1
|
Qi Y, Kan Y, Li Z. High-resolution imaging of 3D stray-field components with a Fe 3O 4 nanoparticle sensor. NANOSCALE 2024; 16:5164-5168. [PMID: 38369887 DOI: 10.1039/d3nr05437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Despite rapid advances in magnetic domain imaging techniques, high-resolution imaging of 3D magnetic field components remains a great challenge. Magnetic force microscopy has been utilized to observe the 1D magnetic field component from the sample surface; however, the 1D stray-field component lacks sufficient conditions to clarify the nature of nanomagnetism. Herein, we propose a method for the detection of 3D stray-field components by using a Fe3O4-nanoparticle sensor. We employed this Fe3O4-nanoparticle sensor to detect nanoscale magnetic domains, domain walls, and magnetic vortices (resolution ∼5 nm), and our findings demonstrate its potential in imaging both out-of-plane and in-plane magnetic-field components. Our technique overcomes the limitations of 3D stray-field detection and high-resolution imaging and provides the possibility of observing both out-of-plane and in-plane magnetic field components with a 5 nm resolution, thereby paving the way for the development of future spin-based devices.
Collapse
Affiliation(s)
- Yan Qi
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Yihong Kan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Zhenghua Li
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
2
|
Lendinez S, Kaffash MT, Heinonen OG, Gliga S, Iacocca E, Jungfleisch MB. Nonlinear multi-magnon scattering in artificial spin ice. Nat Commun 2023; 14:3419. [PMID: 37296142 DOI: 10.1038/s41467-023-38992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Magnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice. We find that these systems exhibit effective scattering processes akin to those observed in continuous magnetic thin films. We utilize a combined microwave and microfocused Brillouin light scattering measurement approach to investigate the evolution of their modes. Scattering events occur between resonance frequencies that are determined by each nanomagnet's mode volume and profile. Comparison with numerical simulations reveals that frequency doubling is enabled by exciting a subset of nanomagnets that, in turn, act as nanosized antennas, an effect that is akin to scattering in continuous films. Moreover, our results suggest that tunable directional scattering is possible in these structures.
Collapse
Affiliation(s)
- Sergi Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA, 70806, USA
| | - Mojtaba T Kaffash
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Olle G Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Seagate Technology, 7801 Computer Ave., Bloomington, MN, 55435, USA
| | - Sebastian Gliga
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom.
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | | |
Collapse
|
3
|
Gartside JC, Stenning KD, Vanstone A, Holder HH, Arroo DM, Dion T, Caravelli F, Kurebayashi H, Branford WR. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. NATURE NANOTECHNOLOGY 2022; 17:460-469. [PMID: 35513584 DOI: 10.1038/s41565-022-01091-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Strongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin-vortex bistability and demonstrated a four-state metamaterial spin system, the 'artificial spin-vortex ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions and weakly coupled vortices with low stray dipolar field. Vortices and macrospins exhibit starkly differing spin-wave spectra with analogue mode amplitude control and mode frequency shifts of Δf = 3.8 GHz. The enhanced bitextural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex injection and history-dependent non-linear fading memory when driven through global magnetic field cycles. We employed spin-wave microstate fingerprinting for rapid, scalable readout of vortex and macrospin populations, and leveraged this for spin-wave reservoir computation. ASVI performs non-linear mapping transformations of diverse input and target signals in addition to chaotic time-series forecasting.
Collapse
Affiliation(s)
| | | | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Daan M Arroo
- Department of Materials, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Troy Dion
- London Centre for Nanotechnology, University College London, London, UK
- Solid State Physics Lab., Kyushu University, Fukuoka, Japan
| | - Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
4
|
Rana B, Mondal AK, Bandyopadhyay S, Barman A. Applications of nanomagnets as dynamical systems: II. NANOTECHNOLOGY 2021; 33:082002. [PMID: 34644699 DOI: 10.1088/1361-6528/ac2f59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In Part I of this topical review, we discussed dynamical phenomena in nanomagnets, focusing primarily on magnetization reversal with an eye to digital applications. In this part, we address mostly wave-like phenomena in nanomagnets, with emphasis on spin waves in myriad nanomagnetic systems and methods of controlling magnetization dynamics in nanomagnet arrays which may have analog applications. We conclude with a discussion of some interesting spintronic phenomena that undergird the rich physics exhibited by nanomagnet assemblies.
Collapse
Affiliation(s)
- Bivas Rana
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznanskiego 2, Poznań 61-614, Poland
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Amrit Kumar Mondal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Supriyo Bandyopadhyay
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|