1
|
Cao A, Gong Y, Liu D, Yang F, Fan Y, Guo Y, Tian X, Li Y. Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging. Nat Commun 2024; 15:9182. [PMID: 39448579 PMCID: PMC11502786 DOI: 10.1038/s41467-024-53407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Smooth metal microspheres with uniform sizes are ideal for constructing particle-arrayed anisotropic conductive films (ACF), but synthesis is hindered by challenges in controlling anisotropic metal growth. Here, we present a positioned transient-emulsion self-assembly and laser-irradiation strategy to fabricate pure gold microsphere arrays with smooth surfaces and uniform sizes. The fabrication involves assembling gold nanoparticles into uniform colloidosomes within a pre-designed microhole array, followed by rapid transformation into well-defined microspheres through laser heating. The gold nanoparticles melt and merge in a layer-by-layer manner due to the finite skin depth of the laser, leading to a localized photothermal effect. This strategy circumvents anisotropic growth, enables tunable control of microsphere size and positioning, and is compatible with conventional lithography. Importantly, these pure gold microspheres exhibit stable conductivity under deep compression, offering promising applications in soldering micro-sized chips onto integrated circuits.
Collapse
Affiliation(s)
- An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yi Gong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
- China-Europe Electronic Materials International Innovation Center, Hefei, PR China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
| | - Fan Yang
- Tiangong University, Tianjin, PR China
| | - Yulong Fan
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China.
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China.
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area (Guangdong), Shenzhen, PR China.
| | - Yinghui Guo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China
| | - Xingyou Tian
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
- Tiangong University, Tianjin, PR China.
| |
Collapse
|
2
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
3
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
4
|
Cui Y, Zhu J, Tong H, Zou R. Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. iScience 2022; 26:105824. [PMID: 36632064 PMCID: PMC9826899 DOI: 10.1016/j.isci.2022.105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MXene, 2D material, can be synthesized as single flake with 1 nm thickness by using phase change material, polymer and graphene oxide. Meanwhile, the MXene and its composite derivative materials have been applied widely in electro-to-thermal conversion, photo-to-thermal conversion, thermal energy storage, and 3D printing ink aspects. Furthermore, the forward-looking utilization of the MXene nanomaterials in hydrogen energy storage, radio frequency field application, CO2 capture and remediation of environmental pollution, is explored. This article reveals that the efficiencies of the photo-to-thermal and electro-to-thermal energy conversions with the MXene nanomaterials could reach about 80-90%. In parallel, it is demonstrated that the MXene printed ink has the excellent rheological property and high viscosity and stability of liquid, which contribute to arranging the multi-dimensional architectures with functional materials and controlling the flow rate of the MXene ink in the range of 0.03-0.15 mL/min for speedily printing and various printing structures.
Collapse
Affiliation(s)
- Yuanlong Cui
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| | - Jie Zhu
- Department of Architecture and Built Environment, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Hui Tong
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China
| | - Ran Zou
- School of Management Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| |
Collapse
|
5
|
Aghayar Z, Malaki M, Zhang Y. MXene-Based Ink Design for Printed Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234346. [PMID: 36500969 PMCID: PMC9736873 DOI: 10.3390/nano12234346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/16/2023]
Abstract
MXenes are a class of two-dimensional nanomaterials with a rich chemistry, hydrophilic surface and mechano-ceramic nature, and have been employed in a wide variety of applications ranging from medical and sensing devises to electronics, supercapacitors, electromagnetic shielding, and environmental applications, to name a few. To date, the main focus has mostly been paid to studying the chemical and physical properties of MXenes and MXene-based hybrids, while relatively less attention has been paid to the optimal application forms of these materials. It has been frequently observed that MXenes show great potential as inks when dispersed in solution. The present paper aims to comprehensively review the recent knowledge about the properties, applications and future horizon of inks based on 2D MXene sheets. In terms of the layout of the current paper, 2D MXenes have briefly been presented and followed by introducing the formulation of MXene inks, the process of turning MAX to MXene, and ink compositions and preparations. The chemical, tribological and rheological properties have been deeply discussed with an eye to the recent developments of the MXene inks in energy, health and sensing applications. The review ends with a summary of research pitfalls, challenges, and future directions in this area.
Collapse
Affiliation(s)
- Zahra Aghayar
- Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-11314, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (Y.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
- Correspondence: (M.M.); (Y.Z.)
| |
Collapse
|
6
|
Pei X, Liu G, Shao R, Yu R, Chen R, Liu D, Wang W, Min C, Liu S, Xu Z. 3D‐printing carbon nanotubes/Ti
3
C
2
T
x
/chitosan composites with different arrangement structures based on ball milling for EMI shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyuan Pei
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Guangde Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruiqi Shao
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Rongrong Yu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Runxiao Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Dong Liu
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang China
| | - Wei Wang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Chunying Min
- Research School of Polymeric Materials, School of Materials Science & Engineering Jiangsu University Zhenjiang China
| | - Shengkai Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
7
|
Ravichandran D, Xu W, Jambhulkar S, Zhu Y, Kakarla M, Bawareth M, Song K. Intrinsic Field-Induced Nanoparticle Assembly in Three-Dimensional (3D) Printing Polymeric Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52274-52294. [PMID: 34709033 DOI: 10.1021/acsami.1c12763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) are materials considered to be 1-100 nm in size and are available in different dimensional shapes, geometrical sizes, physical morphologies, mechanical robustness, and chemical compositions. Irrespective of the dimensions (i.e., zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D)), NPs have a tendency to become entangled together, forming aggregations due to high attraction, making it hard to realize their full potential from their ordered counterparts. Many challenges exist to attain high-quality stabilized dispersion and long-range ordered assembly of NPs. Three-dimensional printing (3DP), also known as additive manufacturing (AM), is a technique dependent on layer-by-layer material addition for building 3D structures and encompasses a few categories based on the feedstock material types and printing mechanisms. One benefit from the 3DP procedures is their capability to produce anisotropic microstructural/nanostructural characteristics for desired mechanical reinforcement, transport phenomena, energy management, and biomedical implants. This paper briefly overviews relevant 3DP methods with an embedded nature to assemble nanoparticles without interference with external fields (e.g., magnetic or electrical). Our focus is the shear-field-induced nanoparticle alignment, covering material jetting-, electrohydrodynamic-, filament melting-, and ink writing-based 3DP. A concise summary of photopolymerization and its "optical tweezer" effects on nanoparticle confinement also inspires creative approaches in generating ordered nanostructures. The nanoparticles and polymers involved in this review are diverse, consisting of metallic, ceramic, and carbon nanoparticles in matrices or on surfaces of varying macromolecules. A short statement of challenges (e.g., low resolution, slow printing speed, limited material options) for 3DP-enabled nanoparticle orders provides some perspectives toward the enormous potential of 3DP in directing NPs assembly and fabricating high-performance polymer/nanoparticle composites.
Collapse
Affiliation(s)
- Dharneedar Ravichandran
- The Polytechnic School, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| | - Weiheng Xu
- The Polytechnic School, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| | - Sayli Jambhulkar
- The Polytechnic School, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| | - Yuxiang Zhu
- The Polytechnic School, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| | - Mounika Kakarla
- Department of Materials Science and Engineering, Ira A. Fulton Schools for Engineering, Arizona State University, Tempe, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - Mohammed Bawareth
- Mechanical Systems Engineering, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| | - Kenan Song
- Assistant Professor of Manufacturing Engineering, and Director of Advanced Materials Advanced Manufacturing Laboratory (AMAML), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, Arizona 85212, United States
| |
Collapse
|