1
|
Wang N, Luo L, Xu X, Zhou H, Li F. Focused ultrasound-induced cell apoptosis for the treatment of tumours. PeerJ 2024; 12:e17886. [PMID: 39184389 PMCID: PMC11344538 DOI: 10.7717/peerj.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca2+ elease. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.
Collapse
Affiliation(s)
- Na Wang
- Chongqing University, School of Medicine, Chongqing, China
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Li Luo
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Xinzhi Xu
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Hang Zhou
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Fang Li
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| |
Collapse
|
2
|
Lin J, Lin Z, Liu L, Lin W, Xie X, Zhang X. Enhancing glioma-specific drug delivery through self-assembly of macrophage membrane and targeted polymer assisted by low-frequency ultrasound irradiation. Mater Today Bio 2024; 26:101067. [PMID: 38706730 PMCID: PMC11068854 DOI: 10.1016/j.mtbio.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
The blood-brain Barrier (BBB), combined with immune clearance, contributes to the low efficacy of drug delivery and suboptimal treatment outcomes in glioma. Here, we propose a novel approach that combines the self-assembly of mouse bone marrow-derived macrophage membrane with a targeted positive charge polymer (An-PEI), along with low-frequency ultrasound (LFU) irradiation, to achieve efficient and safe therapy for glioma. Our findings demonstrate the efficacy of a charge-induced self-assembly strategy, resulting in a stable co-delivery nanosystem with a high drug loading efficiency of 44.2 %. Moreover, this structure triggers a significant release of temozolomide in the acidic environment of the tumor microenvironment. Additionally, the macrophage membrane coating expresses Spyproteins, which increase the amount of An-BMP-TMZ that can evade the immune system by 40 %, while LFU irradiation treatment facilitates the opening of the BBB, allowing for enormously increased entry of An-BMP-TMZ (approximately 400 %) into the brain. Furthermore, after crossing the BBB, the Angiopep-2 peptide-modified An-BMP-TMZ exhibits the ability to selectively target glioma cells. These advantages result in an obvious tumor inhibition effect in animal experiments and significantly improve the survival of glioma-bearing mice. These results suggest that combining the macrophage membrane-coated drug delivery system with LFU irradiation offers a feasible approach for the accurate, efficient and safe treatment of brain disease.
Collapse
Affiliation(s)
- Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenhu Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Leilei Liu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, 350001, Fujian, China
| | - Wenjin Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350001, Fujian, China
| | - Xiujuan Zhang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
3
|
Sahoo R, Sarkar AK, Ali H, Jana NR. Ultrasound-Responsive Nanodroplet-Based Targeted Therapy via Conversion to Microbubbles. ACS APPLIED BIO MATERIALS 2024; 7:1852-1861. [PMID: 38391393 DOI: 10.1021/acsabm.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ultrasound-based therapy is appealing as it can be used via a wireless approach at remote parts of the body including the brain. Microbubbles are commonly used in such therapy due to their highly sound-responsive property. However, the larger size of microbubbles limits selective targeting in vitro/in vivo. Here, we report the design of nanodroplets of 70-130 nm in size that can be easily converted to microbubbles via ultrasound exposure. The advantage of this approach is that smaller nanodroplets can be used for cell/subcellular targeting, and next, they can be used for therapy by converting to microbubbles. More specifically, folate/dopamine-terminated perfluorohexane nanodroplets are designed that are loaded with a molecular drug. These nanodroplets are used for selective cell targeting, followed by ultrasound-induced microbubble conversion that is associated with drug release and intracellular reactive oxygen species generation. This approach has been used for selective cell therapy applications. The designed nanodroplet and approach can be used for the enhanced therapeutic performance of existing drugs.
Collapse
Affiliation(s)
- Rajkumar Sahoo
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Haydar Ali
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
4
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer Immunotherapy Based on Cell Membrane-Coated Nanocomposites Augmenting cGAS/STING Activation by Efferocytosis Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302758. [PMID: 37381095 DOI: 10.1002/smll.202302758] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
6
|
He C, Wu Z, Zhuang M, Li X, Xue S, Xu S, Xu J, Wu Z, Lu M. Focused ultrasound-mediated blood-brain barrier opening combined with magnetic targeting cytomembrane based biomimetic microbubbles for glioblastoma therapy. J Nanobiotechnology 2023; 21:297. [PMID: 37626360 PMCID: PMC10463668 DOI: 10.1186/s12951-023-02074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Glioblastoma is the most common type of brain tumor. Due to the presence of the blood-brain barrier, the effects of chemotherapy have been unsatisfactory. The combination of focused ultrasound and microbubbles to reversibly open the blood-brain barrier is now considered a key factor in improving treatment outcomes of glioblastoma. In this study, we developed bionic drug delivery microbubbles, which in combination with focused ultrasound had an obvious inhibitory effect on glioblastoma. We extracted the brain microvascular cell membranes, combined them with lipid components, and loaded them with superparamagnetic iron oxide and doxorubicin to prepare biomimetic drug delivery microbubbles (FeDOX@cellMBs). We demonstrated that FeDOX@cellMBs retained the intrinsic properties of loading, such as magnetic properties and drug toxicity, both in vitro and in vivo. FeDOX@cellMBs exhibited good tumor targeting and uptake under the combined action of magnetic and focused ultrasound. Importantly, the FeDOX@cellMBs demonstrated excellent internal stability and effectively inhibited tumor growth in orthotopic glioblastoma mice. Finally, organ H&E staining confirmed that FeDOX@cellMBs were safe for use. In conclusion, FeDOX@cellMBs successfully penetrated the blood-brain barrier and effectively inhibited glioblastoma growth under the combined effects of focused ultrasound and magnetic stimulation. These results provide a new approach for the treatment of glioblastoma, with implications for future clinical translation.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhisheng Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhuang
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyu Li
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shunxu Xue
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Songjie Xu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinshun Xu
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Man Lu
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Du W, Wang J, Zhou L, Zhou J, Feng L, Dou C, Zhang Q, Zhang X, Zhao Q, Cai X, Wu J, Zheng Y, Li Y. Transferrin-targeted iridium nanoagglomerates with multi-enzyme activities for cerebral ischemia-reperfusion injury therapy. Acta Biomater 2023; 166:524-535. [PMID: 37088161 DOI: 10.1016/j.actbio.2023.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological condition with high mortality. In particular, reperfusion can stimulate overproduction of reactive oxygen species (ROS) and activation of inflammation, causing severe secondary injuries to the brain. Despite tremendous efforts, it remains urgent to rationally design antioxidative agents with straightforward and efficient ROS scavenging capability. Herein, a potent antioxidative agent was explored based on iridium oxide nano-agglomerates (Tf-IrO2 NAs) via the facile transferrin (Tf)-templated biomineralization approach, and innovatively applied to treat CIRI. Containing some small-size IrO2 aggregates, these NAs possess intrinsic hydroxyl radicals (•OH)-scavenging ability and multifarious enzyme activities, such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Moreover, they also showed improved blood-brain barrier (BBB) penetration and enhanced accumulation in the ischemic brain via Tf receptor-mediated transcytosis. Therefore, Tf-IrO2 NAs achieved robust in vitro anti-inflammatory and cytoprotection effects against oxidative stress. Importantly, mice were effectively protected against CIRI by enhanced ROS scavenging activity in vivo, and the therapeutic mechanism was systematically verified. These findings broaden the idea of expanding Ir-based NAs as potent antioxidative agents to treat CIRI and other ROS-mediated diseases. STATEMENT OF SIGNIFICANCE: (1) The ROS-scavenging activities of IrO2 are demonstrated comprehensively, which enriched the family of nano-antioxidants. (2) The engineering Tf-IrO2 nano-agglomerates present unique multifarious enzyme activities and simultaneous transferrin targeting and BBB crossing ability for cerebral ischemia-reperfusion injury therapy. (3) This work may open an avenue to enable the use of IrO2 to alleviate ROS-mediated inflammatory and brain injury diseases.
Collapse
Affiliation(s)
- Wenxian Du
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Jienan Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Lingling Zhou
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Lishuai Feng
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Chaoran Dou
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Qiang Zhang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xiaoxing Zhang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Qianqian Zhao
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
8
|
Wang K, Sun C, Dumčius P, Zhang H, Liao H, Wu Z, Tian L, Peng W, Fu Y, Wei J, Cai M, Zhong Y, Li X, Yang X, Cui M. Open source board based acoustofluidic transwells for reversible disruption of the blood-brain barrier for therapeutic delivery. Biomater Res 2023; 27:69. [PMID: 37452381 PMCID: PMC10349484 DOI: 10.1186/s40824-023-00406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) is a crucial but dynamic structure that functions as a gatekeeper for the central nervous system (CNS). Managing sufficient substances across the BBB is a major challenge, especially in the development of therapeutics for CNS disorders. METHODS To achieve an efficient, fast and safe strategy for BBB opening, an acoustofluidic transwell (AFT) was developed for reversible disruption of the BBB. The proposed AFT was consisted of a transwell insert where the BBB model was established, and a surface acoustic wave (SAW) transducer realized using open-source electronics based on printed circuit board techniques. RESULTS In the AFT device, the SAW produced acousto-mechanical stimulations to the BBB model resulting in decreased transendothelial electrical resistance in a dose dependent manner, indicating the disruption of the BBB. Moreover, SAW stimulation enhanced transendothelial permeability to sodium fluorescein and FITC-dextran with various molecular weight in the AFT device. Further study indicated BBB opening was mainly attributed to the apparent stretching of intercellular spaces. An in vivo study using a zebrafish model demonstrated SAW exposure promoted penetration of sodium fluorescein to the CNS. CONCLUSIONS In summary, AFT effectively disrupts the BBB under the SAW stimulation, which is promising as a new drug delivery methodology for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Hongxin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Hanlin Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Liangfei Tian
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wang Peng
- College of Engineering Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jun Wei
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Meng Cai
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Yi Zhong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
He Y, Li F, Jiang P, Cai F, Lin Q, Zhou M, Liu H, Yan F. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioact Mater 2023; 21:223-238. [PMID: 36157244 PMCID: PMC9465026 DOI: 10.1016/j.bioactmat.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects. However, the use of exogenous bone marrow mesenchymal stem cells (BMSCs) still faces many challenges such as limited sources and potential risks. It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration. Here, we designed an acoustically responsive scaffold (ARS) and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes (BSC). The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound (p-US) irradiation at optimized acoustic parameters, recruiting the endogenous BMSCs to the bone defected or BSC site. Accompanied by the daily p-US irradiation for 14 days, the alginate hydrogel was degraded, resulting in the exposure of ARS to these recruited host stem cells. Then another set of sinusoidal continuous wave ultrasound (s-US) irradiation was applied to excite the ARS intrinsic resonance, forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force, by which these recruited endogenous stem cells would be captured on the scaffold, greatly promoting them to adhesively grow for in situ bone tissue regeneration. Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. We designed ARS and embedded it into SDF-1/BMP-2 loaded hydrogel to form BSC. The BSC can release SDF-1/BMP-2 by p-US irradiation for recruitment of endogenous BMSCs and capture them by s-US irradiation. The in situ repair of bone defects were successfully realized by US-mediated control of the recruitment and capture of BMSCs.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Peng Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Corresponding author. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Corresponding author. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
10
|
Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. ULTRASONICS SONOCHEMISTRY 2023; 94:106346. [PMID: 36870921 PMCID: PMC10040969 DOI: 10.1016/j.ultsonch.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianpeng Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Siping Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xin Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
11
|
Huang W, Wang L, Zou Y, Ding X, Geng X, Li J, Zhao H, Qi R, Li S. Preparation of gastrodin-modified dendrimer-entrapped gold nanoparticles as a drug delivery system for cerebral ischemia-reperfusion injury. Brain Behav 2022; 12:e2810. [PMID: 36408880 PMCID: PMC9759136 DOI: 10.1002/brb3.2810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study sought to evaluate the feasibility of multifunctional gastrodin (GAS)-containing nano-drug carrier system against cerebral ischemia-reperfusion injury (CIRI). METHODS The drug-loaded nanocomposite (Au-G5.NHAc-PS/GAS) with certain encapsulation efficiency (EE) was prepared by physical adsorption method using different proportions of GAS and drug-carrying system (Au-G5.NHAc-PS). High-performance liquid chromatography was used to determine the drug loading and EE. Cultured rat astrocytes and hypothalamic neurons were assigned into four groups: PBS, Au-G5.NHAc-PS, Au-G5.NHAc-PS/GAS, and GAS. CCK-8 assay, flow cytometry, and quantitative real-time PCR were performed to examine the cell viability, apoptosis, and the expression of tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 in the astrocytes and hypothalamic neurons, respectively. Cellular uptake of GAS and Au-G5.NHAc-PS/GAS was analyzed by using Hoechst 33342 staining. The animal model with focal cerebral ischemia was generated by middle cerebral artery occlusion (MCAO) in healthy male Sprague Dawley (SD) rats, and pathological changes of brain tissue and major organs in the rats were identified by hematoxylin and eosin (HE) staining. Apoptosis in rat astrocytes and hypothalamic neurons was detected by TUNEL staining and flow cytometry. RESULTS Au-G5.NHAc-PS had a spherical shape with a uniform size of 157.3 nm. Among the nanoparticles, Au-G5.NHAc-PS/GAS with an EE of 70.3% displayed the best release delay effect. Moreover, we observed that in vitro cytotoxicity and cellular uptake of Au-G5.NHAc-PS/GAS were higher than those of GAS, whereas the expression of TNF-α, IL-1β, and IL-6 was significantly downregulated in Au-G5.NHAc-PS/GAS group as compared to G5.NHAc-PS group. Notably, HE staining revealed that although Au-G5.NHAc-PS/GAS had no toxic and side effects on the main organs of rats, it alleviated the damage of brain tissue in the MCAO rats. Besides, Au-G5.NHAc/GAS markedly reduced MCAO-induced apoptosis. CONCLUSION Au-G5.NHAc-PS showed favorable surface morphology, sustained drug release ability, no measurable toxicity, and good biocompatibility, indicating that GAS exerts anti-inflammatory and antiapoptotic effects on CIRI.
Collapse
Affiliation(s)
- Wenqiang Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lanlin Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanghong Zou
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangqian Ding
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Geng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinghui Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hexiang Zhao
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Renli Qi
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shipeng Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Liang S, Hu D, Li G, Gao D, Li F, Zheng H, Pan M, Sheng Z. NIR-II fluorescence visualization of ultrasound-induced blood-brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles. Sci Bull (Beijing) 2022; 67:2316-2326. [PMID: 36546222 DOI: 10.1016/j.scib.2022.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening is crucial for enhancing glioblastoma (GBM) therapies. However, an in vivo imaging approach with a high spatial-temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green (ICG)-dopped microbubbles (MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy (PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window (NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ∼168.9 μm and ultrasound penetration depth of ∼7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-to-background ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.
Collapse
Affiliation(s)
- Simin Liang
- Department of Ultrasonography, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518034, China; Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofeng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518034, China; Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
13
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
15
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
16
|
Gastrodin and Vascular Dementia: Advances and Current Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2563934. [PMID: 35463081 PMCID: PMC9019412 DOI: 10.1155/2022/2563934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Gastrodia elata, a traditional Chinese medicine, has been widely used since ancient times to treat diseases such as dizziness, epilepsy, stroke, and memory loss. Gastrodin, one of the active components of Gastrodia elata, has been used in the treatment of migraine, epilepsy, Parkinson's disease, dementia, and depression in recent years. It can improve cognitive function and related neuropsychiatric symptoms through various effects and is considered as a promising treatment for dementia. Vascular dementia is a kind of severe cognitive impairment syndrome caused by vascular factors, and it is the dementia syndrome with the largest number of patients besides Alzheimer's disease. Although there is still a lack of evidence-based explorations, the paper reviewed the mechanism and methods of gastrodin in the treatment of vascular dementia, providing a reference for clinical therapy.
Collapse
|
17
|
Geng X, Chen Y, Chen Z, Wei X, Dai Y, Yuan Z. Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseases. ULTRASONICS SONOCHEMISTRY 2022; 84:105972. [PMID: 35255361 PMCID: PMC8897654 DOI: 10.1016/j.ultsonch.2022.105972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 05/21/2023]
Abstract
Among various novel antimicrobial therapies, sonodynamic therapy (SDT) exhibits its advantages for the treatment of bacterial infections due to its high penetration depth and low side effects. In this study, a new nanosonosensitizer (HFH@ZIF-8) that loads sonosensitizer hematoporphyrin monomethyl ether (HMME) into zeolitic imidazolate framework-8 (ZIF-8), was constructed for killing multidrug-resistant (MDR) bacteria and treatment of in vivo infection diseases by SDT. In particular, the developed HFH@ZIF-8 exhibited enhanced water-solubility, good biocompatibility, and improved disease-targeting capability for delivering and releasing HMME and ablating the infected lesion. More importantly, the presence of oxygen-carrying hemoglobin for HFH@ZIF-8 can offer sufficient oxygen consumption by SDT, augmenting the efficacy of SDT by improving ROS generating efficiency against deep tissue multidrug-resistant bacterial infection. Therefore, this study paves a new avenue for treating infection disease, particularly for antibiotic resistant bacterial infection.
Collapse
Affiliation(s)
- Xiaorui Geng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yuhao Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Xianyuan Wei
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yunlu Dai
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa Macau SAR, China.
| |
Collapse
|