets. The model uses a shape-aware radial basis function to learn the kernel representation of objects, improving the target counting accuracy, and exhibits excellent performance in identifying adherent polystyrene microspheres, with a detection accuracy of 98.39 %. Considering these factors, we developed a biotin-streptavidin-based biosensing method using artificial intelligence transcoding (bs-SMART) to detect procalcitonin in serum samples. Given its excellent accuracy and sensitivity (limit of detection = 8.5 pg/mL), the technique provides a reliable platform for the accurate diagnosis of diseases. Furthermore, this study validated the ability of CellNet to recognize irregular and adherent cells. Overall, CellNet not only contributes to advancing computer vision and image processing technology but also presents potential benefits for medical diagnostics, food safety testing, and environmental monitoring.
Collapse
Affiliation(s)
- Qinyu Wang
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430070, China
| | - Xuewen Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhua Deng
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430070, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430070, China.
| |
Collapse
|
2
|
Liu Q, Wu J, Zhang J, Wang F, Jiang Z, Wang Y, Gong X, Zhang P. Harnessing a Self-Regenerated Hybridization Circuit for Differentiating Heart Failure Patients of Varied Severity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408384. [PMID: 39905889 DOI: 10.1002/smll.202408384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 02/06/2025]
Abstract
Heart failure (HF) is a globally threatening cardiovascular disease associated with poor quality of life and high mortality, therefore, timely diagnosis and risk prediction for HF disease are urgently needed. Herein, a compact yet robust self-regenerated hybridization circuit (SHC) aptasensor is developed for the amplified detection of N-terminal pro-brain natriuretic peptide (NT-proBNP), a "gold standard biomarker" for HF. The aptamer transduction module can specifically recognize NT-proBNP, thus initiating the cascade hybridization reaction with the successively self-regenerated triggers that reversely initiate the cross-hybridization reaction. Benefiting from the aptamer-specific recognition and the self-replicated signal amplification, the robust SHC aptasensor demonstrated a more impressive diagnostic performance for HF in elderly patients than the clinical fluorescence immunochromatography assay (FICA) in terms of positive predictive value (21 vs 17), specificity (39 vs 32), and diagnostic accuracy (37 vs 36). Furthermore, this approach allows for differentiation among HF patients with varying disease severities, achieving a sufficiently high accuracy of 78.3%, thus facilitating more timely and accurate therapeutic intervention. The versatile and reliable SHC system offers a new approach to analyzing low-abundance biomarkers from clinical rare specimens, which is highly important for early disease diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Qinglian Liu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Jianglin Wu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Pu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
3
|
Han J, Kim S, Kang D, Lee SH, Cho AY, Lee H, Kwon JH, Shin Y, Kim YP, Lee J. Near-Infrared Long-Lived Luminescent Nanoparticle-Based Time-Gated Imaging for Background-Free Detection of Avian Influenza Virus. ACS Sens 2025; 10:1312-1320. [PMID: 39953996 DOI: 10.1021/acssensors.4c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Near-infrared (NIR)-to-NIR upconversion nanoparticles (UCNPs) are promising materials for biomedical imaging and sensing applications. However, UCNPs with long lifetimes continue to face the limitation that they are usually accompanied by weak luminescence intensity, resulting in difficulties in achieving high-resolution and sensitive time-gated imaging. To overcome this limitation, we have developed NIR long-lifetime luminescent nanoparticles (NLL NPs) with strong 800 nm emission by adding a photosensitizing shell and with a prolonged lifetime by lowering the activator concentration. NLL NP-based time-gated imaging overcomes the inherent limitations of steady-state imaging by providing higher signal-to-noise ratios and more robust signal intensities. When integrated into a lateral flow immunoassay (LFA) for the detection of avian influenza viruses, NLL NP-based time-gated imaging demonstrates a 32-fold lower limit of detection compared to conventional optimal 800 nm emitting nanoparticles. Furthermore, the high accuracy of the NLL NP-based LFA is confirmed through clinical validations using 65 samples, achieving a sensitivity and specificity of 100% and an area under the curve of 1.000. These results demonstrate the potential of NLL NP-based time-gated imaging as a powerful tool for the highly sensitive and accurate detection of avian influenza viruses in complex clinical samples.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Dongkyu Kang
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Heesu Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Hoon Kwon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Chen X, Liu Q, Zhang J, Tan L, Li J, Ke ML, Tang BZ, Li Y. Fully Inter-restricted Assembly of Aggregation-Induced Emission Luminogens and Polymers Enables Ultra-bright Nanoparticles for Sensitive Point-of-Care Diagnosis. ACS NANO 2025; 19:6221-6235. [PMID: 39900513 DOI: 10.1021/acsnano.4c15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Fluorescent lateral flow immunoassay (LFIA) is recognized as a leading quantitative point-of-care (POC) platform for precise clinical diagnostics. However, conventional fluorescent nanoprobes are hampered by low quantum yield (QY), which constrain the sensitivity of fluorescent LFIA. Herein, we employed a butterfly aggregation-induced emission luminogen (AIEgen) and developed the fully inter-restricted assembly with a polyphenyl polymer poly(maleicanhydride-styrene) (PMPS) to create highly fluorescent homogeneous nanoparticles (ho-AIENPs) with QY over 91%. Compared to conventional fluorescent nanoparticles with a core-shell heterostructure (he-AIENPs), ho-AIENPs demonstrate a homogeneous structure with AIEgens uniformly dispersed in the PMPS matrix nanoparticles. The robust and broad intermolecular interaction (e.g., π-π interactions) between PMPS and AIEgens effectively restricts the molecular motion of AIEgens, producing a 30% increase in the QY of ho-AIENPs than he-AIENPs. Ho-AIENPs exhibit a 5-fold and 80-fold improved sensitivity compared to traditional he-AIENP-based fluorescent LFIAs and AuNP-based colorimetric LFIAs. Owing to the excellent optical properties of ho-AIENPs, we developed ho-AIENP-based multiplex LFIAs, which can simultaneously detect lung cancer biomarkers with exceptionally high sensitivity. In contrast to the conventional core-shell assembly and physical encapsulation strategies, the fully inter-restricted assembly strategy is promising, versatile, and efficient in enhancing the polymer matrix-derived fluorescent particles and sensitizing the immunoassays.
Collapse
Affiliation(s)
- Xirui Chen
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Qi Liu
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Jiangjiang Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Linjie Tan
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Jiangao Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, P. R. China
| | - Miao-La Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, the Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| |
Collapse
|
5
|
Song Q, Liao Z, Zheng L, Fu P, Qian S, Liang W, Zheng J, Wang K, Wang Y. Zero Background Visualizing Phosphorescence Lateral Flow Immunoassay of Cardiac Troponin I for Rapid and Accurate Diagnosis of Myocardial Infarction. Anal Chem 2025; 97:3651-3660. [PMID: 39921630 DOI: 10.1021/acs.analchem.4c06258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Fluorescence lateral flow immunoassays (FL-LFIA) have attracted considerable attention in clinical diagnosis due to their outstanding merits of affordable, sensitive, on-site, and quick detection. However, they are still plagued by significant signal interference, such as autofluorescence and scattered light. The development of high-performance and robust phosphors, i.e., label probes featuring with the character of low/no optical background, remains a great challenge. Herein, we report a novel visualized phosphorescence LFIA (Phos-LFIA), where the composite microspheres, i.e., carbon dots (CDs) covalently embedded in dendritic mesoporous silicon nanoparticles (DMSNs), were designed and selected as the report probes. The obtained CDs@DMSNs revealed uniform morphologies and particle sizes, as well as ultralong (lifetime: 1.14 s, visible for over 8 s to naked eyes) room temperature phosphorescence (RTP) in aqueous solution. As competitive nanotags, CDs@DMSNs were designed for an ultralong phosphorescence-based time-gated LFIA for cardiac troponin I (cTnI) without optical interference. The fabricated Phos-LFIA test strips demonstrated zero-background signal and were applied for highly sensitive cTnI detection in both buffer and a complex serum matrix, with corresponding limits of detection (LODs) of 0.19 and 0.21 ng/mL, respectively. For a clinical validation, the proposed Phos-LFIA revealed an excellent clinical analytical performance (sensitivity: 95.45%, specificity: 88.9%, κ value: 0.85), demonstrating its potential for rapid and accurate diagnosis of myocardial infarction. This work provided a promising background-free probe for FL-LFIA, and it would also open an opportunity for developing highly sensitive screening platforms for other targets through modifying different recognition ligands onto CDs@DMSNs.
Collapse
Affiliation(s)
- Qingwei Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zixuan Liao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Lin Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, P. R. China
| | - Pan Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Sihua Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, P. R. China
| | - Jianping Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Kaizhe Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yuhui Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
6
|
Yun TG, Park JH, Kim HS, Shin MH, Kang MJ, Park MS, Pyun JC. Sepsis Diagnosis Based on a Parylene Matrix Chip Using LPC16:0 as a Biomarker in Comparison with Colorimetry of Total Phospholipid. ACS APPLIED BIO MATERIALS 2025; 8:609-616. [PMID: 39743741 DOI: 10.1021/acsabm.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
For the medical diagnosis of sepsis, it is crucial to differentiate infectious inflammation from noninfectious symptoms to prevent acute aggravation. Herein, a diagnosis for early stage sepsis was performed using LPC 16:0 and total phospholipids as small molecular biomarkers. The measurement of LPC 16:0 was conducted using a parylene matrix chip, which was developed to effectively detect small molecules in laser desorption/ionization mass spectrometry (LDI-MS). Meanwhile, the total phospholipid level was measured using colorimetry, following an enzymatic assay. Next, the two biomarkers were analyzed in serum samples from healthy volunteers, systemic inflammatory response syndrome (SIRS) patients, and sepsis patients. Diagnostic criteria were established based on the biomarker intensities observed in each patient group. After the measurements were conducted, the interference in phospholipid analysis due to hemoglobin contamination was considered. Additionally, the analytical parameters from biomarker detection were statistically interpreted and compared with those of conventional diagnostic standards. Finally, the diagnostic performance of each biomarker was evaluated by analyzing the biomarker levels between patient groups and examining their overlapping extents in box plots to distinguish sepsis from noninfectious inflammatory symptoms.
Collapse
Affiliation(s)
- Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Hye Soo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| |
Collapse
|
7
|
Sun P, Li Q, Gao N, Luo M, Chang W, Liu H, Wang B, Xue Z. Engineering an Ionic Aggregation-Induced Luminescence-Labeled Fluorescence Lateral Flow Immunoassay for C-Reactive Protein in Human Plasma. Anal Chem 2025; 97:565-573. [PMID: 39727299 DOI: 10.1021/acs.analchem.4c04803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP). Ionic AIEgens are unable to enter the hydrophobic cavity of polystyrene nanoparticles (PS) because of their low hydrophobic nature. By altering ionic AIEgens with extended alkyl chains, it is possible to increase their hydrophobicity, thereby potentially increasing the loading capacity within PS. Notably, the fluorescent nanoparticles (denoted as AIETPANPs) formed by embedding (E)-4-(4-(diphenylamino)styryl)-1-octadecylpyridin-1-ium iodide (TPA) in PS showed orange-red fluorescence emission and have high fluorescence quantum yield. Anti-CRP antibody (mAb1) could be effectively conjugated to the surface of AIETPANPs by an amino-carboxyl reaction, resulting in AIETPANPs-mAb1. The AIETPANPs-mAb1 exhibited a fluorescence emission at 613 nm, a point detectable by the naked eye with minimal background interference. The entire analysis was accomplished in just 10 min, achieving a limit of detection of 4.06 ng/mL for CRP. The AIETPANPs-mAb1-based LFA demonstrates excellent stability and specificity and fully meets the requirements for clinical diagnosis.
Collapse
Affiliation(s)
- Panpan Sun
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Qian Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Ningshuang Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingyue Luo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Wenzhuo Chang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhonghua Xue
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| |
Collapse
|
8
|
Shen L, Tang J, Li M, Yu C, Zhang M, Wang S, Li Y, Liu Z. Facile synthesis of sulfur quantum dots with red light emission: Implications for electrochemiluminescence analysis application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124878. [PMID: 39084015 DOI: 10.1016/j.saa.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Sulfur quantum dots (SQDs) have been reported as a potential candidate due to their low toxicity and high luminescent performance. Here, SQDs with red light fluorescence (FL) emission were synthesized by a one-step hydrothermal method using Na2CO3 as an etching agent, using sublimed sulfur powder as a sulfur source, and using bovine serum albumin (BSA) as a stabilizer. The choice of etching agent (NaOH or Na2CO3) realized the tuning of SQDs' FL emission with blue and red light. The synthesized SQDs showed good FL stability and high FL efficiency, with a quantum yield of 1.03 % in an aqueous solution at 575 nm. In addition, stable and efficient electrochemiluminescence (ECL) emission was achieved by employing SQDs as ECL emitters with K2S2O8 as the co-reactant. The resorcinol (RS) can enhance the ECL intensity of the SQDs-K2S2O8 system, and the ECL intensity had a good linear relationship with the concentration of RS in a range from 2.5 nM to 25 nM with a detection limit of 0.61 nM. This work provides an emerging red-light luminescent SQDs, which would open up a way for the development of new types of luminophor in FL or ECL analysis. It also provides convenience for bio-labeling of live cells, in vivo imaging and provide new materials for photoelectric devices.
Collapse
Affiliation(s)
- Lihua Shen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Jundan Tang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Meng Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chunxia Yu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Meng Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China.
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhifang Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
9
|
Chen M, Xie Y, Li M. Molecular-Sieving Label-Free Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Trace Small-Molecule Biomarkers in Clinical Samples. NANO LETTERS 2024; 24:11520-11528. [PMID: 39234992 DOI: 10.1021/acs.nanolett.4c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Small-molecule biomarkers are ubiquitous in biological fluids with pathological implications, but major challenges persist in their quantitative analysis directly in complex clinical samples. Herein, a molecular-sieving label-free surface-enhanced Raman spectroscopy (SERS) biosensor is reported for selective quantitative analysis of trace small-molecule trimetazidine (TMZ) in clinical samples. Our biosensor is fabricated by decorating a superhydrophobic monolayer of microporous metal-organic frameworks (MOF) shell-coated Au nanostar nanoparticles on a silicon substrate. The design strategy principally combines the hydrophobic surface-enabled physical confinement and preconcentration, MOF-assisted molecular enrichment and sieving of small molecules, and sensitive SERS detection. Our biosensor utilizes such a "molecular confinement-and-sieving" strategy to achieve a five orders-of-magnitude dynamic detection range and a limit of detection of ≈0.5 nM for TMZ detection in either urine or whole blood. We further demonstrate the applicability of our biosensing platform for longitudinal label-free SERS detection of the TMZ level directly in clinical samples in a mouse model.
Collapse
Affiliation(s)
- Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
10
|
Li ZH, Liu XC, Wang D, Zhang ZL, Chen G, Yu ZL, Tian ZQ. Simultaneous detection of two subtypes of extracellular vesicles using ultrabright fluorescent nanosphere-based test strips. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39036899 DOI: 10.1039/d4ay00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In recent years, the cargo profiles of extracellular vesicles (EVs), which were inherited from their parent cells, have emerged as a reliable biomarker for liquid biopsy (LB) in disease diagnosis, prognosis, and treatment monitoring. EVs secreted by different cells exhibit distinct characteristics, particularly in terms of disease diagnosis and prediction. However, currently available techniques for the quantitative analysis of EV cargoes, including enzyme-linked immunosorbent assay (ELISA), cannot specifically identify the cellular origin of EVs, thus seriously affecting the accuracy of EV-based liquid biopsy. In light of this, we here developed ultrabright fluorescent nanosphere (FNs)-based test strips which have the unique capability to specifically assess the levels of PD-L1-positive EVs (PD-L1+ EVs) derived from both tumor cells and immune cells in bodily fluids. The levels of PD-L1+ EV subpopulations in human saliva were quantified using the ultrabright fluorescent nanosphere-based test strips with more convenience and higher efficiency (detection time <30 min). Results demonstrated that the fluorescence intensity of the test line exhibited a good linear relationship respectively with the PD-L1 levels of tumor cell- (R2 = 0.993) and immune cell-derived EVs (R2 = 0.982) in human saliva. By assessing the levels of PD-L1+ EV subpopulations, our test strips hold immense potential for advancing the application of PD-L1+ EV subpopulation-based predictions in tumor diagnosis and prognosis evaluation. In summary, by integrating the benefits of FNs and lateral flow chromatography, we here provide a strategy to accurately measure the cargo levels of EVs originating from diverse cell sources in bodily fluids.
Collapse
Affiliation(s)
- Zhi-Hua Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xing-Chi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi-Quan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Environmental Engineering and Pollution Control on Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
11
|
Li Y, Mai X, Liu W, Wang F, Yan S, Lei Y, Chen L, Mai W, Song Q, Du W, Chen X, Ye H, Song L, Chen Y, Zhao L, Liu Z, Ding W, Yu P, Jiang X, Li Y, Huang J, Zhan Q, Qin Y, Li C, Wei W, Ji T. Portable Near-Infrared to Near-Infrared Platform for Homogeneous Quantification of Biomarkers in Complex Biological Samples. ACS NANO 2024. [PMID: 39028863 DOI: 10.1021/acsnano.4c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Xiaorui Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Wenming Liu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, P. R. China
| | - Feng Wang
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Shuo Yan
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Yu Lei
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Lu Chen
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Weikang Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Qingwei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Weidong Du
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Xukai Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Longfei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yu Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Weidong Ding
- Shenzhen Highcreation Technology Co., Ltd., Shenzhen 518122, P. R. China
| | - Pei Yu
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuyi Li
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Jing Huang
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, P. R. China
| | - Chenzhong Li
- Biomedical Engineering Division, Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Jvxin Tang Biotechnology Inc., Chengdu Future Medical City, Chengdu 610095, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tianxing Ji
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| |
Collapse
|
12
|
Zhang J, Chai F, Li J, Wang S, Zhang S, Li F, Liang A, Luo A, Wang D, Jiang X. Weakly ionized gold nanoparticles amplify immunoassays for ultrasensitive point-of-care sensors. SCIENCE ADVANCES 2024; 10:eadn5698. [PMID: 38985882 PMCID: PMC11235179 DOI: 10.1126/sciadv.adn5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengli Chai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jia’an Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Saijie Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fenggang Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
13
|
Bu S, Song L, Ding Y, Yang Y, Liang Y, Chai Y, Zhang P, Fu Y, Yuan R. Dual-Ligand Ruthenium Coordination Polymer-Derived Self-Enhanced Electrochemiluminescent Emitters for Sensitive Detection of Procalcitonin. Anal Chem 2024; 96:10809-10816. [PMID: 38886176 DOI: 10.1021/acs.analchem.4c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.
Collapse
Affiliation(s)
- Shuchun Bu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yilan Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yuqin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yufei Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
14
|
Liu S, Zhang M, Chen Q, Ouyang Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14375-14385. [PMID: 38860923 DOI: 10.1021/acs.jafc.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-μPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-μPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-μPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Tea industry Research Institute, Fujian Eight Horses Tea Co., Ltd, Quanzhou 362442, PR China
| |
Collapse
|
15
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
16
|
Park JH, Song Z, Yun TG, Kim HS, Shin MH, Kang MJ, Park MS, Pyun JC. Electrochemical analysis of total phospholipids in human serum for severe sepsis diagnosis. Talanta 2024; 268:125374. [PMID: 37925823 DOI: 10.1016/j.talanta.2023.125374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical analysis of total phospholipids was performed for the diagnosis of sepsis. The influence of electrode materials on the analysis of the chromogenic substrate was analyzed using Au, graphite, and pyrolyzed carbon electrodes. The total phospholipid analysis based on electrochemical analysis with pyrolyzed carbon was used for diagnosis of sepsis using sera from healthy volunteers, systemic inflammatory response syndrome (SIRS), and severe sepsis patients. The analysis results using the optical measurement and the electrochemical analysis were compared for the serum samples from sepsis patients and healthy controls. Additionally, the interference of human serum on the optical measurement and electrochemical analysis was estimated by signal-to-noise (S/N) calculation. The assay results of the levels of other biomarkers for sepsis (C-reactive protein and procalcitonin) and the total phospholipid levels obtained using the optical measurement and electrochemical analysis methods were statistically similar. Finally, the mortality of patients, indicated by the results of the total phospholipid assay performed using the electrochemical analysis of the patient samples collected daily (1, 3, and 7 day(s) after admission to hospital), was compared with the patient mortality assessed via conventional severity indexes, such as the SOFA and APACHE Ⅱ scores. The 28-day survival rate was estimated by Kaplan-Meier survival analysis based on the total phospholipid level of patient samples that were obtained after 1, 3, and 7 day(s) from hospital admission.
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hye Soo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
17
|
Chai F, Wang D, Shi F, Zheng W, Zhao X, Chen Y, Mao C, Zhang J, Jiang X. Dual Functional Ultrasensitive Point-of-Care Clinical Diagnosis Using Metal-Organic Frameworks-Based Immunobeads. NANO LETTERS 2023; 23:9056-9064. [PMID: 37738391 DOI: 10.1021/acs.nanolett.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Sepsis is an acute systemic infectious syndrome with high fatality. Fast and accurate diagnosis, monitoring, and medication of sepsis are essential. We exploited the fluorescent metal-AIEgen frameworks (MAFs) and demonstrated the dual functions of protein detection and bacteria identification: (i) ultrasensitive point-of-care (POC) detection of sepsis biomarkers (100 times enhanced sensitivity); (ii) rapid POC identification of Gram-negative/positive bacteria (selective aggregation within 20 min). Fluorescent lateral flow immunoassays (LFAs) are convenient and inexpensive for POC tests. MAFs possess a large surface area, excellent photostability, high quantum yield (∼80%), and multiple active sites serving as protein binding domains for ultrasensitive detection of sepsis biomarkers (IL-6/PCT) on LFAs. The limit of detection (LOD) for IL-6/PCT is 0.252/0.333 pg/mL. Rapid appraisal of infectious bacteria is vital to guide the use of medicines. The dual-functional fluorescent MAFs have great potential in POC tests for the clinical diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Fengli Chai
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Fei Shi
- Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong 518020, China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China
| | - Xiaohui Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Cuiping Mao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Zhang C, Li Z, Liu J, Liu C, Zhang H, Lee WG, Yao C, Guo H, Xu F. Synthetic Gene Circuit-Based Assay with Multilevel Switch Enables Background-Free and Absolute Quantification of Circulating Tumor DNA. RESEARCH (WASHINGTON, D.C.) 2023; 6:0217. [PMID: 37789988 PMCID: PMC10543738 DOI: 10.34133/research.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Circulating tumor DNA (ctDNA) detection has found widespread applications in tumor diagnostics and treatment, where the key is to obtain accurate quantification of ctDNA. However, this remains challenging due to the issue of background noise associated with existing assays. In this work, we developed a synthetic gene circuit-based assay with multilevel switch (termed CATCH) for background-free and absolute quantification of ctDNA. The multilevel switch combining a small transcription activating RNA and a toehold switch was designed to simultaneously regulate transcription and translation processes in gene circuit to eliminate background noise. Moreover, such a multilevel switch-based gene circuit was integrated with a Cas9 nickase H840A (Cas9n) recognizer and a molecular beacon reporter to form CATCH for ctDNA detection. The CATCH can be implemented in one-pot reaction at 35 °C with virtually no background noise, and achieve robust absolute quantification of ctDNA when integrated with a digital chip (i.e., digital CATCH). Finally, we validated the clinical capability of CATCH by detecting drug-resistant ctDNA mutations from the plasma of 76 non-small cell lung cancer (NSCLC) patients, showing satisfying clinical sensitivity and specificity. We envision that the simple and robust CATCH would be a powerful tool for next-generation ctDNA detection.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
- TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Jie Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Won Gu Lee
- Department of Mechanical Engineering,
Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital,
Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
19
|
Yu H, Jia ZS, Xu PF, Liu Y, Xu DD, Li YY, Tang HW. Multiple miRNA Detection through a Suspended Microbead Array Encoded by Triple-Color Upconversion Luminescent Nanotags via Bi-Beam Splitter Hybrid-Multitrap Optical Tweezers. Anal Chem 2023; 95:14086-14093. [PMID: 37665143 DOI: 10.1021/acs.analchem.3c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.
Collapse
Affiliation(s)
- He Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zeng-Shuai Jia
- School of Information Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
20
|
Khachornsakkul K, Del-Rio-Ruiz R, Zeng W, Sonkusale S. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring. Anal Chem 2023; 95:12802-12810. [PMID: 37578458 DOI: 10.1021/acs.analchem.3c01778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we successfully developed a thread-based analytical device (μTAD) for simultaneous immunosensing of two biomolecules with attomolar sensitivity by using a photothermal effect. A photothermal effect exploits a strong light-to-heat energy conversion of plasmonic metallic nanoparticles at localized surface plasmon resonance. The key innovation is to utilize the cotton thread to realize this sensor and the use of chitosan modification for enhancing the microfluidic properties, for improving the efficiency of photothermal conversion, and for sensor stability. The developed μTAD sensor consists of (i) a sample zone, (ii) a conjugation zone coated with gold nanoparticles bound with an antibody (AuNPs-Ab2), and (iii) a test zone immobilized with a capture antibody (anti-Ab1). The prepared μTAD is assembled in a custom three-dimensional (3D) printed device which holds the laser for illumination and the thermometer for readout. The 3D-printed supportive device enhances signal response by focusing light and localizing the heat generated. For proof of concept, simultaneous sensing of two key stress and inflammation biomarkers, namely, cortisol and interleukin-6 (IL-6), are monitored using this technique. Under optimization, this device exhibited a detection linear range of 2.0-14.0 ag/mL (R2 = 0.9988) and 30.0-360.0 fg/mL (R2 = 0.9942) with a detection limit (LOD) of 1.40 ag/mL (∼3.86 amol/L) and 20.0 fg/mL (∼950.0 amol/L) for cortisol and IL-6, respectively. Furthermore, the analysis of both biomolecules in human samples indicated recoveries in the range of 98.8%-102.88% with the highest relative standard deviation being 3.49%, offering great accuracy and precision. These results are the highest reported sensitivity for these analytes using an immunoassay method. Our PT-μTAD strategy is therefore a promising approach for detecting biomolecules in resource-limited point-of-care settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
21
|
Zhao L, Song Q, Mai W, Deng M, Lei Y, Chen L, Kong W, Zhang L, Zhang L, Li Y, Ye H, Qin Y, Zhang T, Hu Y, Ji T, Wei W. Engineering highly efficient NIR-II FRET platform for Background-Free homogeneous detection of SARS-CoV-2 neutralizing antibodies in whole blood. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143616. [PMID: 37251501 PMCID: PMC10195770 DOI: 10.1016/j.cej.2023.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 μg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.
Collapse
Affiliation(s)
- Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qingwei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Deng
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Lei
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Chen
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Zhang
- Kidney Transplant Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Tao Zhang
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yongjun Hu
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Jin B, Du Z, Ji J, Bai Y, Tang D, Qiao L, Lou J, Hu J, Li Z. Regulation of probe density on upconversion nanoparticles enabling high-performance lateral flow assays. Talanta 2023; 256:124327. [PMID: 36758506 DOI: 10.1016/j.talanta.2023.124327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Upconversion nanoparticles (UCNPs)-based fluorescence probes have shown great potential in point-of-care testing (POCT) applications, due to UCNPs' features of high photostability and background-free fluorescence. Ceaseless improvements of UCNPs-probes have been carried out to increase detection sensitivity and to broaden detection range of UCNPs-based POCT. In this paper, we optimized UCNPs-probes by regulating probe density. The optimization was verified by a traditional lateral flow assay (LFA) platform for C-reactive protein (CRP) detection. Further, the optimized UCNPs-LFA integrating with a home-made benchtop fluorescence analyzer holds the capability to achieve high-performance POCT. Finally, nearly a 20 times sensitivity enhancement with a limit of detection of 0.046 ng/mL and a broad detection range of 0.2-300 ng/mL for CRP detection was obtained. Moreover, the optimized UCNPs-LFA was applied to detecting CRP in clinical serum samples and the detection results were consistent with the clinical test, validating its clinical practicability. The proposed optimization method is also expected to optimize other nanoparticles-based bio-probes for wider POCT application.
Collapse
Affiliation(s)
- Birui Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiguo Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Jingcheng Ji
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Deding Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China; Maanshan Teachers College, Ma Anshan, 243041, China
| | - Lihua Qiao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology, Suzhou, 215129, China.
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
23
|
Wang X, Fu J, Jiang C, Liao X, Chen Y, Jia T, Chen G, Feng X. Specific and Long-Term Luminescent Monitoring of Hydrogen Peroxide in Tumor Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210948. [PMID: 36848628 DOI: 10.1002/adma.202210948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Indexed: 05/19/2023]
Abstract
Luminescent monitoring of endogenous hydrogen peroxide (H2 O2 ) in tumors is conducive to understanding metastasis and developing novel therapeutics. The clinical transformation is obstructed by the limited light penetration depth, toxicity of nano-probes, and lack of long-term monitoring modes of up to days or months. New monitoring modes are introduced via specific probes and implantable devices, which can achieve real-time monitoring with a readout frequency of 0.01 s or long-term monitoring for months to years. Near-infrared dye-sensitized upconversion nanoparticles (UCNPs) are fabricated as the luminescent probes, and the specificity to reactive oxygen species is subtly regulated by the self-assembled monolayers on the surfaces of UCNPs. Combined with the passive implanted system, a 20-day monitoring of H2 O2 in the rat model of ovarian cancer with peritoneal metastasis is achieved, in which the limited light penetration depth and toxicity of nano-probes are circumvented. The developed monitoring modes show great potential in accelerating the clinical transformation of nano-probes and biochemical detection methods.
Collapse
Affiliation(s)
- Xindong Wang
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314006, P. R. China
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Chang Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xiaohui Liao
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Yiju Chen
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xue Feng
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Song Q, Zhao L, Mai W, Xia D, Ding W, Zhou X, Deng M, Lei Y, Chen L, Li Y, Mai X, Zhang L, Chen Z, Qin Y, Ren R, Wei W, Ji T. Handheld NIR-to-NIR Platform for on-site evaluating protective neutralizing antibody against SARS-CoV-2 ancestral strain and Omicron variant after vaccination or infection. Biosens Bioelectron 2023; 234:115353. [PMID: 37120945 PMCID: PMC10127741 DOI: 10.1016/j.bios.2023.115353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Lateral flow assays (LFAs) are promising points-of-care tests, playing a vital role in diseases screening, diagnosis and surveillance. However, development of portable, cheap, and smart LFAs platform for sensitive and accurate quantification of disease biomarkers in complex media is challenging. Here, a cheap handheld device was developed to realize on-site detection of disease biomarkers by Nd3+/Yb3+ co-doped near-infrared (NIR)-to-NIR downconversion nanoparticles (DCNPs) based LFA. Its sensitivity is at least 8-fold higher for detecting NIR light signal from Nd3+/Yb3+ co-doped nanoparticles than conventional expensive InGaAs camera based detection platform. Additionally, we enhance NIR quantum yield of Nd3+/Yb3+ co-doped nanoparticles up to 35.5% via simultaneous high dopant of sensitizer ions Nd3+ and emitter ions Yb3+. Combination of NIR-to-NIR handheld detection device and ultra-bright NIR emitting NaNbF4:Yb60%@NaLuF4 nanoparticle probe allows the detection sensitivity of SARS-CoV-2 ancestral strain and Omicron variants specific neutralizing antibodies LFA up to the level of commercial enzyme linked immunosorbent assay kit. Furthermore, by this robust method, enhanced neutralizing antibodies against SARS-CoV-2 ancestral strain and Omicron variants are observed in healthy participants with Ad5-nCoV booster on top of two doses of inactivated vaccine. This NIR-to-NIR handheld platform provides a promising strategy for on-site evaluating protective humoral immunity after SARS-CoV-2 vaccination or infection.
Collapse
Affiliation(s)
- Qingwei Song
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China; MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Daoyu Xia
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Weidong Ding
- Shenzhen Highcreation Technology Co., Ltd, Shenzhen, 518122, PR China
| | - Xiaomian Zhou
- Guangzhou Biotron Technology Co, Ltd, Guangzhou, 510530, PR China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaorui Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Lei Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, 510260, PR China
| | - Zheng Chen
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, 510260, PR China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, PR China
| | - Ruiwen Ren
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou, 510507, PR China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
25
|
Advantages of aggregation-induced luminescence microspheres compared with fluorescent microspheres in immunochromatography assay with sandwich format. Anal Chim Acta 2023; 1247:340869. [PMID: 36781245 DOI: 10.1016/j.aca.2023.340869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.
Collapse
|
26
|
Zhao S, Xu Z, Bu T, Hu X, Cao J, Hou J, Bai F, Zhang R, Wang L, Zhang G. Iridium (IV) oxide-mediated microorganism nanozyme amplified immunochromatographic assay for dual-signal sensitive detection of salbutamol. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zhang L, Su Y, Liang X, Cao K, Luo Q, Luo H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. NANO RESEARCH 2023; 16:7459-7469. [PMID: 37223429 PMCID: PMC9971675 DOI: 10.1007/s12274-022-5354-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 05/25/2023]
Abstract
Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening. Electronic Supplementary Material Supplementary material (characterization of AuNPs and 4-MBA@AuNP probe; the optimal 4-MBA load for AuNPs; the optimal K2CO3 volumes for 4-MBA@AuNP-3G5 conjugates; the optimal 3G5 load for 4-MBA@AuNP conjugates; effect of NaCl concentration on 4-MBA@AuNP-3G5 stability; the linear curve of T-line color and SERS intensity versus different p-tau396,404 concentrations; the comparison of colorimetric-based LFA test results and the diagnosis results; Raman intensities and antibody activity of 4-MBA@AuNP-3G5 before and after storage; colorimetric intensity of dual-readout LFA detecting different concentrations of p-tau396,404 protein; sequence of synthesized peptides used in this study; information of the participants in this study; the information of antibodies used in this study) is available in the online version of this article at 10.1007/s12274-022-5354-4.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| |
Collapse
|
28
|
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023; 401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
29
|
Zhao J, Li Y, Chen X, Mu D, Zhao J, Zhou S. Sensitive NIR Fluorescence Identification of Bacteria in Whole Blood with Bioorthogonal Nanoprobes for Early Sepsis Diagnosis. Anal Chem 2023; 95:955-965. [PMID: 36573885 DOI: 10.1021/acs.analchem.2c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sepsis is one of the leading causes of death worldwide. The disease progression of sepsis is very fast, and there is a 7-9% increase in mortality every hour. Therefore, rapid and sensitive detection of pathogenic bacteria is crucial for the timely treatment of sepsis as well as the reduction of mortality. Herein, we present a sensitive near-infrared (NIR) fluorescence identification and a rapid magnetic capture based on bioorthogonal nanoprobes for the detection of multiple bacteria in whole blood. The nanoprobes with NIR fluorescence/magnetic properties were modified with dibenzocyclooctyne groups and used to capture and recognize the bacteria via bioorthogonal reaction. The magnetic nanoprobes showed superparamagnetic properties with a saturation magnetization as high as 63 emu/g. Through clicking with the azide groups inserted on the bacteria walls by metabolic engineering, the bioorthogonal magnetic nanoprobes allow fast and broad-spectrum capture of both Gram-positive and Gram-negative bacteria. The bioorthogonal NIR fluorescent nanoprobes with a maximum emission at 900 nm can effectively avoid background interference, further enabling sensitive identification of the bacteria in whole blood. The detection limit was as low as 4 CFU/mL in less than 2.5 h and the nanoprobes were successfully applied to the detection of bacteria in blood samples from the patients with sepsis, showing the potential application in early sepsis diagnosis and clinical studies.
Collapse
Affiliation(s)
- Jinyan Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Yingping Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu610031, China
| | - Dan Mu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, China
| |
Collapse
|
30
|
Chen Q, Yao L, Wu Q, Xu J, Yan C, Guo C, Zhang C, Xu T, Qin P, Chen W. Rapid and simultaneous visual typing of high-risk HPV-16/18 with use of integrated lateral flow strip platform. Mikrochim Acta 2022; 189:350. [PMID: 36008739 PMCID: PMC9409624 DOI: 10.1007/s00604-022-05449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
A biosensor for rapid and simultaneous visual identification of high-risk human papillomavirus (HPV) genotypes 16 and 18 in clinical samples based on polymerase chain reaction (PCR) integrated lateral flow strip platform was developed. Using an one-step protocol to extract nucleic acid rapidly and the functionalized primer sets specific to HPV-16 and 18 were designed for the simultaneous amplification. In the presence of target HPV genotypes, the corresponding functionalized primer sets will participate in the PCR process and produce numerous duplex functionalized dsDNA amplicons. With the bridge effect of duplex functionalized dsDNA amplicons between gold nanoparticles-fluorescein isothiocyanate antibody conjugates (AuNP-FITC antibody conjugates) and other two antibodies on corresponding test line (T1 or T2), visualized color signals on test lines could be obtained directly visible with a naked eye. Combining the high amplification efficiency of PCR and the visualized sensing of LFS, as low as 700 copies of HPV-16 and 18 DNA were detected simultaneously within 75 min, which can promote application in the resource limited settings. High-risk genotypes of HPV-16 and HPV-18 were easily and simultaneously screened with the amplification-assisted molecular lateral flow strip by on-site observation in the resource-limited settings.
Collapse
Affiliation(s)
- Qi Chen
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Li Yao
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Chao Yan
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Chuanxiang Guo
- Anhui Deepblue Medical Technology Co. Ltd., Hefei, 230088, People's Republic of China
| | - Chao Zhang
- Anhui Deepblue Medical Technology Co. Ltd., Hefei, 230088, People's Republic of China
| | - Tao Xu
- Anhui Medical University, Hefei, 230009, People's Republic of China
| | - Panzhu Qin
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Anhui Medical University, Hefei, 230009, People's Republic of China.
| | - Wei Chen
- Engineering Research Center of Bio-Process, MOE; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Intelligent Manufacturing Institute, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
31
|
Liu J, Lin L, Yao P, Zhao W, Hu J, Shi XH, Zhang S, Zhu X, Pang DW, Liu AA. Immunoprofiling of Severity and Stage of Bacterial Infectious Diseases by Ultrabright Fluorescent Nanosphere-Based Dyad Test Strips. Anal Chem 2022; 94:8818-8826. [PMID: 35686482 DOI: 10.1021/acs.analchem.2c02028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial infectious diseases are common clinical diseases that seriously threaten human health, especially in countries and regions with poor environmental hygiene. Due to the lack of characteristic clinical symptoms and signs, it is a challenge to distinguish a bacterial infection from other infections, leading to misdiagnosis and antibiotic overuse. Therefore, there is an urgent need to develop a specific method for detection of bacterial infections. Herein, utilizing ultrabright fluorescent nanospheres (FNs) as reporters, immunochromatographic dyad test strips are developed for the early detection of bacterial infections and distinction of different stages of bacterial infectious diseases in clinical samples. C-reactive protein (CRP) and heparin-binding protein (HBP) are quantified and assayed because their levels in plasma are varied dynamically and asynchronously during the progression of the disease. The detection limits of CRP and HBP can reach as low as 0.51 and 0.65 ng/mL, respectively, due to the superior fluorescence intensity of each FN, which is 570 times stronger than that of a single quantum dot. The assay procedure can be achieved in 22 min, fully meeting the needs of rapid and ultrasensitive detection in the field. This constructed strip has been successfully used to profile the stage and severity of bacterial infections by monitoring the levels of CRP and HBP in human plasma samples, showing great potential as a point-of-care biosensor for clinical diagnosis. In addition to bacterial infections, the developed ultrabright FN-based point-of-care testing can be readily expanded for rapid, quantitative, and ultrasensitive detection of other trace substances in complex systems.
Collapse
Affiliation(s)
- Juanzu Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China.,Wuhan Jiayuan Quantum Dots Co., Ltd., Wuhan 430074, P. R. China
| | - Peiyu Yao
- Department of Emergency, Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Shiwu Zhang
- Department of Emergency, Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P. R. China
| | - Xiaobo Zhu
- Wuhan Jiayuan Quantum Dots Co., Ltd., Wuhan 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
32
|
Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022; 212:114411. [PMID: 35623251 PMCID: PMC9119864 DOI: 10.1016/j.bios.2022.114411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
The pandemic of highly contagious diseases has put forward urgent requirements for high sensitivity and adaptive capacity of point-of-care testing (POCT). Herein, for the first time, we report an aggregation-induced emission (AIE) dye-energized light-initiated afterglow nanoprobes (named LiAGNPs), implemented onto a lateral flow immunoassay (LFIA) test strip, for diagnosis of two highly contagious diseases, human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as model validation. The primary working mechanism relies on the cyclically generated singlet oxygen (1O2)-triggered time-resolved luminescent signals of LiAGNPs in which AIE dyes (TTMN) and chemiluminescent substrates (SO) are loaded. The designed LiAGNPs were found 2-fold and 32-fold sensitive than the currently used Eu(III)-based time-resolved fluorescent nanoparticles and gold nanoparticles in lateral flow immunoassay (LFIA), respectively. In addition, the extra optical behaviors of nude color and fluorescence of LiAGNPs enable the LFIA platform with the capability of the naked eye and fluorescent detection to satisfy the applications under varying scenarios. In short, the versatile LiAGNPs have great potential as a novel time-resolved reporter in enhancing detection sensitivity and application flexibility with LFIA platform for rapid but sensitive infectious disease diagnostics.
Collapse
|
33
|
Chai F, Wang D, Zhu L, Zheng W, Jiang X. Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Anal Chem 2022; 94:6628-6634. [PMID: 35452227 DOI: 10.1021/acs.analchem.2c01177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple antibiotics and mycotoxins usually simultaneously exist in foods, which poses a serious threat to human health. How to detect them in one test with high sensitivity and fidelity is challenging. In this study, we develop a dual readout lateral flow immunodetection platform that can quantitatively detect five kinds of antibiotics and five kinds of mycotoxins within one sample. The platform is composed of a chip and a portable readout instrument where gold nanoparticle (AuNP)-based and chemiluminescence immunoassays could be performed to reach a maximum throughput of 220 analytes in one setting. For a rapid screen, qualitative analysis by detecting the color change of the deposited AuNPs on the chip could be realized. For quantitative results, chemiluminescence imaging and analysis can be completed within 15 min. Apart from the high throughput and high efficiency, this platform has a high detection sensitivity. For instance, the limit of detection (LOD) for thiamphenicol (a representative antibiotic) and fumonisins B1 (a representative mycotoxin) is 8 times and 40 times lower than those of the previously reported methods, respectively. Thus, this dual readout immunodetection platform is promising as a universal device for rapid and quantitative detection of multiple analytes with high throughput, high sensitivity, and high fidelity.
Collapse
Affiliation(s)
- Fengli Chai
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Dou Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
34
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Yin BF, Wan XH, Yang MZ, Qian CC, Sohan ASMMF. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections. Mil Med Res 2022; 9:8. [PMID: 35144683 PMCID: PMC8831027 DOI: 10.1186/s40779-022-00368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Early diagnosis and classification of infections increase the cure rate while decreasing complications, which is significant for severe infections, especially for war surgery. However, traditional methods rely on laborious operations and bulky devices. On the other hand, point-of-care (POC) methods suffer from limited robustness and accuracy. Therefore, it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements. METHODS We developed a wave-shaped microfluidic chip (WMC) assisted multiplexed detection platform (WMC-MDP). WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents. We further combined the detection platform with the streptavidin-biotin (SA-B) amplified system to enhance the sensitivity while using chemiluminescence (CL) intensity as signal readout. We realized simultaneous detection of C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) on the detection platform and evaluated the sensitivity, linear range, selectivity, and repeatability. Finally, we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits. RESULTS Detection of CRP, PCT, and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25-40 μg/ml, 0.4-12.8 ng/ml, and 50-1600 pg/ml, respectively. The limit of detection of CRP, PCT, and IL-6 were 0.54 μg/ml, 0.11 ng/ml, and 16.25 pg/ml, respectively. WMC-MDP is capable of good adequate selectivity and repeatability. The whole detection procedure takes only 22 min that meets the requirements of a POC device. Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits. CONCLUSIONS WMC-MDP allows simultaneous, rapid, and sensitive detection of CRP, PCT, and IL-6 with satisfactory selectivity and repeatability, requiring minimal manipulation. However, WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10% enabling WMC-MDP to be a type of point-of-care testing (POCT). Therefore, WMC-MDP provides a promising alternative to POCT of multiple biomarkers. We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.
Collapse
Affiliation(s)
- Bin-Feng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Xin-Hua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ming-Zhu Yang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, 100005, China
| | - Chang-Cheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | | |
Collapse
|
36
|
Xu X, Lei X, Ye L, Song S, Liu L, Xu L, Xu C, Kuang H. Gold-based paper sensor for sensitive detection of procalcitonin in clinical samples. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022. [DOI: 10.1002/viw.20200125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Doudou Lou
- Jiangsu Institute for Food and Drug Control 17 Kangwen Road Nanjing P. R. China
| | - Lin Fan
- School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Nanjing P. R. China
| | - Tao Jiang
- Army of Reserve Infantry Division in Heilongjiang Province Harbin Heilongjiang Province P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University Nanjing P. R. China
| |
Collapse
|
38
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
39
|
Lin T, Huang X, Guo L, Zhou S, Li X, Liu Y, Hu J, Chen X, Xiong Y. Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Liu J, Meng H, Zhang L, Li S, Chen J, Zhang Y, Li J, Qu L, Li Z. Dual-readout test strips platform for portable and highly sensitive detection of alkaline phosphatase in human serum samples. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining. Biosens Bioelectron 2021; 192:113538. [PMID: 34343740 DOI: 10.1016/j.bios.2021.113538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Constructing multifunctional immunochromatographic assays (ICA) carriers with multiple signals and retaining bioactivity of monoclonal antibodies (mAbs) are conducive to the sensitive and accurate point-of-care testing (POCT). To fulfill this pressing need, a microorganism-based microsphere mediated dual-modal ICA (DICA) was developed for sensitive and reliable detection of zearalenone (ZEN). As the key to the biosensor, a superb biotag with an intact coccus morphology was designed based on Staphylococcus aureus biosynthesized quantum dots incorporating Ru(bpy)32+ (SAQDsRu), in which SA offered a specific recognition capacity for Fc region of mAbs, QDs endowed a naked-eye discernible colorimetric signal on the SA, and robust fluorescence signal that remedied for the insufficient brightness of QDs was derived from Ru(bpy)32+. The characterization of SAQDsRu-labeled mAb (SAQDsRu-mAb) probe demonstrated strong luminescence, excellent stability and high affinity with ZEN (affinity constant was approximately 1.723 × 109 M-1), which can significantly improve the detection sensitivity. Impressively, a portable sensing system was developed by the integration of SAQDsRu-DICA with a smartphone-based readout. After optimization, this DICA indicated a limit of detection reaching down to 0.008 ng/mL (colorimetric mode) and 0.0058 ng/mL (fluorescent mode), which were much lower than that of conventional gold nanoparticles-based ICA (0.1029 ng/mL), possessing favorable specificity and repeatability (relative standard deviation (RSD) < 10%). Moreover, the feasibility of the immunoassay was further assessed by measuring ZEN in real samples with satisfactory recoveries, and the results are good consistent with liquid chromatography tandem mass spectrometry (LC-MS/MS).
Collapse
|
43
|
Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021; 9:5414-5438. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device. In this context, to preserve the Ab affinity and provide a rapid response with long-term storage capability, the use of efficient bio-conjugation techniques is critical. Thanks to their prominent role in rapid tests, many studies have been devoted to the design and development of Abs-NMs conjugates with various chemistries including passive adsorption, covalent coupling, and affinity interactions. In this review, we present the state-of-the-art techniques allowing various Ab-NM conjugates with a special focus on the efficiency of the developed probes to be employed in in vitro rapid tests. Challenges and future perspectives on the development of Ab-conjugated nanotags in rapid diagnostic tests are highlighted along with a survey of the progress in commercially available Ab-NM conjugates.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pourhassan-Moghaddam
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Behnaz Shirdel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|