1
|
Tripathi N, Saudrais F, Rysak M, Pieri L, Pin S, Roma G, Renault JP, Boulard Y. Exploring the Interaction of Human α-Synuclein with Polyethylene Nanoplastics: Insights from Computational Modeling and Experimental Corroboration. Biomacromolecules 2024. [PMID: 39441179 DOI: 10.1021/acs.biomac.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NP), have become major environmental and health concerns due to their high chemical stability. The highly hydrophobic plastics enter living organisms through reversible interactions with biomolecules, forming biocoronas. Following recent reports on plastics breaching the blood-brain barrier, the binding behavior of human α-synuclein (hαSn) with polyethylene-based (PE) plastics was evaluated by using molecular dynamics simulations and experimental methods. The results provided three important findings: (i) hαSn transitions from an open helical to a compact conformation, enhancing intramolecular interactions, (ii) nonoxidized PE NPs (NPnonox) rapidly adsorb hαSn, as supported by experimental data from dynamic light scattering and adsorption isotherms, altering its structure, and (iii) the oxidized NP (NPox) failed to capture hαSn. These interactions were dominated by the N-terminal domain of hαSn, with major contributions from hydrophobic amino acids. These findings raise concerns about the potential pharmacological effects of NP-protein interactions on human health.
Collapse
Affiliation(s)
- Neha Tripathi
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Florent Saudrais
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Mona Rysak
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laura Pieri
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Serge Pin
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Guido Roma
- CEA, Service de Recherches en Corrosion et Comportement des Matériaux (SRMP), Université Paris-Saclay, Gif sur Yvette 91191, France
| | | | - Yves Boulard
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
2
|
Liu Z, Sokratian A, Duda AM, Xu E, Stanhope C, Fu A, Strader S, Li H, Yuan Y, Bobay BG, Sipe J, Bai K, Lundgaard I, Liu N, Hernandez B, Bowes Rickman C, Miller SE, West AB. Anionic nanoplastic contaminants promote Parkinson's disease-associated α-synuclein aggregation. SCIENCE ADVANCES 2023; 9:eadi8716. [PMID: 37976362 PMCID: PMC10656074 DOI: 10.1126/sciadv.adi8716] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein. In mice, nanoplastics combine with α-synuclein fibrils to exacerbate the spread of α-synuclein pathology across interconnected vulnerable brain regions, including the strong induction of α-synuclein inclusions in dopaminergic neurons in the substantia nigra. These results highlight a potential link for further exploration between nanoplastic pollution and α-synuclein aggregation associated with Parkinson's disease and related dementias.
Collapse
Affiliation(s)
- Zhiyong Liu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Arpine Sokratian
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | | | - Enquan Xu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Christina Stanhope
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Amber Fu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Yuan Yuan
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | | | - Joana Sipe
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Ketty Bai
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Na Liu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Belinda Hernandez
- Department of Ophthalmology and Cell Biology, Duke University, Durham, NC, USA
| | | | - Sara E. Miller
- Department of Pathology, Duke University, Durham, NC, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Dolci M, Wang Y, Nooteboom SW, Soto Rodriguez PED, Sánchez S, Albertazzi L, Zijlstra P. Real-Time Optical Tracking of Protein Corona Formation on Single Nanoparticles in Serum. ACS NANO 2023; 17:20167-20178. [PMID: 37802067 PMCID: PMC10604089 DOI: 10.1021/acsnano.3c05872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.
Collapse
Affiliation(s)
- Mathias Dolci
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
5
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
6
|
Slekiene N, Snitka V, Bruzaite I, Ramanavicius A. Influence of TiO 2 and ZnO Nanoparticles on α-Synuclein and β-Amyloid Aggregation and Formation of Protein Fibrils. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7664. [PMID: 36363256 PMCID: PMC9653647 DOI: 10.3390/ma15217664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The most common neurological disorders, i.e., Parkinson's disease (PD) and Alzheimer's disease (AD), are characterized by degeneration of cognitive functions due to the loss of neurons in the central nervous system. The aggregation of amyloid proteins is an important pathological feature of neurological disorders.The aggregation process involves a series of complex structural transitions from monomeric to the formation of fibrils. Despite its potential importance in understanding the pathobiology of PD and AD diseases, the details of the aggregation process are still unclear. Nanoparticles (NPs) absorbed by the human circulatory system can interact with amyloid proteins in the human brain and cause PD. In this work, we report the study of the interaction between TiO2 nanoparticles (TiO2-NPs) and ZnO nanoparticles (ZnO-NPs) on the aggregation kinetics of β-amyloid fragment 1-40 (βA) and α-synuclein protein using surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). The characterizations of ZnO-NPs and TiO2-NPs were evaluated by X-ray diffraction (XRD) spectrum, atomic force microscopy (AFM), and UV-Vis spectroscopy. The interaction of nanoparticles with amyloid proteins was investigated by SERS. Our study showed that exposure of amyloid protein molecules to TiO2-NPs and ZnO-NPs after incubation at 37 °C caused morphological changes and stimulated aggregation and fibrillation. In addition, significant differences in the intensity and location of active Raman frequencies in the amide I domain were found. The principal component analysis (PCA) results show that the effect of NPs after incubation at 4 °C does not cause changes in βA structure.
Collapse
Affiliation(s)
- Nora Slekiene
- Pharmacy Center, Institute of Biomedical Sciences, Faculty of Medicine, University of Vilnius, M.K. Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, 65 Studentu Str., LT-51369 Kaunas, Lithuania
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio Av. 11, LT-10223 Vilnius, Lithuania
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 24 Naugarduko Str., LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
John T, Adler J, Elsner C, Petzold J, Krueger M, Martin LL, Huster D, Risselada HJ, Abel B. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. J Colloid Interface Sci 2022; 622:804-818. [PMID: 35569410 DOI: 10.1016/j.jcis.2022.04.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
The aggregation of peptides into amyloid fibrils has been linked to ageing-related diseases, such as Alzheimer's and type 2 diabetes. Interfaces, particularly those with large nanostructured surfaces, can affect the kinetics of peptide aggregation, which ranges from complete inhibition to strong acceleration. While a number of physiochemical parameters determine interfacial effects, we focus here on the role of nanoparticle (NP) size and curvature. We used thioflavin T (ThT) fluorescence assays to demonstrate the size-dependent effects of NPs on amyloid fibril formation for the peptides Aβ40, NNFGAIL, GNNQQNY and VQIYVK. While 5 nm gold NPs (AuNP-5) retarded or inhibited the aggregation of all peptides except NNFGAIL, larger 20 nm gold NPs (AuNP-20) tended to accelerate or not influence peptide aggregation. Differences in the NP effects for the peptides resulted from the different peptide properties (size, tendency to aggregate) and associated surface binding affinities. Additional dynamic light scattering (DLS), electron microscopy, and atomic force microscopy (AFM) experiments with the Aβ40 peptide confirmed size-dependent NP effects on peptide aggregation, and also suggested a structural influence on the formed fibrils. NPs can serve as a surface for the adsorption of peptide monomers and enable nucleation to oligomers and fibril formation. However, molecular dynamics (MD) simulations showed that peptide oligomers were less stable at smaller NPs. High surface curvatures destabilized prefibrillar structures, which provides a possible explanation for inhibitory effects on fibril growth, provided that peptide-NP surface binding was relevant for fibril formation. These mechanistic insights can support the design of future nanostructured materials.
Collapse
Affiliation(s)
- Torsten John
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany; School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Christian Elsner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Petzold
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Herre Jelger Risselada
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Institute for Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|