1
|
Lin X, Tang S, Yang M, Zhang Z, Huang Q. Controlling Chlorine-Doped Nickel Diselenide Ultrathin Nanosheets through Steric Effects: An Electrocatalyst for Oxygen Evolution Reaction and Urea Oxidation Reaction. Inorg Chem 2024; 63:19458-19467. [PMID: 39360711 DOI: 10.1021/acs.inorgchem.4c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Exploration of electrocatalysts suitable for the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) is essential for electrocatalytic hydrogen production. In this work, a ligand substitution strategy is used to synthesize ultrathin-nanosheet electrocatalysts of Cl-doped NiSe2 (NiSe2-a and NiSe2-b), which exhibit high-electrocatalytic activity during OER and UOR. NiSe2-a and NiSe2-b only need an overpotential of 227 and 268 mV, respectively, to achieve a current density of 10 mA cm-2 during OER. Furthermore, NiSe2-a with its smaller steric effects exhibits excellent catalytic performance for UOR, requiring an ultralow potential of 1.360 V to deliver a current density of 100 mA cm-2. This excellent performance can be attributed to the nonmetallic elements (Se and Cl) modulating and optimizing the charge state of the metal sites, thereby increasing the electrocatalytic activity. Overall, this work provides an unparalleled example of tuning space structures to design efficient electrocatalysts and has promising industrial applications.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shuli Tang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
2
|
Jamesh MI, Tong H, Santoso SP, Niu W, Kai JJ, Hsieh CW, Cheng KC, Li FF, Han B, Colmenares JC, Hsu HY. Recent advances in developing nanoscale electro-/photocatalysts for hydrogen production: modification strategies, charge-carrier characterizations, and applications. NANOSCALE 2024; 16:18213-18250. [PMID: 39291727 DOI: 10.1039/d4nr01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
For clean hydrogen (H2) production, electrocatalysis and photocatalysis are widely regarded as promising technologies to counter the increasing energy crisis. However, developing applicable catalysts with high H2 production performances still poses a challenge. In this review, state-of-the-art nanoscale electrocatalysts for water electrolysis and photocatalysts for water splitting, tailored for different reaction environments, including acidic electrolytes, alkaline electrolytes, pure water, seawater, and hydrohalic acids, are systematically presented. In particular, modification approaches such as doping, morphology control, heterojunction/homojunction construction, as well as the integration of cocatalysts and single atoms for efficient charge transfer and separation are examined. Furthermore, the unique properties of these upgraded catalysts and the mechanisms of promoted H2 production are also analyzed by elucidating the charge carrier dynamics revealed by photophysical and photoelectrochemical characterization methods. Finally, perspectives and outlooks on future developments for H2 production using advanced electrocatalysts and photocatalysts are proposed.
Collapse
Affiliation(s)
- Mohammed-Ibrahim Jamesh
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | - Haihang Tong
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Kalijudan No. 37, Surabaya 60114, East Java, Indonesia
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Ji-Jung Kai
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, Taiwan
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, 500 Lioufeng Rd., Wufeng, Taichung, Taiwan, 41354
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01224, Warsaw, Poland
- Engineering Research Institute (In3), Universidad Cooperativa de Colombia, Medellín 50031, Colombia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
3
|
Parishani M, Nadafan M, Akbarpoor S. Enhancement of third-order optical nonlinearity of VSe 2 by hybridizing with CoSe 2 as flower-like nanoparticles. RSC Adv 2024; 14:27741-27748. [PMID: 39224626 PMCID: PMC11367623 DOI: 10.1039/d4ra04192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Through one-pot hydrothermal synthesis, we synthesized VSe2-CoSe2 nanostructures with a distinctive flower-like morphology. The structural characterizations were conducted using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR). By modulating the proportion of the CoSe2 phase, we transformed these hybrid nanostructures into nanoparticles, thereby influencing their nonlinear optical properties. The third-order nonlinear optical parameters (n 2 and β) were rigorously examined via the precise Z-scan technique under various laser power conditions. The nanostructures demonstrated a self-focusing refractive response and exhibited pronounced two-photon absorption during the nonlinear absorption process. The magnitudes of n 2 and β were determined to be in the order of 10-8 (cm2 W-1) and 10-4 (cm W-1), respectively. The exceptional figure of merit (FOM) of these composite flower-like structures underscores their superior nonlinear optical characteristics, establishing them as promising candidates for photonic applications, particularly in optical switching devices.
Collapse
Affiliation(s)
- Marziyeh Parishani
- Department of Physics, Tarbiat Modares University P. O. Box 14115-175 Tehran Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University P. O. Box 16788-15811 Tehran Iran
| | - Sajad Akbarpoor
- Department of Physics, Shahid Rajaee Teacher Training University P. O. Box 16788-15811 Tehran Iran
| |
Collapse
|
4
|
Guo H, Niu T, Yu J, Wang X, Si Y. Phase-Tailoring W x V 1-x O 2 Meta-Nanofiber Enables Temperature-Editing Energy Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306170. [PMID: 37759416 DOI: 10.1002/smll.202306170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Room-temperature phase change materials (RTPCMs) exhibit promise to address challenges in thermal energy storage and release, greatly aiding in numerous domains of human existence and productivity. The conventional RTPCMs undergo inevitable volume expansion, structural collapse, and diffusion of active ingredients while maintaining desirable phase change enthalpy and ideal phase change temperature. Here, a sol-gel 1D-induced growth approach is presented to fabricate meta nanofibers (Meta-NFs) comprised of vanadium dioxide with monoclinic crystal structure, and further achieve the editable phase change temperature from 68 to 37 °C through W-doping, which allowed for tailored length variation of the zigzag V-V bond. Subsequently, Meta-NFs are assembled into 3D aerogels with self-standing architecture, thereby enabling the independent use of the RTPCMs. The obtained metamaterials demonstrate not only the temperature-editing solid-solid phase transition, but also the stiffness of the ceramic matrix, exhibiting the thermal energy control capability at room temperature (37 °C), thermal insulation properties, temperature resistance, and flame retardancy. The effective creation of these fascinating metamaterials might offer new insights for next-generation and self-standing solid-solid RTPCMs.
Collapse
Affiliation(s)
- Hongyu Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Tianye Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xueli Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Li J, Wu N, Zhang J, Wu HH, Pan K, Wang Y, Liu G, Liu X, Yao Z, Zhang Q. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:227. [PMID: 37831203 PMCID: PMC10575847 DOI: 10.1007/s40820-023-01192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, People's Republic of China
| | - Hong-Hui Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 8588, USA.
| | - Kunming Pan
- Henan Key Laboratory of High-Temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Yingxue Wang
- National Engineering Laboratory for Risk Perception and Prevention, Beijing, 100041, People's Republic of China.
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China.
| | - Zhenpeng Yao
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
6
|
Chen M, Zhou W, Ye K, Yuan C, Zhu M, Yu H, Yang H, Huang H, Wu Y, Zhang J, Zheng X, Shen J, Wang X, Wang S. External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1T-VSe 2 Ferromagnetic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300122. [PMID: 37144423 DOI: 10.1002/smll.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/26/2023] [Indexed: 05/06/2023]
Abstract
As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe2 is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe2 nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm-2 and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2 , and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.
Collapse
Affiliation(s)
- Mingyue Chen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenda Zhou
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Kun Ye
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Mengyuan Zhu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Yu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhou Yang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Huang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanfei Wu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyan Zhang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianxin Shen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiao Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shouguo Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Zuo Y, Bellani S, Ferri M, Saleh G, Shinde DV, Zappia MI, Brescia R, Prato M, De Trizio L, Infante I, Bonaccorso F, Manna L. High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode. Nat Commun 2023; 14:4680. [PMID: 37542064 PMCID: PMC10403570 DOI: 10.1038/s41467-023-40319-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.
Collapse
Affiliation(s)
- Yong Zuo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Sebastiano Bellani
- BeDimensional S.p.A, Via Lungotorrente Secca, 30R, 16163, Genova, Italy.
| | - Michele Ferri
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Gabriele Saleh
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Dipak V Shinde
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Luca De Trizio
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Ivan Infante
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, 48009, Spain
| | - Francesco Bonaccorso
- BeDimensional S.p.A, Via Lungotorrente Secca, 30R, 16163, Genova, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
8
|
Pace G, Del Rio Castillo AE, Lamperti A, Lauciello S, Bonaccorso F. 2D Materials-based Electrochemical Triboelectric Nanogenerators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211037. [PMID: 36994787 DOI: 10.1002/adma.202211037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/12/2023] [Indexed: 05/17/2023]
Abstract
The integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed. TENGs embedding FLG and gel composites show competitive open-circuit voltage (≈ 300 V), instant peak power (530 mW m-2 ), and stability (> 11 months). These values correspond to a seven-fold higher electrical output compared to TENGs embedding bare FLG electrodes. It is demonstrated that such a significant improvement depends on the high electrical double-layer capacitance (EDLC) of FLG electrodes functionalized with the gel composites. The wet encapsulation of the TENGs is shown to be an effective strategy to increase their power output further highlighting the EDLC role. It is also shown that the EDLC is dependent upon the transition metal (W vs Mo) rather than the relative abundance of 1T or 2H phases. Overall, this work lays down the roots for novel sustainable electrochemical-(e)-TENGs developed exploiting strategies typically used in electrochemical capacitors.
Collapse
Affiliation(s)
- Giuseppina Pace
- Institute for Microelectronics and Microsystems - National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, Milan, 20864, Italy
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
| | | | - Alessio Lamperti
- Institute for Microelectronics and Microsystems - National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, Milan, 20864, Italy
| | - Simone Lauciello
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
| | - Francesco Bonaccorso
- Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego, 30, Genova, 16136, Italy
- BeDimensional S.p.A, Via Lungotorrente Secca 30R, Genova, 16163, Italy
| |
Collapse
|
9
|
Hu P, Hu P, Vu TD, Li M, Wang S, Ke Y, Zeng X, Mai L, Long Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem Rev 2023; 123:4353-4415. [PMID: 36972332 PMCID: PMC10141335 DOI: 10.1021/acs.chemrev.2c00546] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to V2O3, V3O5, VO2, V3O7, V2O5, V2O2, V6O13, and V4O9. We begin with a tutorial on the phase diagram of the V-O system. The second part is a detailed review covering the crystal structure, the synthesis protocols, and the applications of each vanadium oxide, especially in batteries, catalysts, smart windows, and supercapacitors. We conclude with a brief perspective on how material and device improvements can address current deficiencies. This comprehensive review could accelerate the development of novel vanadium oxide structures in related applications.
Collapse
|
10
|
Bagheri A, Bellani S, Beydaghi H, Eredia M, Najafi L, Bianca G, Zappia MI, Safarpour M, Najafi M, Mantero E, Sofer Z, Hou G, Pellegrini V, Feng X, Bonaccorso F. Functionalized Metallic 2D Transition Metal Dichalcogenide-Based Solid-State Electrolyte for Flexible All-Solid-State Supercapacitors. ACS NANO 2022; 16:16426-16442. [PMID: 36194759 PMCID: PMC9620411 DOI: 10.1021/acsnano.2c05640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.
Collapse
Affiliation(s)
- Ahmad Bagheri
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| | | | | | - Matilde Eredia
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Leyla Najafi
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | | | - Milad Safarpour
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Maedeh Najafi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Elisa Mantero
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Guorong Hou
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| |
Collapse
|
11
|
P-doped MoS2/CoxSy Heterojunction for High-Efficiency Electrocatalytic Hydrogen Evolution Performance in both Acidic and Alkaline Electrolytes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Bianca G, Trovatello C, Zilli A, Zappia MI, Bellani S, Curreli N, Conticello I, Buha J, Piccinni M, Ghini M, Celebrano M, Finazzi M, Kriegel I, Antonatos N, Sofer Z, Bonaccorso F. Liquid-Phase Exfoliation of Bismuth Telluride Iodide (BiTeI): Structural and Optical Properties of Single-/Few-Layer Flakes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34963-34974. [PMID: 35876692 PMCID: PMC9354013 DOI: 10.1021/acsami.2c07704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).
Collapse
Affiliation(s)
- Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Trovatello
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Attilio Zilli
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marilena Isabella Zappia
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
- Department
of Physics, University of Calabria, Via P. Bucci cubo 31/C Rende, Cosenza 87036, Italy
| | | | - Nicola Curreli
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Irene Conticello
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| | - Joka Buha
- Nanochemistry
Department, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Marco Piccinni
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Michele Ghini
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Michele Celebrano
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marco Finazzi
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ilka Kriegel
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Nikolas Antonatos
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- BeDimensional
S.p.A., via Lungotorrente
Secca 30R, 16163 Genova, Italy
| |
Collapse
|
13
|
Flowery ln2MnSe4 Novel Electrocatalyst Developed via Anion Exchange Strategy for Efficient Water Splitting. NANOMATERIALS 2022; 12:nano12132209. [PMID: 35808045 PMCID: PMC9268370 DOI: 10.3390/nano12132209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Oxygen and hydrogen generated by water electrolysis may be utilized as a clean chemical fuel with high gravimetric energy density and energy conversion efficiency. The hydrogen fuel will be the alternative to traditional fossil fuels in the future, which are near to exhaustion and cause pollution. In the present study, flowery-shaped In2MnSe4 nanoelectrocatalyst is fabricated by anion exchange reaction directly grown on nickel foam (NF) in 1.0 M KOH medium for oxygen evolution reaction (OER). The physiochemical and electrical characterization techniques are used to investigate the chemical structure, morphology, and electrical properties of the In2MnSe4 material. The electrochemical result indicates that synthesized material exhibits a smaller value of Tafel slope (86 mV/dec), lower overpotential (259 mV), and high stability for 37 h with small deterioration in the current density for a long time. Hence, the fabricated material responds with an extraordinary performance for the OER process and for many other applications in the future.
Collapse
|