1
|
Feng S, Zhang Y, Wang Y, Gao Y, Song Y. Harnessing Gene Editing Technology for Tumor Microenvironment Modulation: An Emerging Anticancer Strategy. Chemistry 2024; 30:e202402485. [PMID: 39225329 DOI: 10.1002/chem.202402485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial for cancer progression. To satisfy their high proliferation and aggressiveness, cancer cells always plunder large amounts of nutrients and release various signals to their surroundings, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cells and the TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterial strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at the genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, 241002, Wuhu, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
2
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
4
|
Ma Y, Chen Y, Li Z, Zhao Y. Rational Design of Lipid-Based Vectors for Advanced Therapeutic Vaccines. Vaccines (Basel) 2024; 12:603. [PMID: 38932332 PMCID: PMC11209477 DOI: 10.3390/vaccines12060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in vaccine delivery systems have seen the utilization of various materials, including lipids, polymers, peptides, metals, and inorganic substances, for constructing non-viral vectors. Among these, lipid-based nanoparticles, composed of natural, synthetic, or physiological lipid/phospholipid materials, offer significant advantages such as biocompatibility, biodegradability, and safety, making them ideal for vaccine delivery. These lipid-based vectors can protect encapsulated antigens and/or mRNA from degradation, precisely tune chemical and physical properties to mimic viruses, facilitate targeted delivery to specific immune cells, and enable efficient endosomal escape for robust immune activation. Notably, lipid-based vaccines, exemplified by those developed by BioNTech/Pfizer and Moderna against COVID-19, have gained approval for human use. This review highlights rational design strategies for vaccine delivery, emphasizing lymphoid organ targeting and effective endosomal escape. It also discusses the importance of rational formulation design and structure-activity relationships, along with reviewing components and potential applications of lipid-based vectors. Additionally, it addresses current challenges and future prospects in translating lipid-based vaccine therapies for cancer and infectious diseases into clinical practice.
Collapse
Affiliation(s)
- Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Yiang Chen
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zilu Li
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
5
|
Song X, Wang M, Liu S, Liu H, Jiang A, Zou Y, Deng Y, Qin Q, Song Y, Zheng Y. A sequential scheme including PTT and 2'3'-cGAMP/CQ-LP reveals the antitumor immune function of PTT through the type I interferon pathway. Pharmacol Res 2023; 196:106939. [PMID: 37758101 DOI: 10.1016/j.phrs.2023.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Photothermal therapy (PTT) is a promising antitumor treatment that is easy to implement, minimally invasive, and precisely controllable, and evokes strong antitumor immunity. We believe that a thorough elucidation of its underlying antitumor immune mechanisms would contribute to the rational design of combination treatments with other antitumor strategies and consequently potentiate clinical use. In this study, PTT using indocyanine green (ICG) induced STING-dependent type I interferon (IFN) production in macrophages (RAW264.7 and bone marrow-derived macrophages (BMDMs)), as proven by the use of a STING inhibitor (C178), and triggered STING-independent type I IFN generation in tumor cells (CT26 and 4T1), which was inhibited by DNase pretreatment. A novel liposome coloaded with the STING agonist 2'3'-cGAMP (cGAMP) and chloroquine (CQ) was constructed to achieve synergistic effect with PTT, in which CQ increased cGAMP entrapment efficiency and prevented STING degradation after IFN signaling activation. The sequential combination treatment caused a significant increase in tumor cell apoptosis, probably due to interferon stimulating gene products 15 and 54 (ISG15 and ISG 54), and achieved a more striking antitumor inhibition effect in the CT26 tumor model than the 4T1 model, likely due to higher STAT1 expression and consequently more intense IFN signal transduction. In the tumor microenvironment, the combination treatment increased infiltrating CD8+T cells (4-fold) and M1-like TAMs (10-fold), and decreased M-MDSCs (over 2-fold) and M2-like TAMs (over 4-fold). Above all, in-depth exploration of the antitumor mechanism of PTT provides guidance for selecting sensitive tumor models and designing reasonable clinical schemes.
Collapse
Affiliation(s)
- Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Simeng Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Huang W, Shi S, Lv H, Ju Z, Liu Q, Chen T. Tellurium-driven maple leaf-shaped manganese nanotherapeutics reshape tumor microenvironment via chemical transition in situ to achieve highly efficient radioimmunotherapy of triple negative breast cancer. Bioact Mater 2023; 27:560-573. [PMID: 37223423 PMCID: PMC10200799 DOI: 10.1016/j.bioactmat.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The therapeutic efficacy of radioimmunotherapy against triple negative breast cancer (TNBC) is largely limited by the complicated tumor microenvironment (TME) and its immunosuppressive state. Thus developing a strategy to reshape TME is expected to achieve highly efficient radioimmunotherapy. Therefore, we designed and synthesized a tellurium (Te)-driven maple leaf manganese carbonate nanotherapeutics (MnCO3@Te) by gas diffusion method, but also provided a chemical catalytic strategy in situ to augment ROS level and activate immune cells for improving cancer radioimmunotherapy. As expected, with the help of H2O2 in TEM, MnCO3@Te heterostructure with reversible Mn3+/Mn2+ transition could catalyze the intracellular ROS overproduction to amplify radiotherapy. In addition, by virtue of the ability to scavenge H+ in TME by carbonate group, MnCO3@Te directly promote the maturation of dendritic cells and macrophage M1 repolarization by stimulator of interferon genes (STING) pathway activation, resulting in remodeling immuno-microenvironment. As a result, MnCO3@Te synergized with radiotherapy and immune checkpoint blockade therapy effectively inhibited the breast cancer growth and lung metastasis in vivo. Collectively, these findings indicate that MnCO3@Te as an agonist, successfully overcome radioresistance and awaken immune systems, showing promising potential for solid tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Wei Huang
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
| | - Sujiang Shi
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Haoran Lv
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Tianfeng Chen
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Byun J, Wu Y, Lee J, Kim JS, Shim G, Oh YK. External cold atmospheric plasma-responsive on-site hydrogel for remodeling tumor immune microenvironment. Biomaterials 2023; 299:122162. [PMID: 37257401 DOI: 10.1016/j.biomaterials.2023.122162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Although immunotherapy has recently emerged as a promising anti-tumor approach, it remains limited by the immunosuppressive tumor microenvironment. Cold atmospheric plasma irradiation can generate reactive oxygen species and trigger the presentation of tumor-associated antigens. Here, we exploited cold atmospheric plasma for on-site hydrogel application in the tumor environment, aiming to facilitate the sustainable uptake of tumor-associated antigens and nanoadjuvants by dendritic cells. Hyaluronic acid-tyramine conjugate was intratumorally injected as a liquid and formed an on-site hydrogel under irradiation with cold atmospheric plasma. Intratumoral delivery of hyaluronic acid-tyramine conjugate with transforming growth factor β-blocking nanoadjuvant (TLN) followed by cold atmospheric plasma irradiation yielded a micro-network of TLN-loaded hydrogel (TLN@CHG). In vivo intratumoral injection of TLN@CHG promoted the activation of dendritic cells and more effectively increased the proportion of CD4 T cells and CD8 T cells in the tumor microenvironment, compared to the groups receiving TLN or hydrogel alone. Moreover, in CT26 tumor model mice, cold atmospheric plasma-induced TLN@CHG therapy ablated the primary tumor and provided 100% survival among mice rechallenged with CT26 cells. Taken together, our findings suggest that an on-site hydrogel-based micro-network of TLN has the potential to remodel the tumor immune microenvironment. Although we used TLN in this study, the concept could be extended to support the sustained action of other nanoadjuvants in a hydrogel micro-network.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Park J, Wu Y, Li Q, Choi J, Ju H, Cai Y, Lee J, Oh YK. Nanomaterials for antigen-specific immune tolerance therapy. Drug Deliv Transl Res 2023; 13:1859-1881. [PMID: 36094655 DOI: 10.1007/s13346-022-01233-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Impairment of immune tolerance might cause autologous tissue damage or overactive immune response against non-pathogenic molecules. Although autoimmune disease and allergy have complicated pathologies, the current strategies have mainly focused on symptom amelioration or systemic immunosuppression which can lead to fatal adverse events. The induction of antigen-specific immune tolerance may provide therapeutic benefits to autoimmune disease and allergic response, while reducing nonspecific immune adverse responses. Diverse nanomaterials have been studied to induce antigen-specific immune tolerance therapy. This review will cover the immunological background of antigen-specific tolerance, clinical importance of antigen-specific immune tolerance, and nanomaterials designed for autoimmune and allergic diseases. As nanomaterials for modulating immune tolerances, lipid-based nanoparticles, polymeric nanoparticles, and biological carriers have been covered. Strategies to provide antigen-specific immune tolerance have been addressed. Finally, current challenges and perspectives of nanomaterials for antigen-specific immune tolerance therapy will be discussed.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyemin Ju
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Kim S, Choi B, Kim Y, Shim G. Immune-Modulating Lipid Nanomaterials for the Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:1760. [PMID: 37376208 DOI: 10.3390/pharmaceutics15061760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with the approval of preventative vaccines for pandemics, lipid nanoparticles have become a prominent RNA delivery vehicle. The lack of long-lasting effects of non-viral vectors is an advantage for infectious disease vaccines. With the introduction of microfluidic processes that facilitate the encapsulation of nucleic acid cargo, lipid nanoparticles are being studied as delivery vehicles for various RNA-based biopharmaceuticals. In particular, using microfluidic chip-based fabrication processes, nucleic acids such as RNA and proteins can be effectively incorporated into lipid nanoparticles and utilized as delivery vehicles for various biopharmaceuticals. Due to the successful development of mRNA therapies, lipid nanoparticles have emerged as a promising approach for the delivery of biopharmaceuticals. Biopharmaceuticals of various types (DNA, mRNA, short RNA, proteins) possess expression mechanisms that are suitable for manufacturing personalized cancer vaccines, while also requiring formulation with lipid nanoparticles. In this review, we describe the basic design of lipid nanoparticles, the types of biopharmaceuticals used as carriers, and the microfluidic processes involved. We then present research cases focusing on lipid-nanoparticle-based immune modulation and discuss the current status of commercially available lipid nanoparticles, as well as future prospects for the development of lipid nanoparticles for immune regulation purposes.
Collapse
Affiliation(s)
- Songhee Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Boseung Choi
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yoojin Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
10
|
Chan WCW. Principles of Nanoparticle Delivery to Solid Tumors. BME FRONTIERS 2023; 4:0016. [PMID: 37849661 PMCID: PMC10085247 DOI: 10.34133/bmef.0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 10/19/2023] Open
Abstract
The effective treatment of patients with cancer hinges on the delivery of therapeutics to a tumor site. Nanoparticles provide an essential transport system. We present 5 principles to consider when designing nanoparticles for cancer targeting: (a) Nanoparticles acquire biological identity in vivo, (b) organs compete for nanoparticles in circulation, (c) nanoparticles must enter solid tumors to target tumor components, (d) nanoparticles must navigate the tumor microenvironment for cellular or organelle targeting, and (e) size, shape, surface chemistry, and other physicochemical properties of nanoparticles influence their transport process to the target. This review article describes these principles and their application for engineering nanoparticle delivery systems to carry therapeutics to tumors or other disease targets.
Collapse
Affiliation(s)
- Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
11
|
Fang H, Wu Y, Chen L, Cao Z, Deng Z, Zhao R, Zhang L, Yang Y, Liu Z, Chen Q. Regulating the Obesity-Related Tumor Microenvironment to Improve Cancer Immunotherapy. ACS NANO 2023; 17:4748-4763. [PMID: 36809912 DOI: 10.1021/acsnano.2c11159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.
Collapse
Affiliation(s)
- Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yicheng Wu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zheng Deng
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
13
|
Li Y, Fang H, Zhang T, Wang Y, Qi T, Li B, Jiao H. Lipid-mRNA nanoparticles landscape for cancer therapy. Front Bioeng Biotechnol 2022; 10:1053197. [PMID: 36394007 PMCID: PMC9659646 DOI: 10.3389/fbioe.2022.1053197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Intracellular delivery of message RNA (mRNA) technique has ushered in a hopeful era with the successive authorization of two mRNA vaccines for the Coronavirus disease-19 (COVID-19) pandemic. A wide range of clinical studies are proceeding and will be initiated in the foreseeable future to treat and prevent cancers. However, efficient and non-toxic delivery of therapeutic mRNAs maintains the key limited step for their widespread applications in human beings. mRNA delivery systems are in urgent demand to resolve this difficulty. Recently lipid nanoparticles (LNPs) vehicles have prospered as powerful mRNA delivery tools, enabling their potential applications in malignant tumors via cancer immunotherapy and CRISPR/Cas9-based gene editing technique. This review discusses formulation components of mRNA-LNPs, summarizes the latest findings of mRNA cancer therapy, highlights challenges, and offers directions for more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Yin Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yu Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tingting Qi
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Bai Li
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Kim D, Byun J, Kim SI, Chung HH, Kim YW, Shim G, Oh YK. DNA-cloaked nanoparticles for tumor microenvironment-responsive activation. J Control Release 2022; 350:448-459. [PMID: 36037974 DOI: 10.1016/j.jconrel.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Although progress has been made in developing tumor microenvironment-responsive delivery systems, the list of cargo-releasing stimuli remains limited. In this study, we report DNA nanothread-cloaked nanoparticles for reactive oxygen species (ROS)-rich tumor microenvironment-responsive delivery systems. ROS is well known to strongly induce DNA fragmentation via oxidative stress. As a model anticancer drug, hydrophobic omacetaxine was entrapped in branched cyclam ligand-modified nanoparticles (BNP). DNA nanothreads were prepared by rolling-circle amplification and complexed to BNP, yielding DNA nanothread-cloaked BNP (DBNP). DBNP was unmasked by DNA nanothread-degrading ROS and culture supernatants of LNCaP cells. The size and zeta potential of DBNP were changed by ROS. In ROShigh LNCaP cells, but not in ROSlow fibroblast cells, the uptake of DBNP was higher than that of other nanoparticles. Molecular imaging revealed that DBNP exhibited greater distribution to tumor tissues, compared to other nanoparticles. Ex vivo mass spectrometry-based imaging showed that omacetaxine metabolites were distributed in tumor tissues of mice treated with DBNP. Intravenous administration of DBNP reduced the tumor volume by 80% compared to untreated tumors. Profiling showed that omacetaxine treatment altered the transcriptional profile. These results collectively support the feasibility of using polymerized DNA-masked nanoparticles for selective activation in the ROS-rich tumor microenvironment.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Wan Kim
- Daegu Cancer Center, DongSung Bio-Pharmaceuticals, Daegu 41061, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Ju H, Kim D, Oh YK. Lipid nanoparticle-mediated CRISPR/Cas9 gene editing and metabolic engineering for anticancer immunotherapy. Asian J Pharm Sci 2022; 17:641-652. [DOI: 10.1016/j.ajps.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
|
16
|
HNRNPA2B1 Demonstrates Diagnostic and Prognostic Values Based on Pan-Cancer Analyses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9867660. [PMID: 35529270 PMCID: PMC9068287 DOI: 10.1155/2022/9867660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Some studies have suggested heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) to be a promoter in cancer development. Nonetheless, no detailed pan-cancer investigation has been reported. Thus, this study explored the possible oncogenic role of HNRNPA2B1, such as its expression levels, gene alteration, protein–protein interaction network, immune infiltration, and prognostic value in different cancer types using The Cancer Genome Atlas web platform. Many types of cancer exhibit HNRNPA2B1 overexpression, which is notably associated with poor prognosis. We also found that HNRNPA2B1 with different methylation levels causes a varied prognosis in lung adenocarcinoma (LUAD). It is noteworthy that HNRNPA2B1 levels are connected with cancer-associated fibroblasts in cancers, such as adrenocortical carcinoma, LUAD, and stomach adenocarcinoma. In addition, HNRNPA2B1 participates in the spliceosome- and cell cycle-associated pathways. Finally, HNRNPA2B1 is highly valued in the diagnosis of LUAD, lung squamous cell carcinoma, breast invasive carcinoma, esophageal carcinoma, and liver hepatocellular carcinoma. This systematic study highlighted the role of HNRNPA2B1 in pan-cancer progression.
Collapse
|
17
|
Xi S, Yang YG, Suo J, Sun T. Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:873369. [PMID: 35419357 PMCID: PMC8996155 DOI: 10.3389/fbioe.2022.873369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Malignant tumors pose a serious threat to human health and have high fatality rates. Conventional clinical anti-tumor treatment is mainly based on traditional surgery, chemotherapy, radiotherapy, and interventional therapy, and even though these treatment methods are constantly updated, a satisfactory efficacy is yet to be obtained. Therefore, research on novel cancer treatments is being actively pursued. We review the classification of gene therapies of malignant tumors and their advantages, as well as the development of gene editing techniques. We further reveal the nano-drug delivery carrier effect in improving the efficiency of gene editing. Finally, we summarize the progress in recent years of gene editing techniques based on nano-drug delivery carriers in the treatment of various malignant tumors, and analyze the prospects of the technique and its restricting factors.
Collapse
Affiliation(s)
- Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- Gastrointestinal Surgical Department, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Jian Suo
- Gastrointestinal Surgical Department, The First Hospital, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|