1
|
Ma L, Pan J, Shu G, Pan H, Li J, Li D, Sun S. Non-invasive fast assessment of hepatic injury through computed tomography imaging with renal-clearable Bi-DTPA dimeglumine. Regen Biomater 2024; 11:rbae118. [PMID: 39398283 PMCID: PMC11467190 DOI: 10.1093/rb/rbae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Enhanced computed tomography (CT) imaging with iodinated imaging probes is widely utilized for the diagnosis and evaluation of various liver diseases. However, these iodine-based imaging probes face intractable limitations including allergic reactions and contraindications. Herein, we propose the utilization of renal-clearable iodine-free bismuth chelate (Bi-DTPA dimeglumine) for the non-invasive fast assessment of hepatic ischemia-reperfusion injury (HIRI) via CT imaging for the first time. Bi-DTPA dimeglumine offers several advantages such as simple synthesis, no purification requirement, a yield approaching 100%, large-scale production capability (laboratory synthesis > 100 g), excellent biocompatibility and superior CT imaging performance. In a normal rat model, the administration of Bi-DTPA dimeglumine resulted in a significant 63.79% increase in liver CT value within a very short time period (30 s). Furthermore, in a HIRI rat model, Bi-DTPA dimeglumine enabled the rapid differentiation between healthy and injured areas based on the notable disparity in liver CT values as early as 15 min post-reperfusion, which showed a strong correlation with the histopathological analysis results. Additionally, Bi-DTPA dimeglumine can be almost eliminated from the body via the kidneys within 24 h. As an inherently advantageous alternative to iodinated imaging probes, Bi-DTPA dimeglumine exhibits promising prospects for application in liver disease diagnosis.
Collapse
Affiliation(s)
- Li Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haiyan Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingang Li
- Department of medical technology, Taishan Vocational College of Nursing, Shandong 271000, China
| | - Dong Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shaokai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
2
|
Zhang C, Wang X, Xu J, Xu L, Sun Y, Lu C, Liao S, Liu H, Zhang XB, Song G. Ultrathin Gd-Oxide Nanosheet as Ultrasensitive Companion Diagnostic Tool for MR Imaging and Therapy of Submillimeter Microhepatocellular Carcinoma. NANO LETTERS 2024; 24:11002-11011. [PMID: 39166738 DOI: 10.1021/acs.nanolett.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yue Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Yuan W, Ferreira LDAQ, Yu B, Ansari S, Moshaverinia A. Dental-derived stem cells in tissue engineering: the role of biomaterials and host response. Regen Biomater 2023; 11:rbad100. [PMID: 38223292 PMCID: PMC10786679 DOI: 10.1093/rb/rbad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024] Open
Abstract
Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity and low immunogenicity. They can respond to multiple extracellular matrix signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation toward functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.
Collapse
Affiliation(s)
- Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
5
|
Feng C, Xiong Z, Sun X, Zhou H, Wang T, Wang Y, Bai HX, Lei P, Liao W. Beyond antioxidation: Harnessing the CeO 2 nanoparticles as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 2023; 299:122164. [PMID: 37229807 DOI: 10.1016/j.biomaterials.2023.122164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a challenging task to develop a contrast agent that not only provides excellent image contrast but also protects impaired kidneys from oxidative-related stress during angiography. Clinically approved iodinated CT contrast media are associated with potential renal toxicity, making it necessary to develop a renoprotective contrast agent. Here, we develop a CeO2 nanoparticles (NPs)-mediated three-in-one renoprotective imaging strategy, namely, i) renal clearable CeO2 NPs serve as a one-stone-two-birds antioxidative contrast agent, ii) low contrast media dose, and iii) spectral CT, for in vivo CT angiography (CTA). Benefiting from the merits of advanced sensitivity of spectral CT and K-edge energy of Cerium (Ce, 40.4 keV), an improved image quality of in vivo CTA is successfully achieved with a 10 times reduction of contrast agent dosage. In parallel, the sizes of CeO2 NPs and broad catalytic activities are suitable to be filtered via glomerulus thus directly alleviating the oxidative stress and the accompanying inflammatory injury of the kidney tubules. In addition, the low dosage of CeO2 NPs reduces the hypoperfusion stress of renal tubules induced by concentrated contrast agents used in angiography. This three-in-one renoprotective imaging strategy helps prevent kidney injury from being worsened during the CTA examination.
Collapse
Affiliation(s)
- Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianting Sun
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hao Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianming Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Molecular Imaging Research Center of Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Lee C. Click chemistry-based novel albumin nanoparticles for anticancer treatment via H 2O 2 generation. Colloids Surf B Biointerfaces 2023; 226:113335. [PMID: 37148665 DOI: 10.1016/j.colsurfb.2023.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Glucose oxidase (GOD) exerts anticancer effects by producing hydrogen peroxide (H2O2). However, the use of GOD is limited by its short half-life and low stability. Systemic H2O2 production following systemic absorption of GOD can also cause serious toxicity. GOD-conjugated bovine serum albumin nanoparticles (GOD-BSA NPs) may be useful for overcoming these limitations. Here, bioorthogonal copper-free click chemistry was employed to develop GOD-BSA NPs that are non-toxic and biodegradable and can effectively and rapidly conjugate proteins. These NPs retained their activity, unlike conventional albumin NPs. NPs using dibenzyl cyclooctyne (DBCO)-modified albumin, azide-modified albumin, and azide-modified GOD were fabricated in 10 min. After intratumoral administration, GOD-BSA NPs remained in the tumor for a longer period and displayed better anticancer activity than the effects of GOD alone. GOD-BSA NPs were approximately 240 nm in size and inhibited tumor growth to 40 mm3, whereas tumors treated with phosphate-buffered saline or albumin NPs had sizes of 1673 and 1578 mm3, respectively. GOD-BSA NPs prepared using click chemistry may be useful as a drug delivery system for protein enzymes.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, South Korea.
| |
Collapse
|
7
|
Enhanced glypican-3-targeted identification of hepatocellular carcinoma with liver fibrosis by pre-degrading excess fibrotic collagen. Acta Biomater 2023; 158:435-448. [PMID: 36603729 DOI: 10.1016/j.actbio.2022.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Most hepatocellular carcinomas (HCCs) occur in cirrhotic livers, but unequivocal diagnosis of early HCC from the fibrotic microenvironment remains a formidable challenge with conventional imaging strategies, mainly because of the massive fibrotic collagen deposition leading to hepatic nodules formation and dysfunction of contrast agent metabolism. Here, we developed a "sweep-and-illuminate" imaging strategy, pre-degrade hepatic fibrotic collagen with collagenase I conjugated human serum albumin (HSA-C) and then targeting visualize HCC lesion with GPC3 targeting nanoparticles (TSI NPs, TJ2 peptide-superparamagnetic iron oxide-indocyanine green) via fluorescence imaging (FLI) and magnetic particle imaging (MPI). TSI NPs delineated a clear boundary of HCC and normal liver, and the tumor-to-background ratios (TBRs) detected by FLI and MPI were 5.43- and 1.34-fold higher than the non-targeted group, respectively. HSA-C could degrade 24.7% fibrotic collagen, followed by 27.2% reduction of nonspecific NPs retention in mice with liver fibrosis. In a pathological state in which HCC occurs in the fibrotic microenvironment, HSA-C-mediated pre-degradation of fibrotic collagen reduced background signal interference in fibrotic tissues and enhanced the intratumoral uptake of TSI NPs, resulting in the clear demarcation between HCC and liver fibrosis, and the TBR was increased 2.61-fold compared to the group without HSA-C pretreatment. We demonstrated the feasibility of combined pre-degradation of fibrotic collagen and application of a GPC3-targeted FLI/MPI contrast agent for early HCC identification, as well as its clinical value in the management of patients with advanced liver fibrosis. STATEMENT OF SIGNIFICANCE: Given that liver fibrosis hinders early detection and treatment options of hepatocellular carcinomas (HCCs), we report a "sweep-and-illuminate" imaging strategy to enhance the efficiency of HCC identification by modulating the irreversible liver fibrosis. We first "sweep" nonspecific interference of contrast agent by pre-degrading fibrotic collagen with human serum albumin-carried collagenase I (HSA-C); and then specifically "illuminate" HCC lesions with GPC3-targeted-SPIO-ICG nanoparticles (TSI NPs). HSA-C can degrade 24.7% fibrotic collagen, followed by 27.2% reduction of nonspecific NPs retention in mice with liver fibrosis. Furthermore, in HCC models coexisting with liver fibrosis, the combined application of HSA-C and TSI NPs can clarify the demarcation between HCC and liver fibrosis with a 2.61-fold increase in the tumor-to-background ratio. This study may expand the potential of combinatorial biomaterials for early HCC diagnosis.
Collapse
|
8
|
Khorasani A, Shahbazi-Gahrouei D, Safari A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050833. [PMID: 36899980 PMCID: PMC10000685 DOI: 10.3390/diagnostics13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In recent years, there has been an increasing interest in using nanoparticles in the medical sciences. Today, metal nanoparticles have many applications in medicine for tumor visualization, drug delivery, and early diagnosis, with different modalities such as X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), etc., and treatment with radiation. This paper reviews recent findings of recent metal nanotheranostics in medical imaging and therapy. The study offers some critical insights into using different types of metal nanoparticles in medicine for cancer detection and treatment purposes. The data of this review study were gathered from multiple scientific citation websites such as Google Scholar, PubMed, Scopus, and Web of Science up through the end of January 2023. In the literature, many metal nanoparticles are used for medical applications. However, due to their high abundance, low price, and high performance for visualization and treatment, nanoparticles such as gold, bismuth, tungsten, tantalum, ytterbium, gadolinium, silver, iron, platinum, and lead have been investigated in this review study. This paper has highlighted the importance of gold, gadolinium, and iron-based metal nanoparticles in different forms for tumor visualization and treatment in medical applications due to their ease of functionalization, low toxicity, and superior biocompatibility.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: ; Tel.: +98-31-37929095
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
9
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|