1
|
Huang Y, Li M, Hu Z, Hu C, Shen W, Li Y, Sun L. In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe 2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1457. [PMID: 39269119 PMCID: PMC11397682 DOI: 10.3390/nano14171457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe2 as an example, the distinct growth processes on Al2O3 (112¯0) and Al2O3 (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe2 grown on Al2O3 (112¯0) initially increased and decreased ultimately to the magnitude of bare Al2O3 (112¯0) when the first layer of MoSe2 was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage. Consequently, the changing rate of reflectance anisotropy (RA) intensity at 2.5 eV is well matched with the dynamic changes in differential reflectance (DR) intensity. Moreover, the surface-dominated uniform orientation of MoSe2 islands at various stages determined by RAS was further investigated by low-energy electron diffraction (LEED) and atomic force microscopy (AFM). By contrast, the RAS signal of MoSe2 grown on Al2O3 (0001) remains at zero during the whole growth, implying that the discontinuous MoSe2 islands have no preferential orientations. This work demonstrates that the combination of in situ RAS and DRS can provide valuable insights into the growth of unidirectional aligned islands and help optimize the fabrication process for single-crystal transition metal dichalcogenide (TMDC) monolayers.
Collapse
Affiliation(s)
- Yufeng Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mengjiao Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Zhixin Hu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wanfu Shen
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanning Li
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lidong Sun
- Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz, Austria
| |
Collapse
|
2
|
Lu B, Xia Y, Ren Y, Xie M, Zhou L, Vinai G, Morton SA, Wee ATS, van der Wiel WG, Zhang W, Wong PKJ. When Machine Learning Meets 2D Materials: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305277. [PMID: 38279508 PMCID: PMC10987159 DOI: 10.1002/advs.202305277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Indexed: 01/28/2024]
Abstract
The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper - yet more efficient - alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.
Collapse
Affiliation(s)
- Bin Lu
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuze Xia
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuqian Ren
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Miaomiao Xie
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Liguo Zhou
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Giovanni Vinai
- Instituto Officina dei Materiali (IOM)‐CNRLaboratorio TASCTriesteI‐34149Italy
| | - Simon A. Morton
- Advanced Light Source (ALS)Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Andrew T. S. Wee
- Department of Physics and Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC)National University of SingaporeSingapore117542Singapore
| | - Wilfred G. van der Wiel
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
- Institute of PhysicsUniversity of Münster48149MünsterGermany
| | - Wen Zhang
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
| | - Ping Kwan Johnny Wong
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NPU Chongqing Technology Innovation CenterChongqing400000P. R. China
| |
Collapse
|
3
|
Wang J, Bagheri Tagani M, Zhang L, Xia Y, Wu Q, Li B, Tian Y, Yin LJ, Zhang L, Qin Z. Realization of black phosphorus-like PbSe monolayer on Au(111) via epitaxial growth. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:485002. [PMID: 37586387 DOI: 10.1088/1361-648x/acf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Lead selenide (PbSe) has been attracted a lot attention in fundamental research and industrial applications due to its excellent infrared optical and thermoelectric properties, toward reaching the two-dimensional limit. Herein, we realize the black phosphorus-like PbSe (α-phase PbSe) monolayer on Au(111) via epitaxial growth, where a characteristic rectangular superlattice of 5 Å × 9 Å corresponding to 1 × 2 reconstruction with respect to the pristine ofα-phase PbSe is observed by scanning tunneling microscopy. Corresponding density functional theory calculation confirmed the reconstruction and revealed the driven mechanism, the coupling between monolayer PbSe and Au(111) substrate. The metallic feature of differential conductance spectra as well as the transition of the density of states from semiconductor to metal further verified such coupling. As the unique anisotropic structure, our study provides a pathway towards the synthesis of BP-PbSe monolayer. In addition, it builds up an ideal platform for studying fundamental physics and also excellent prospects in PbSe-based device applications.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | | | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yu Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Qilong Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Bo Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
4
|
Wang X, Shang Q, Zhang F, Song J, Fu J, Zhao L, Hu J, Wang J, Quan W, Huan Y, Wu Q, Song T, Han J, Xiao W, Zhang Q, Zhang Y. Water-Assisted Growth of Twisted 3R-Stacked MoSe 2 Spirals and Its Dramatically Enhanced Second Harmonic Generations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301828. [PMID: 37093169 DOI: 10.1002/smll.202301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Enhanced second-harmonic generation (SHG) responses are reported in monolayer transition metal dichalcogenides (e.g., MX2 , M: Mo, W; X: S, Se) due to the broken symmetries. The 3R-like stacked MX2 spiral structures possessing the similar broken inversion symmetry should present dramatically enhanced SHG responses, thus providing great flexibility in designing miniaturized on-chip nonlinear optical devices. To achieve this, the first direct synthesis of twisted 3R-stacked chiral molybdenum diselenide (MoSe2 ) spiral structures with specific screw dislocations (SD) arms is reported, via designing a water-assisted chemical vapor transport (CVT) approach. The study also clarifies the formation mechanism of the MoSe2 spiral structures, by precisely regulating the precursor supply accompanying with multiscale characterizations. Significantly, an up to three orders of magnitude enhancement of the SHG responses in twisted 3R stacked MoSe2 spirals is demonstrated, which is proposed to arise from the synergistic effects of broken inversion symmetry, strong light-matter interaction, and band nesting effects. Briefly, the work provides an efficient synthetic route for achieving the 3R-stacked TMDCs spirals, which can serve as perfect platforms for promoting their applications in on-chip nonlinear optical devices.
Collapse
Affiliation(s)
- Xiangzhuo Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qiuyu Shang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qilong Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tinglu Song
- Experimental Center of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Junfeng Han
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wende Xiao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Zhu B, Wu Y, Zhou Z, Zheng W, Hu Y, Ji Y, Kong L, Zhang R. Visualizing Large Facet-Dependent Electronic Tuning in Monolayer WSe 2 on Au Surfaces. NANO LETTERS 2022; 22:9630-9637. [PMID: 36383028 DOI: 10.1021/acs.nanolett.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have shown great importance in the development of novel ultrathin optoelectronic devices owing to their exceptional electronic and photonic properties. Effectively tuning their electronic band structures is not only desired in electronics applications but also can facilitate more novel properties. In this work, we demonstrate that large electronic tuning on a WSe2 monolayer can be realized by different facets of a Au-foil substrate, forming in-plane p-n junctions with remarkable built-in electric fields. This facet-dependent tuning effect is directly visualized by using scanning tunneling microscopy and differential conductance (dI/dV) spectroscopy. First-principles calculations reveal that the atomic arrangement of the Au facet effectively changes the interfacial coupling and charge transfer, leading to different magnitudes of charge doping in WSe2. Our study would be beneficial for future customized fabrication of TMD-junction devices via facet-specific construction on the substrate.
Collapse
Affiliation(s)
- Bo Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yanwei Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zeyi Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Wenjie Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yuchen Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Lingyao Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Li B, Wang J, Wu Q, Tian Q, Li P, Zhang L, Yin LJ, Tian Y, Johnny Wong PK, Qin Z, Zhang L. Nanopore-Patterned CuSe Drives the Realization of the PbSe-CuSe Lateral Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32738-32746. [PMID: 35802412 DOI: 10.1021/acsami.2c08397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monolayer PbSe has been predicted to be a two-dimensional (2D) topological crystalline insulator (TCI) with crystalline symmetry-protected Dirac-cone-like edge states. Recently, few-layered epitaxial PbSe has been grown on the SrTiO3 substrate successfully, but the corresponding signature of the TCI was only observed for films not thinner than seven monolayers, largely due to interfacial strain. Here, we demonstrate a two-step method based on molecular beam epitaxy for the growth of the PbSe-CuSe lateral heterostructure on the Cu(111) substrate, in which we observe a nanopore-patterned CuSe layer that acts as the template for lateral epitaxial growth of PbSe. This further results in a PbSe-CuSe lateral heterostructure with an atomically sharp interface. Scanning tunneling microscopy and spectroscopy measurements reveal a fourfold symmetric square lattice of such PbSe with a quasi-particle band gap of 1.8 eV, a value highly comparable with the theoretical value of freestanding PbSe. The weak monolayer-substrate interaction is further supported by both density functional theory (DFT) and projected crystal orbital Hamilton population, with the former predicting the monolayer's anti-bond state to reside below the Fermi level. Our work demonstrates a practical strategy to fabricate a high-quality in-plane heterostructure, involving a monolayer TCI, which is viable for further exploration of the topology-derived quantum physics and phenomena in the monolayer limit.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jing Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Qilong Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Qiwei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum Systems, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Ping Kwan Johnny Wong
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shaanxi & NPU Chongqing Technology Innovation Center, Chongqing 400000, People's Republic of China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
7
|
Zhang Z, Hu J, Yang P, Pan S, Quan W, Li N, Zhu L, Zhang Y. Modulating the periods and electronic properties of striped moiré superstructures for monolayer WSe 2 on Au(100) by varied interface coupling. NANOSCALE 2022; 14:7720-7728. [PMID: 35579051 DOI: 10.1039/d2nr01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moiré superlattices formed by the stacking of two-dimensional (2D) transition metal dichalcogenide lattices on substrate lattices have been reported to imply a crucial effect on the electronic properties of 2D materials (e.g., band gap, doping level) and their physical properties. Herein, we report the direct observation of various striped moiré superstructures for monolayer WSe2 on the Au(100) facet, due to the lattice symmetry difference and relative rotation. The periodicities or the inter-stripe distances for striped superstructures fall in a range of 0-15 nm or 0-3 nm after relatively low or high temperature annealing processes, respectively. The diverse striped moiré superstructures then served as perfect platforms for examining the electronic band gap tunability for monolayer WSe2/Au(100) by using scanning tunneling microscopy/spectroscopy (STM/STS), which increases from ∼1.59 eV to ∼1.90 eV with increasing moiré periods from ∼1.62 to ∼11.58 nm. The coupling strength of monolayer WSe2/Au(100) with various striped patterns is thus proposed to be modulated by the different relative orientations. This work should hereby provide some fundamental references for the domain orientation control, interface coupling strength, and application explorations of two-dimensional layered materials in future electronics and optoelectronics.
Collapse
Affiliation(s)
- Zehui Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Shuangyuan Pan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Ning Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
8
|
Wu Q, Bagheri Tagani M, Zhang L, Wang J, Xia Y, Zhang L, Xie SY, Tian Y, Yin LJ, Zhang W, Rudenko AN, Wee ATS, Wong PKJ, Qin Z. Electronic Tuning in WSe 2/Au via van der Waals Interface Twisting and Intercalation. ACS NANO 2022; 16:6541-6551. [PMID: 35285624 DOI: 10.1021/acsnano.2c00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The transition metal dichalcogenide (TMD)-metal interfaces constitute an active part of TMD-based electronic devices with optimized performances. Despite their decisive role, current strategies for nanoscale electronic tuning remain limited. Here, we demonstrate electronic tuning in the WSe2/Au interface by twist engineering, capable of modulating the WSe2 carrier doping from an intrinsic p-type to n-type. Scanning tunneling microscope/spectroscopy gives direct evidence of enhanced interfacial interaction induced doping in WSe2 as the twist angle with respect to the topmost (100) lattice of gold changing from 15 to 0°. Taking advantage of the strong coupling interface achieved this way, we have moved a step further to realize an n-p-n-type WSe2 homojunction. The intrinsic doping of WSe2 can be recovered by germanium intercalation. Density functional theory calculations confirm that twist angle and intercalation-dependent charge transfer related doping are involved in our observations. Our work offers ways for electronically tuning the metal-2D semiconductor interface.
Collapse
Affiliation(s)
- Qilong Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Meysam Bagheri Tagani
- Department of Physics, University of Guilan, P.O. Box 41335-1914, Rasht 32504550, Iran
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Jing Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Yu Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Sheng-Yi Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Wen Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi & NPU Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Alexander N Rudenko
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Ping Kwan Johnny Wong
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi & NPU Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| |
Collapse
|
9
|
Abstract
Chemical vapor deposition (CVD) is a promising approach for the controllable synthesis of two-dimensional (2D) materials. Many studies have demonstrated that the morphology and structure of 2D materials are highly dependent on growth substrates. Hence, the choice of growth substrates is essential to achieve the precise control of CVD growth. Noble metal substrates have attracted enormous interest owing to the high catalytic activity and rich surface morphology for 2D material growth. In this review, we introduce recent progress in noble metals as substrates for the controllable growth of 2D materials. The underlying growth mechanism and substrate designs of noble metals based on their unique features are thoroughly discussed. In the end, we outline the advantages and challenges of using noble metal substrates and prospect the possible approaches to extend the uses of noble metal substrates for 2D material growth and enhance the structural controllability of the grown materials.
Collapse
Affiliation(s)
- Yang Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Liu
- Cyber Security Research Centre, Nanyang Technological University, Singapore 639798, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|