1
|
Gao X, Yang J, Liu L, Hu Z, Lin R, Tang L, Yu M, Chen Z, Gao C, Zhang M, Li L, Ruan C, Liu Y. An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects. Bioact Mater 2025; 46:1-20. [PMID: 39719966 PMCID: PMC11665476 DOI: 10.1016/j.bioactmat.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL). Benefiting from this strategy, SAB, an unstable and untargetable plant-derived osteogenic compound, was effectively encapsulated in APS@P, demonstrating stable and precise delivery with improved therapeutic efficacy. Owing to SAB-mediated bone homeostasis, APS@P significantly promoted angiogenesis and new bone formation while suppressing bone resorption, resulting in a significant 146 % increase in bone mass and improved microstructure compared to the OBD group. It was confirmed that the encapsulation of SAB into APS@P could promote the osteogenic differentiation of MSCs by stimulating Tph2/Wnt/β-catenin signaling axis, coupled with the stimulation of type H angiogenesis and the suppression of RANKL-mediate bone resorption, thereby enhance OBD repair. This study provides a universal platform for enhancing the bioactivity of tissue-engineered scaffolds, offering an effective solution for the efficient regeneration of osteoporotic bone.
Collapse
Affiliation(s)
- Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zilong Hu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Rui Lin
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Lan Tang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Yu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Li Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China
| |
Collapse
|
2
|
Li M, Gao Z, Wang N, Sekhar KPC, Hao J, Cui J. Targeting of Low-Immunogenic Poly(ethylene glycol) Nanoparticles for Photothermal-Enhanced Immunotherapy. Adv Healthc Mater 2024:e2402954. [PMID: 39676379 DOI: 10.1002/adhm.202402954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Indexed: 12/17/2024]
Abstract
The assembly of low-immunogenic poly(ethylene glycol) nanoparticles (PEG NPs) for targeted delivery of therapeutics (i.e., mitoxantrone and imidazoquinoline) and improved photothermal-immunotherapy is reported. The targeted PEG NPs incorporating targeting molecules of hyaluronic acid are engineered via the templating of metal-organic frameworks, which can circumvent accelerated blood clearance and exhibit prolonged circulation time as well as improved accumulation of therapeutics at tumor sites. The targeted delivery of mitoxantrone under laser radiation induces immunogenic cell death of tumor cells, which is combined with toll-like receptor 7/8 agonists of imidazoquinoline to trigger immune responses of cytotoxic T lymphocytes for the eradication of tumor cells. Furthermore, the treatment can induce tumor-specific immune responses that inhibit metastatic lung tumor growth. This reported targeted PEG NPs provide a rational design for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, 250100, China
| |
Collapse
|
3
|
Ju Y, Li S, Tan AEQ, Pilkington EH, Brannon PT, Plebanski M, Cui J, Caruso F, Thurecht KJ, Tam C, Kent SJ. Patient-Specific Nanoparticle Targeting in Human Leukemia Blood. ACS NANO 2024; 18:29021-29035. [PMID: 39380440 PMCID: PMC11503784 DOI: 10.1021/acsnano.4c09919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Antibody-directed targeting of chemotherapeutic nanoparticles to primary human cancers holds promise for improving efficacy and reducing off-target toxicity. However, clinical responses to targeted nanomedicines are highly variable. Herein, we prepared and examined a matrix of 9 particles (organic and inorganic particles of three surface chemistries with and without antibody functionalization) and developed an ex vivo model to study the person-specific targeting of nanoparticles in whole blood of 15 patients with chronic lymphocytic leukemia (CLL). Generally, anti-CD20-functionalized poly(ethylene glycol) (PEG) nanoparticles efficiently targeted CLL cells, leading to low off-target phagocytosis by granulocytes and monocytes in the blood. However, there was up to 164-fold patient-to-patient variability in the CLL targeting. This was further exemplified through using clinically relevant PEGylated doxorubicin-encapsulated liposomes, which showed high interpersonal differences in CLL targeting (up to 234-fold differences) and off-target phagocytosis (up to 65- and 112-fold differences in granulocytes and monocytes, respectively). Off-target phagocytosis led to almost all monocytes being killed within 24 h of treatment. Variance of the off-target association of PEGylated liposomes with granulocytes and monocytes significantly correlated to anti-PEG immunoglobulin G levels in the blood of CLL patients. A negative correlation between CLL targeting of PEG particles and anti-PEG immunoglobulin M levels was found in the blood. Taken together, our study identifies anti-PEG antibodies as key proteins in modulating patient-specific targeting of PEGylated nanoparticles in human leukemia blood. Other factors, such as the antigen expression of targeted cells and fouling properties of nanoparticles, also play an important role in patient-specific targeting. The human leukemia blood assay we developed provides an ex vivo model to evaluate interpersonal variances in response to targeted nanomedicines.
Collapse
Affiliation(s)
- Yi Ju
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shiyao Li
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Abigail Er Qi Tan
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Emily H. Pilkington
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Paul T. Brannon
- Materials
Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Magdalena Plebanski
- School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Victoria 3083, Australia
| | - Jiwei Cui
- Key
Laboratory of Colloid and Interface Chemistry of the Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristofer J. Thurecht
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4072, Australia
| | - Constantine Tam
- Department
of Clinical Haematology, The Royal Melbourne
Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Faculty of
Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Stephen J. Kent
- Department
of Microbiology and Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne
Sexual Health Centre and Department of Infectious Diseases, Alfred
Hospital and Central Clinical School, Monash
University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhang Y, Xiao W, He S, Xia X, Yang W, Yang Z, Hu H, Wang Y, Wang X, Li H, Huang Y, Gao H. Lipid-mediated protein corona regulation with increased apolipoprotein A-I recruitment for glioma targeting. J Control Release 2024; 368:42-51. [PMID: 38365180 DOI: 10.1016/j.jconrel.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Protein corona has long been a source of concern, as it might impair the targeting efficacy of targeted drug delivery systems. However, engineered up-regulating the adsorption of certain functional serum proteins could provide nanoparticles with specific targeting drug delivery capacity. Herein, apolipoprotein A-I absorption increased nanoparticles (SPC-PLGA NPs), composed with the Food and Drug Administration approved intravenously injectable soybean phosphatidylcholine (SPC) and poly (DL-lactide-co-glycolide) (PLGA), were fabricated for enhanced glioma targeting. Due to the high affinity of SPC and apolipoprotein A-I, the percentage of apolipoprotein A-I in the protein corona of SPC-PLGA NPs was 2.19-fold higher than that of nanoparticles without SPC, which made SPC-PLGA NPs have superior glioma targeting ability through binding to scavenger receptor class BI on blood-brain barrier and glioma cells both in vitro and in vivo. SPC-PLGA NPs loaded with paclitaxel could effectively reduce glioma invasion and prolong the survival time of glioma-bearing mice. In conclusion, we provided a good example of the direction of achieving targeting drug delivery based on protein corona regulation.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Li S, Ma Y, Cui J, Caruso F, Ju Y. Engineering poly(ethylene glycol) particles for targeted drug delivery. Chem Commun (Camb) 2024; 60:2591-2604. [PMID: 38285062 DOI: 10.1039/d3cc06098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Poly(ethylene glycol) (PEG) is considered to be the "gold standard" among the stealth polymers employed for drug delivery. Using PEG to modify or engineer particles has thus gained increasing interest because of the ability to prolong blood circulation time and reduce nonspecific biodistribution of particles in vivo, owing to the low fouling and stealth properties of PEG. In addition, endowing PEG-based particles with targeting and drug-loading properties is essential to achieve enhanced drug accumulation at target sites in vivo. In this feature article, we focus on recent work on the synthesis of PEG particles, in which PEG is the main component in the particles. We highlight different synthesis methods used to generate PEG particles, the influence of the physiochemical properties of PEG particles on their stealth and targeting properties, and the application of PEG particles in targeted drug delivery.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Fernandes S, Cassani M, Cavalieri F, Forte G, Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305769. [PMID: 38054651 PMCID: PMC10885677 DOI: 10.1002/advs.202305769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.
Collapse
Affiliation(s)
- Soraia Fernandes
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Marco Cassani
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonSE5 9NUUK
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
8
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
9
|
Song C, Chen M, Tan J, Xu J, Zhang Y, Zhang G, Hu X, Liu S. Self-Amplified Cascade Degradation and Oxidative Stress Via Rational pH Regulation of Oxidation-Responsive Poly(ferrocene) Aggregates. J Am Chem Soc 2023; 145:17755-17766. [PMID: 37527404 DOI: 10.1021/jacs.3c04454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units. Upon triggering by hydrogen peroxide inside the tumor cells, the phenylboronic acid ester bonds are broken and poly(ferrocene) units are degraded to afford free ferrocene and noticeable hydroxide ions. The released hydroxide ions can immediately improve the pH value within the poly(ferrocene) aggregates, and the degradation rate of the phenylboronic acid ester backbone is further promoted by the upregulated pH; thereupon, the accelerated degradation can release much more additional hydroxide ions to improve the pH, thus achieving a positive self-amplified cascade degradation of poly(ferrocene) aggregates accompanied by oxidative stress boosting and efficient cargo release. Specifically, the poly(ferrocene) aggregates can be degraded up to ∼90% within 12 h when triggered by H2O2, while ferrocene-free control nanoparticles are degraded by only 30% within 12 days. In addition, the maleimide moieties tethered in the hydrophilic corona can capture blood albumin to form an albumin-rich protein corona and significantly improve favorable tumor accumulation. The current oxidation-responsive poly(ferrocene) amphiphiles can efficiently inhibit tumors in vitro and in vivo. This work provides a proof-of-concept paradigm for self-amplified polymer degradation and concurrent oxidative stress, which is promising in actively regulated precision medicine.
Collapse
Affiliation(s)
- Chengzhou Song
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Minglong Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jie Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xianglong Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
10
|
Noddeland HK, Lind M, Petersson K, Caruso F, Malmsten M, Heinz A. Protease-Responsive Hydrogel Microparticles for Intradermal Drug Delivery. Biomacromolecules 2023. [PMID: 37307231 DOI: 10.1021/acs.biomac.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 μm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.
Collapse
Affiliation(s)
- Heidi K Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Noddeland HK, Lind M, Jensen LB, Petersson K, Skak-Nielsen T, Larsen FH, Malmsten M, Heinz A. Design and characterization of matrix metalloproteinase-responsive hydrogels for the treatment of inflammatory skin diseases. Acta Biomater 2023; 157:149-161. [PMID: 36526241 DOI: 10.1016/j.actbio.2022.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Enzyme-responsive hydrogels, formed by step growth photopolymerization of biscysteine peptide linkers with alkene functionalized polyethylene glycol, provide interesting opportunities as biomaterials and drug delivery systems. In this study, we developed stimuli-responsive, specific, and cytocompatible hydrogels for delivery of anti-inflammatory drugs for the treatment of inflammatory skin diseases. We designed peptide linkers with optimized sensitivity towards matrix metalloproteinases, a family of proteolytic enzymes overexpressed in the extracellular matrix of the skin during inflammation. The peptide linkers were crosslinked with branched 4-arm and 8-arm polyethylene glycols by thiol-norbornene photopolymerization, leading to the formation of a hydrogel network, in which the anti-inflammatory Janus kinase inhibitor tofacitinib citrate was incorporated. The hydrogels were extensively characterized by physical properties, in vitro release studies, cytocompatibility with fibroblasts, and anti-inflammatory efficacy testing in both an atopic dermatitis-like keratinocyte assay and an activated T-cell assay. The drug release was studied after single and multiple-time exposure to matrix metalloproteinase 9 to mimic inflammatory flare-ups. Drug release was found to be triggered by matrix metalloproteinase 9 and to depend on type of crosslinker and of the polyethylene glycol polymer, due to differences in architecture and swelling behavior. Moreover, swollen hydrogels showed elastic properties similar to those of extracellular matrix proteins in the dermis. Cell studies revealed limited cytotoxicity when fibroblasts and keratinocytes were exposed to the hydrogels or their enzymatic cleavage products. Taken together, our results suggest multi-arm polyethylene glycol hydrogels as promising matrix metalloproteinase-responsive drug delivery systems, with potential in the treatment of inflammatory skin disease. STATEMENT OF SIGNIFICANCE: Smart responsive drug delivery systems such as matrix metalloproteinase-responsive hydrogels are excellent candidates for the treatment of inflammatory skin diseases including psoriasis. Their release profile can be optimized to correspond to the patient's individual disease state by tuning formulation parameters and disease-related stimuli, providing personalized treatment solutions. However, insufficient cross-linking efficiency, low matrix metalloproteinase sensitivity, and undesirable drug release kinetics remain major challenges in the development of such drug delivery systems. In this study, we address shortcomings of previous work by designing peptide linkers with optimized sensitivity towards matrix metalloproteinases and high cross-linking efficiencies. We further provide a proof-of-concept for the usability of the hydrogels in inflammatory skin conditions by employing a drug release set-up simulating inflammatory flare-ups.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Tine Skak-Nielsen
- Cells & Assays, In vitro Biology, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Flemming Hofmann Larsen
- Advanced Analytical and Structural Chemistry, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Yu H, Palazzolo JS, Ju Y, Niego B, Pan S, Hagemeyer CE, Caruso F. Polyphenol-Functionalized Cubosomes as Thrombolytic Drug Carriers. Adv Healthc Mater 2022; 11:e2201151. [PMID: 36037807 DOI: 10.1002/adhm.202201151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
14
|
Wang R, Schirmer L, Wieduwilt T, Förster R, Schmidt MA, Freudenberg U, Werner C, Fery A, Rossner C. Colorimetric Biosensors Based on Polymer/Gold Hybrid Nanoparticles: Topological Effects of the Polymer Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12325-12332. [PMID: 36154138 DOI: 10.1021/acs.langmuir.2c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles decorated with analyte recognition units can form the basis of colorimetric (bio)sensors. The presentation of those recognition units may play a critical role in determining sensor sensitivity. Herein, we use a model system to investigate the effect of the architecture of a polymeric linker that connects gold nanoparticles with the recognition units. Our results show that the number of the latter that can be adsorbed during the assembly of the colorimetric sensors depends on the linker topology. We also show that this may lead to substantial differences in colorimetric sensor performance, particularly in situations in which the interactions with the analyte are comparably weak. Finally, we discuss design principles for efficient colorimetric sensor materials based on our findings.
Collapse
Affiliation(s)
- Ruosong Wang
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Lucas Schirmer
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Torsten Wieduwilt
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Ronny Förster
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Markus A Schmidt
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
- Otto Schott Institute of Material Research, FSU Jena, 07745 Jena, Germany
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials Dresden (MBC), Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstr. 105, D-01307 Dresden, Germany
| | - Andreas Fery
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Christian Rossner
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, D-01069 Dresden, Germany
| |
Collapse
|
15
|
Wojnilowicz M, Laznickova P, Ju Y, Ang CS, Tidu F, Bendickova K, Forte G, Plebanski M, Caruso F, Cavalieri F, Fric J. Influence of protein corona on the interaction of glycogen-siRNA constructs with ex vivo human blood immune cells. BIOMATERIALS ADVANCES 2022; 140:213083. [PMID: 36027666 DOI: 10.1016/j.bioadv.2022.213083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Glycogen-nucleic acid constructs i.e., glycoplexes are emerging promising platforms for the alteration of gene expression and transcription. Understanding the interaction of glycoplexes with human blood components, such as serum proteins and peripheral blood mononuclear cells (PBMCs), is important to overcome immune cell activation and control biodistribution upon administration of the glycoplexes in vivo. Herein, we investigated the interactions of polyethylene glycol (PEG)ylated and non-PEGylated glycoplexes carrying siRNA molecules with PBMCs isolated from the blood of healthy donors. We found that both types of glycoplexes were non-toxic and were primarily phagocytosed by monocytes without triggering a pro-inflammatory interleukin 6 cytokine production. Furthermore, we investigated the role of the protein corona on controlling the internalization efficiency in immune cells - we found that the adsorption of serum proteins, in particular haptoglobin, alpha-1-antitrypsin and apolipoprotein A-II, onto the non-PEGylated glycoplexes, significantly reduced the uptake of the glycoplexes by PBMCs. Moreover, the non-PEGylated glycoplexes were efficient in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) knockdown in monocytic THP-1 cell line. This study provides an insight into the rational design of glycogen-based nanocarriers for the safe delivery of siRNA without eliciting unwanted immune cell activation and efficient siRNA activity upon its delivery.
Collapse
Affiliation(s)
- Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Petra Laznickova
- Center for Translational Medicine, International Clinical Research Center (ICRC), St Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Federico Tidu
- Center for Translational Medicine, International Clinical Research Center (ICRC), St Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; Division of Cancer Biology, The Institute of Cancer Research: London, 123 Old Brompton Road, London SW73RP, United Kingdom
| | - Kamila Bendickova
- Center for Translational Medicine, International Clinical Research Center (ICRC), St Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center (ICRC), St Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Francesca Cavalieri
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Science, RMIT University, Victoria 3000, Australia; Dipartimento di Scienze e Tecnologie Chimiche, Universita' degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center (ICRC), St Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; Institute of Hematology and Blood Transfusion, U Nemocnice 2094, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
16
|
Ju Y, Lee WS, Pilkington EH, Kelly HG, Li S, Selva KJ, Wragg KM, Subbarao K, Nguyen THO, Rowntree LC, Allen LF, Bond K, Williamson DA, Truong NP, Plebanski M, Kedzierska K, Mahanty S, Chung AW, Caruso F, Wheatley AK, Juno JA, Kent SJ. Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS NANO 2022; 16:11769-11780. [PMID: 35758934 PMCID: PMC9261834 DOI: 10.1021/acsnano.2c04543] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.
Collapse
Affiliation(s)
- Yi Ju
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- School of Health and Biomedical Sciences,
RMIT University, Bundoora, VIC 3083,
Australia
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Emily H. Pilkington
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Drug Delivery, Disposition and Dynamics,
Monash Institute of Pharmaceutical Sciences, Monash University,
Melbourne, VIC 3000, Australia
| | - Hannah G. Kelly
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Shiyao Li
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Kathleen M. Wragg
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on
Influenza, Peter Doherty Institute for Infection and Immunity,
Melbourne, VIC 3000, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Bond
- Department of Microbiology, Royal Melbourne
Hospital, Melbourne, VIC 3000, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Microbiology, Royal Melbourne
Hospital, Melbourne, VIC 3000, Australia
| | - Nghia P. Truong
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Drug Delivery, Disposition and Dynamics,
Monash Institute of Pharmaceutical Sciences, Monash University,
Melbourne, VIC 3000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences,
RMIT University, Bundoora, VIC 3083,
Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Siddhartha Mahanty
- Department of Infectious Diseases, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne,
Melbourne, VIC 3000, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious
Diseases, Alfred Hospital and Central Clinical School, Monash
University, Melbourne, VIC 3000, Australia
| |
Collapse
|
17
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
18
|
Li S, Ju Y, Zhou J, Faria M, Ang CS, Mitchell AJ, Zhong QZ, Zheng T, Kent SJ, Caruso F. Protein precoating modulates biomolecular coronas and nanocapsule-immune cell interactions in human blood. J Mater Chem B 2022; 10:7607-7621. [PMID: 35713277 DOI: 10.1039/d2tb00672c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biomolecular corona that forms on particles upon contact with blood plays a key role in the fate and utility of nanomedicines. Recent studies have shown that precoating nanoparticles with serum proteins can improve the biocompatibility and stealth properties of nanoparticles. However, it is not fully clear how precoating influences biomolecular corona formation and downstream biological responses. Herein, we systematically examine three precoating strategies by coating bovine serum albumin (single protein), fetal bovine serum (FBS, mixed proteins without immunoglobulins), or bovine serum (mixed proteins) on three nanoparticle systems, namely supramolecular template nanoparticles, metal-phenolic network (MPN)-coated template (core-shell) nanoparticles, and MPN nanocapsules (obtained after template removal). The effect of protein precoating on biomolecular corona compositions and particle-immune cell interactions in human blood was characterized. In the absence of a pre-coating, the MPN nanocapsules displayed lower leukocyte association, which correlated to the lower amount (by 2-3 fold) of adsorbed proteins and substantially fewer immunoglobulins (more than 100 times) in the biomolecular corona relative to the template and core-shell nanoparticles. Among the three coating strategies, FBS precoating demonstrated the most significant reduction in leukocyte association (up to 97% of all three nanoparticles). A correlation analysis highlights that immunoglobulins and apolipoproteins may regulate leukocyte recognition. This study demonstrates the impact of different precoating strategies on nanoparticle-immune cell association and the role of immunoglobulins in bio-nano interactions.
Collapse
Affiliation(s)
- Shiyao Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Matthew Faria
- Systems Biology Laboratory, School of Mathematics and Statistics, and the Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew J Mitchell
- Department of Chemical Engineering, Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qi-Zhi Zhong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tian Zheng
- Department of Chemical Engineering, Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
19
|
Giulimondi F, Vulpis E, Digiacomo L, Giuli MV, Mancusi A, Capriotti AL, Laganà A, Cerrato A, Zenezini Chiozzi R, Nicoletti C, Amenitsch H, Cardarelli F, Masuelli L, Bei R, Screpanti I, Pozzi D, Zingoni A, Checquolo S, Caracciolo G. Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties In Vivo. ACS NANO 2022; 16:2088-2100. [PMID: 35040637 PMCID: PMC8867903 DOI: 10.1021/acsnano.1c07687] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/14/2022] [Indexed: 05/21/2023]
Abstract
For several decades, surface grafted polyethylene glycol (PEG) has been a go-to strategy for preserving the synthetic identity of liposomes in physiological milieu and preventing clearance by immune cells. However, the limited clinical translation of PEGylated liposomes is mainly due to the protein corona formation and the subsequent modification of liposomes' synthetic identity, which affects their interactions with immune cells and blood residency. Here we exploit the electric charge of DNA to generate unPEGylated liposome/DNA complexes that, upon exposure to human plasma, gets covered with an opsonin-deficient protein corona. The final product of the synthetic process is a biomimetic nanoparticle type covered by a proteonucleotidic corona, or "proteoDNAsome", which maintains its synthetic identity in vivo and is able to slip past the immune system more efficiently than PEGylated liposomes. Accumulation of proteoDNAsomes in the spleen and the liver was lower than that of PEGylated systems. Our work highlights the importance of generating stable biomolecular coronas in the development of stealth unPEGylated particles, thus providing a connection between the biological behavior of particles in vivo and their synthetic identity.
Collapse
Affiliation(s)
- Francesca Giulimondi
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Elisabetta Vulpis
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Luca Digiacomo
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Valeria Giuli
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Angelica Mancusi
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Anna Laura Capriotti
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Department
of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Carmine Nicoletti
- Unit
of Histology and Medical Embryology, Department of Anatomy, Histology,
Forensic Medicine and Orthopedics, Sapienza
University of Rome, Viale A. Scarpa 16, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute
of inorganic Chemistry, Graz University
of Technology, Stremayerg 6/IV, 8010 Graz, Austria
| | | | - Laura Masuelli
- Department
of Experimental Medicine, University of
Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department
of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Isabella Screpanti
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Daniela Pozzi
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alessandra Zingoni
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Saula Checquolo
- Department
of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Giulio Caracciolo
- Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
20
|
Yu H, Palazzolo JS, Zhou J, Hu Y, Niego B, Pan S, Ju Y, Wang TY, Lin Z, Hagemeyer CE, Caruso F. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3740-3751. [PMID: 35019268 DOI: 10.1021/acsami.1c19820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Wang H, Zang J, Zhao Z, Zhang Q, Chen S. The Advances of Neutrophil-Derived Effective Drug Delivery Systems: A Key Review of Managing Tumors and Inflammation. Int J Nanomedicine 2021; 16:7663-7681. [PMID: 34815670 PMCID: PMC8605828 DOI: 10.2147/ijn.s328705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
The chimeric trait of recruitment by inflammatory signals endows neutrophils with the functionality of migrating to inflamed tissues, which can be utilized to tailor novel drug delivery systems. In this review, we introduce a mechanism of neutrophil-derived drug delivery systems recruited into inflamed sites and provide insight into tumors and inflammation therapy. In particular, the advantages of neutrophils—their endogenous-derived neutrophil membrane, exosomes as drug carriers for augmented targeting, prolonged circulation, and improved biostability—were concluded. Subsequently, the latest application in the treatment of tumors and inflammation was elaborated upon, followed by a discussion of the future prospects to neutrophil-derived delivery systems. This promising system will provide new therapeutic avenues for the treatment of inflammation and tumors.
Collapse
Affiliation(s)
- Huaiji Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jie Zang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zihan Zhao
- Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qin Zhang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Tumor Microenvironment-Responsive Shell/Core Composite Nanoparticles for Enhanced Stability and Antitumor Efficiency Based on a pH-Triggered Charge-Reversal Mechanism. Pharmaceutics 2021; 13:pharmaceutics13060895. [PMID: 34208641 PMCID: PMC8235205 DOI: 10.3390/pharmaceutics13060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
High systemic stability and effective tumor accumulation of chemotherapeutic agents are indispensable elements that determine their antitumor efficacy. PEGylation of nanoparticles (NPs) could prolong the retention time in vivo by improving their stability in circulation, but treatment suffers reduced tumor penetration and cellular uptake of nanomedicines. The tumor microenvironment (TME)-responsive NPs maintain their stealth features during circulation and undergo a stimuli-responsive dePEGylation once exposed to the site of action, thereby achieving enhanced internalization in tumor cells. Herein, TME-responsive shell/core composite nanoparticles were prepared and optimized with enhanced stability and tumor intake efficiency. We synthesized 12-hydroxystearic acid-poly (ethylene glycol)-YGRKKRRQRRR (HA-PEG-TAT) as a post-insert apparatus in disulfiram (DSF)-encapsulated naked nanoparticles (N-NPs) in order to form a cationic core (TAT-NPs). Accordingly, the negatively charged poly (glutamate acid)-graft-poly (ethylene glycol) (PGlu-PEG) was further applied to the surface of TAT-NPs as a negative charged shell (PGlu-PEG/TAT-NPs) via the electrostatic interaction between glutamic acids and arginine at the outer ring of the TAT-NPs. PGlu-PEG/TAT-NPs displayed a huge loading capability for DSF with reduced degradation in plasma and exhibited rapid charge reversal when pH decreased from 7.4 to pH 6.5, demonstrating an excellent systemic stability as well as intelligent stimuli-responsive performance within the acidic TME. Furthermore, the in vivo antitumor study revealed that PGlu-PEG/TAT-NPs provided greater antitumor efficacy compared with free DSF and N-NPs with no obvious systemic toxicity. In conclusion, the TME-responsive shell/core composite NPs, consisting of PGlu-PEG and HS-PEG-TAT, could mediate an effective and biocompatible delivery of chemotherapeutic agents with clinical potential.
Collapse
|