1
|
Sarkar D, Maffeo C, Sutter M, Aksimentiev A, Kerfeld CA, Vermaas JV. Atomic view of photosynthetic metabolite permeability pathways and confinement in synthetic carboxysome shells. Proc Natl Acad Sci U S A 2024; 121:e2402277121. [PMID: 39485798 PMCID: PMC11551347 DOI: 10.1073/pnas.2402277121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Carboxysomes are protein microcompartments found in cyanobacteria, whose shell encapsulates rubisco at the heart of carbon fixation in the Calvin cycle. Carboxysomes are thought to locally concentrate CO2 in the shell interior to improve rubisco efficiency through selective metabolite permeability, creating a concentrated catalytic center. However, permeability coefficients have not previously been determined for these gases, or for Calvin-cycle intermediates such as bicarbonate ([Formula: see text]), 3-phosphoglycerate, or ribulose-1,5-bisphosphate. Starting from a high-resolution cryogenic electron microscopy structure of a synthetic [Formula: see text]-carboxysome shell, we perform unbiased all-atom molecular dynamics to track metabolite permeability across the shell. The synthetic carboxysome shell structure, lacking the bacterial microcompartment trimer proteins and encapsulation peptides, is found to have similar permeability coefficients for multiple metabolites, and is not selectively permeable to [Formula: see text] relative to CO2. To resolve how these comparable permeabilities can be reconciled with the clear role of the carboxysome in the CO2-concentrating mechanism in cyanobacteria, complementary atomic-resolution Brownian Dynamics simulations estimate the mean first passage time for CO2 assimilation in a crowded model carboxysome. Despite a relatively high CO2 permeability of approximately 10-2 cm/s across the carboxysome shell, the shell proteins reflect enough CO2 back toward rubisco that 2,650 CO2 molecules can be fixed by rubisco for every 1 CO2 molecule that escapes under typical conditions. The permeabilities determined from all-atom molecular simulation are key inputs into flux modeling, and the insight gained into carbon fixation can facilitate the engineering of carboxysomes and other bacterial microcompartments for multiple applications.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
2
|
Waltmann C, Shrestha A, Olvera de la Cruz M. Patterning of multicomponent elastic shells by gaussian curvature. Phys Rev E 2024; 109:054409. [PMID: 38907410 DOI: 10.1103/physreve.109.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
Recent findings suggest that shell protein distribution and the morphology of bacterial microcompartments regulate the chemical fluxes facilitating reactions which dictate their biological function. We explore how the morphology and component patterning are coupled through the competition of mean and gaussian bending energies in multicomponent elastic shells that form three-component irregular polyhedra. We observe two softer components with lower bending rigidities allocated on the edges and vertices while the harder component occupies the faces. When subjected to a nonzero interfacial line tension, the two softer components further separate and pattern into subdomains that are mediated by the gaussian curvature. We find that this degree of fractionation is maximized when there is a weaker line tension and when the ratio of bending rigidities between the two softer domains ≈2. Our results reveal a patterning mechanism in multicomponent shells that can capture the observed morphologies of bacterial microcompartments, and moreover, can be realized in synthetic vesicles.
Collapse
Affiliation(s)
| | | | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Oltrogge LM, Chen AW, Chaijarasphong T, Turnšek JB, Savage DF. α-Carboxysome Size Is Controlled by the Disordered Scaffold Protein CsoS2. Biochemistry 2024; 63:219-229. [PMID: 38085650 PMCID: PMC10795168 DOI: 10.1021/acs.biochem.3c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.
Collapse
Affiliation(s)
- Luke M. Oltrogge
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Allen W. Chen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Julia B. Turnšek
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Shrestha A, Olvera de la Cruz M. Enhanced phoretic self-propulsion of active colloids through surface charge asymmetry. Phys Rev E 2024; 109:014613. [PMID: 38366412 DOI: 10.1103/physreve.109.014613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Charged colloidal particles propel themselves through asymmetric fluxes of chemically generated ions on their surface. We show that asymmetry in the surface charge distribution provides an additional mode of self-propulsion at the nanoscale for chemically active particles that produce ionic species. Particles of sizes smaller than or comparable to the Debye length achieve directed self-propulsion through surface charge asymmetry even when ionic flux is uniform over its surface. Janus nanoparticles endowed with both surface charge and ionic flux asymmetries result in enhanced propulsion speeds of the order of μm/s or higher. Our work suggests an alternative avenue for specifying surface properties that optimize self-propulsion in ionic media.
Collapse
Affiliation(s)
- Ahis Shrestha
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
5
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Maksudov F, Kliuchnikov E, Marx KA, Purohit PK, Barsegov V. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles. Acta Biomater 2023; 166:326-345. [PMID: 37142109 DOI: 10.1016/j.actbio.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and Nf is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Evgenii Kliuchnikov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|