1
|
Cho EH, Shim YH, Kim SY. Is Low Polydispersity Always Beneficial? Exploring the Impact of Size Polydispersity on the Microstructure and Rheological Properties of Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39353172 DOI: 10.1021/acsami.4c10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Graphene oxide (GO) is a promising material widely utilized in advanced materials engineering, such as in the development of soft robotics, sensors, and flexible devices. Considering that GOs are often processed using solution-based methods, a comprehensive understanding of the fundamental characteristics of GO in dispersion states becomes crucial given their significant influence on the ultimate properties of the device. GOs inherently exhibit polydispersity in solution, which plays a critical role in determining the mechanical behavior and flowability. However, research in the domain of 2D colloids concerning the effects of GO's polydispersity on its rheological properties and microstructure is relatively scant. Consequently, gaining a comprehensive understanding of how GO's polydispersity affects these critical aspects remains a pressing concern. In this study, we aim to investigate the dispersions and structure of GOs and clarify the effect of polydispersity on the rheological properties and yielding behavior. Using a rheometer, polarized optical microscopy, and small-angle X-ray scattering, we found that higher polydispersity in the same average size leads to overall improved rheological properties and higher flowability during yielding. Thus, our study can be beneficial in the employment of polydispersity in the processing of GO such as 3D printing and fiber spinning.
Collapse
Affiliation(s)
- Eun Ho Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Yul Hui Shim
- School of Chemical and Materials Engineering, The University of Suwon, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Kim GW, Lee S, Kim G, Lee H, Lee KT, Kim SY. Additive-Free Gelation of Graphene Oxide Dispersions via Mild Thermal Annealing: Implications for 3D Printing and Supercapacitor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411479. [PMID: 39318072 DOI: 10.1002/adma.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 09/26/2024]
Abstract
Herein, a mild thermal annealing (MTA) process is presented for additive-free gelation of graphene oxide (GO) dispersions. This process transitions the GO from a nematic liquid crystal phase to a random network structure, significantly enhancing its rheological properties by order of magnitude. This transition is facilitated by the diffusion of functional groups on the GO surface, which induces hydrophobic attractions, leading to a stable network structure. Employing rheo-SAXS experiments, detailed insights are provided into the microstructural changes of GO gel under shear stress, establishing a direct correlation between its rheological behavior and microstructure. The distinctive properties of MTA-processed inks are illustrated, seamlessly integrating with 3D printing, to yield a highly porous lattice structure that demonstrates promising potential as a supercapacitor electrode. The MTA process, an additive-free approach to gelation, maintains the inherent dispersion properties of GO while offering scalability. Thus, this method brings significant economic and environmental advantages compared to conventional gelation techniques. The findings not only advance the fundamental understanding of 2D colloidal network gels but also increase the potential of GO for a wide range of applications, from gas and liquid absorbers to electrodes for energy storage and conversion, and biomedical fields.
Collapse
Affiliation(s)
- Geon Woong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guksung Kim
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
| | - Howon Lee
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
| | - Kyu Tae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Funkenbusch WT, Silmore KS, Doyle PS. Shear annealing of a self-interacting sheet. SOFT MATTER 2024; 20:6952-6964. [PMID: 39169795 DOI: 10.1039/d4sm00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
2D materials such as graphene, graphene oxide, transition metal dichalcogenides, and 2D polymers have unique properties which allow them to be used in many applications from electronics to energy to biotechnology. Producing and applying these materials often involves solution processing. Previous computational studies have observed 2D sheets in shear and extensional flows, but have focused on steady flows, even though the dynamics of these materials might exhibit hysteresis. In this work, we study 2D sheets with short-ranged attractive interactions under time-varying shear. We show that, even with relatively simple protocols, the properties of sheet suspensions can be tuned.
Collapse
Affiliation(s)
- William T Funkenbusch
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| | - Kevin S Silmore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Funkenbusch WT, Silmore KS, Doyle PS. Dynamics of a self-interacting sheet in shear flow. SOFT MATTER 2024; 20:4474-4487. [PMID: 38787762 DOI: 10.1039/d4sm00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Solution processing of 2D materials such as graphene is important for applications thereof, yet a complete fundamental understanding of how 2D materials behave dynamically in solution is lacking. Here, we extend previous work by Silmore et al., Soft Matter, 2021, 17(18), 4707-4718 by adding short-ranged Lennard-Jones interactions to 2D sheets in shear flow. We find that the addition of these interactions allows for a rich landscape of conformations which depend on the balance between shear strength, bending rigidity, and interaction strength as well as the initial configuration of the sheet. We explore this conformational space and classify sheets as flat, tumbling, 1D folded, or 2D folded based on their conformational properties. We use kinetic and energetic arguments to explain why sheets adopt certain conformations within the folded regime. Finally, we calculate the stresslet and find that, even in the absence of thermal fluctuations and multiple sheet interactions, shear-thinning followed by shear-thickening behavior can appear.
Collapse
Affiliation(s)
- William T Funkenbusch
- Massachusetts Institute of Technology Department of Chemical Engineering, 25 Ames St, Cambridge MA, 02139, USA.
| | - Kevin S Silmore
- Massachusetts Institute of Technology Department of Chemical Engineering, 25 Ames St, Cambridge MA, 02139, USA.
| | - Patrick S Doyle
- Massachusetts Institute of Technology Department of Chemical Engineering, 25 Ames St, Cambridge MA, 02139, USA.
| |
Collapse
|
5
|
Williams AP, King JP, Sokolova A, Tabor RF. Small-angle scattering of complex fluids in flow. Adv Colloid Interface Sci 2024; 328:103161. [PMID: 38728771 DOI: 10.1016/j.cis.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Complex fluids encompass a significant proportion of the materials that we use today from feedstocks such as cellulose fibre dispersions, materials undergoing processing or formulation, through to consumer end products such as shampoo. Such systems exhibit intricate behaviour due to their composition and microstructure, particularly when analysing their texture and response to flow (rheology). In particular, these fluids when flowing may undergo transitions in their nano- to microstructure, potentially aligning with flow fields, breaking and reassembling or reforming, or entirely changing phase. This manifests as macroscopic changes in material properties, such as core-annular flow of concentrated emulsions in pipelines or the favourable texture of liquid soaps. Small-angle scattering provides a unique method for probing underlying changes in fluid nano- to microstructure, from a few angströms to several microns, of complex fluids under flow. In particular, the alignment of rigid components or shape changes of soft components can be explored, along with local inter-particle ordering and global alignment with macroscopic flow fields. This review highlights recent important developments in the study of such complex fluid systems that couple flow or shear conditions with small-angle scattering measurements, and highlights the physical insight obtained by these experiments. Recent results from neutron scattering measurements made using a simple flow cell are presented, offering a facile method to explore alignment of complex fluids in an easily accessible geometry, and contextualised within existing and potential future research questions.
Collapse
Affiliation(s)
- Ashley P Williams
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Joshua P King
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Hong T, Lee C, Bak Y, Park G, Lee H, Kang S, Bae TH, Yoon DK, Park JG. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309469. [PMID: 38174621 DOI: 10.1002/smll.202309469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.
Collapse
Affiliation(s)
- Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunguk Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
8
|
Wu Y, An C, Guo Y, Zong Y, Jiang N, Zheng Q, Yu ZZ. Highly Aligned Graphene Aerogels for Multifunctional Composites. NANO-MICRO LETTERS 2024; 16:118. [PMID: 38361077 PMCID: PMC10869679 DOI: 10.1007/s40820-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon-carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China.
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yangyang Zong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Wu Y, An C, Guo Y. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5681. [PMID: 37629973 PMCID: PMC10456874 DOI: 10.3390/ma16165681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene's exceptional properties with additive manufacturing's versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.
Collapse
Affiliation(s)
- Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing 100083, China; (C.A.); (Y.G.)
| | | | | |
Collapse
|
10
|
Qiu X, Lin Z, Zhao Y, Zhang J, Hu X, Bai H. Self-Compositing: A Efficient Method of Improving the Electrical Conductivity of Graphene Nanoplatelet/Thermosetting Resin Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300931. [PMID: 37093183 DOI: 10.1002/smll.202300931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Conductive composites based on thermosetting resins have broad applications in various fields. In this paper, a new self-compositing strategy is developed for improving the conductivity of graphene nanoplatelet/thermosetting resin composites by optimizing the transport channels. To implement this strategy, conventional graphene nanoplatelet/thermosetting resin is crushed into micron-sized composite powders, which are mixed with graphene nanoplatelets to form novel complex fillers to prepare the self-composited materials with thermosetting resins. A highly conductive compact graphene layer is formed on the surface of the crushed composite powders, while the addition of the micron-sized powder induces the orientation of graphene nanoplatelets in the resin matrix. Therefore, a highly conductive network is constructed inside the self-composited material, significantly enhancing the electrical conductivity. The composite materials based on epoxy resin, cyanate resin, and unsaturated polyester are prepared with this method, reflecting that the method is universal for preparing composites based on thermosetting resins. The highest electrical conductivity of the self-composited material based on unsaturated polyester is as high as 25.9 S m-1 . This self-compositing strategy is simple, efficient, and compatible with large-scale industrial production, thus it is a promising and general way to enhance the conductivity of thermosetting resin matrix composites.
Collapse
Affiliation(s)
- Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
11
|
Lu XL, Shao JC, Chi HZ, Zhang W, Qin H. Self-Assembly of a Graphene Oxide Liquid Crystal for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47549-47559. [PMID: 36219449 DOI: 10.1021/acsami.2c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorbents, especially those with high removal efficiency, long life, and multi-purpose capabilities, are the most crucial components in an adsorption system. By taking advantage of the liquid-like mobility and crystal-like ordering of liquid crystal materials, a liquid crystal induction method is developed and applied to construct three-dimensional graphene-based adsorbents featuring excellent shape adaptability, a distinctive pore structure, and abundant surface functional groups. When the monoliths are used for water restoration, the large amount of residual oxygen-containing groups is more susceptible to electrophilic attack, thus contributing to cation adsorption (up to 705.4 mg g-1 for methylene blue), while the connected microvoids between the aligned graphene oxide sheets facilitate mass transfer, e.g., the high adsorption capacity for organic pollutants (196.2 g g-1 for ethylene glycol) and the high evaporation rate for water (4.01 kg m-2 h-1). This work gives a practical method for producing high-performance graphene-based functional materials for those applications that are sensitive to surface and mass transfer properties.
Collapse
Affiliation(s)
- Xin Liang Lu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia Cheng Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wen Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Haiying Qin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
12
|
Simulations of Graphene Oxide Dispersions as Discotic Nematic Liquid Crystals in Couette Flow Using Ericksen-Leslie (EL) Theory. FLUIDS 2022. [DOI: 10.3390/fluids7030103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The objective of this study was to simulate the flow of graphene oxide (GO) dispersions, a discotic nematic liquid crystal (DNLC), using the Ericksen-Leslie (EL) theory. GO aqueous suspension, as a lubricant, effectively reduces the friction between solid surfaces. The geometry considered in this study was two cylinders with a small gap size, which is the preliminary geometry for journal bearings. The Leslie viscosity coefficients calculated in our previous study were used to calculate the stress tensor in the EL theory. The behavior of GO dispersions in the concentration range of 15 mg/mL to 30 mg/mL, shown in our recent experiments to be in the nematic phase, was investigated to obtain the orientation and the viscosity profile. The viscosities of GO dispersions obtained from numerical simulations were compared with those from our recent experimental study, and we observed that the values are within the range of experimental uncertainty. In addition, the alignment angles of GO dispersions at different concentrations were calculated numerically using EL theory and compared with the respective theoretical values, which were within 1% error. The anchoring angles corresponding to viscosity values closest to the experimental results were between 114 and 118 degrees. Moreover, a sensitivity analysis was performed to determine the effects of different ratios of the elasticity coefficients in EL theory. Using this procedure, the same study could be extended for other DNLCs in different geometries.
Collapse
|