1
|
Xiong H, Du C, Ye J, Zhang H, Qin Y, Zeng F, Song R, Shi C, Guo H, Chen J, Shen H, Cui Y, Zhou Z. Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors. J Control Release 2025; 377:485-494. [PMID: 39592024 DOI: 10.1016/j.jconrel.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Camptothecin (CPT) and podophyllotoxin (PPT) function as topoisomerase (TOP) I and tubulin inhibitors, respectively, with potent anticancer effects in a variety of cancers. Despite its promise, the clinical applicability of the combination of CPT and PPT faces challenges, including potential side effect and limited therapeutic efficacy. In this study, we designed co-assembly nanomedicines with the different weight (w/w) ratios of amphiphilic Evans blue conjugated CPT prodrug (EB-ss-CPT) and PPT molecules, denoted as ECT Nano. The co-assembly of EB-ss-CPT and PPT without other excipients has nearly 100% drug loading efficiency and high drug loading content of PPT of up to 74.29 ± 0.90 wt%. Notably, the ECT Nano (1:2) equipped with the ability to inhibit TOP I activity and tubulin polymerization, which provided a highly efficient strategy to improve synergistic efficacy and decrease side toxicity in non-small cell lung cancer mouse model. This work represents a step forward to the development of practical applications for dual TOP I and tubulin inhibitors and especially hopeful to the rational design of combination nanomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Chao Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Ruirui Song
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huifeng Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jiang Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Xiong X, Zhang Y, Huang X, Zhang S, Li Q. Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407038. [PMID: 39394989 DOI: 10.1002/smll.202407038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 10/14/2024]
Abstract
Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal-immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T-cell membrane onto a new type of photothermal agents, spherical Au-based PNCs (sAuPNCs). Similar to T-cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T-cell membrane. The obtained sAuPNCs have a wide absorption band in the second near-infrared (NIR-II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T-cells to bond with tumor cells via PD-1/PD-L1 interaction to effectively block the PD-1 checkpoint of T-cells for preventing T-cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal-enhanced immunotherapy.
Collapse
Affiliation(s)
- Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
3
|
Feng J, Zhang P, Wang D, Li Y, Tan J. New strategies for lung cancer diagnosis and treatment: applications and advances in nanotechnology. Biomark Res 2024; 12:136. [PMID: 39533445 PMCID: PMC11558848 DOI: 10.1186/s40364-024-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer leads in causing cancer-related mortality worldwide, continually posing a significant threat to human health. Current imaging diagnostic techniques, while offering non-invasive detection, suffer from issues such as insufficient sensitivity and the risks associated with radiation exposure. Pathological diagnosis, the gold standard for confirmation, also faces challenges like invasiveness and high costs. In treatment, surgery, radiotherapy, and chemotherapy are the main modalities, each encountering challenges related to precision, environmental adaptability, and side effects. Nanotechnology's advancement provides new solutions for the diagnosis and treatment of lung cancer, promising to enhance diagnostic accuracy and reduce side effects during treatment. This article introduces the main types of nanomaterials used in the field of lung cancer, offering a comprehensive overview of current research on the application of nanotechnology in early screening, diagnosis, treatment, and monitoring of lung cancer, and summarizing ongoing clinical research findings.
Collapse
Affiliation(s)
- Jiaqi Feng
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuting Li
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, China.
| | - Jiaxiong Tan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
4
|
Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172240. [PMID: 38582114 DOI: 10.1016/j.scitotenv.2024.172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Lipid nanoparticles (LNPs) are promising materials and human-use approved excipients, with manifold applications in biomedicine. Researchers have tended to focus on improving the pharmacological efficiency and organ targeting of LNPs, while paid relatively less attention to the negative aspects created by their specific physicochemical properties. Here, we discuss the impacts of LNPs' physicochemical properties (size, surface hydrophobicity, surface charge, surface modification and lipid composition) on the adsorption-transportation-distribution-clearance processes and bio-nano interactions. In addition, since there is a lack of review emphasizing on toxicological profiles of LNPs, this review outlined immunogenicity, inflammation, hemolytic toxicity, cytotoxicity and genotoxicity induced by LNPs and the underlying mechanisms, with the aim to understand the properties that underlie the biological effects of these materials. This provides a basic strategy that increased efficacy of medical application with minimized side-effects can be achieved by modulating the physicochemical properties of LNPs. Therefore, addressing the effects of physicochemical properties on toxicity induced by LNPs is critical for understanding their environmental and health risks and will help clear the way for LNPs-based drugs to eventually fulfill their promise as a highly effective therapeutic agents for diverse diseases in clinic.
Collapse
Affiliation(s)
- Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zuyi Fu
- College of Rehabilitation, Captital Medical University, Beijing, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
6
|
Shang Q, Liu W, Leslie F, Yang J, Guo M, Sun M, Zhang G, Zhang Q, Wang F. Nano-formulated delivery of active ingredients from traditional Chinese herbal medicines for cancer immunotherapy. Acta Pharm Sin B 2024; 14:1525-1541. [PMID: 38572106 PMCID: PMC10985040 DOI: 10.1016/j.apsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/05/2024] Open
Abstract
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wandong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- Traditional Chinese Medicine “Preventing Disease” Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Hao M, Xu H. Chemistry and Biology of Podophyllotoxins: An Update. Chemistry 2024; 30:e202302595. [PMID: 37814110 DOI: 10.1002/chem.202302595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| |
Collapse
|
8
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
9
|
Zhu L, Wu J, Gao H, Wang T, Xiao G, Hu C, Lin Q, Zhou Q. Tumor immune microenvironment-modulated nanostrategy for the treatment of lung cancer metastasis. Chin Med J (Engl) 2023; 136:2787-2801. [PMID: 37442772 PMCID: PMC10686602 DOI: 10.1097/cm9.0000000000002525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT As one of the most malignant tumors worldwide, lung cancer, fueled by metastasis, has shown rising mortality rates. However, effective clinical strategies aimed at preventing metastasis are lacking owing to its dynamic multi-step, complicated, and progressive nature. Immunotherapy has shown promise in treating cancer metastasis by reversing the immunosuppressive network of the tumor microenvironment. However, drug resistance inevitably develops due to inadequate delivery of immunostimulants and an uncontrolled immune response. Consequently, adverse effects occur, such as autoimmunity, from the non-specific immune activation and non-specific inflammation in off-target organs. Nanocarriers that improve drug solubility, permeability, stability, bioavailability, as well as sustained, controlled, and targeted delivery can effectively overcome drug resistance and enhance the therapeutic effect while reducing adverse effects. In particular, nanomedicine-based immunotherapy can be utilized to target tumor metastasis, presenting a promising therapeutic strategy for lung cancer. Nanotechnology strategies that boost the immunotherapy effect are classified based on the metastatic cascade related to the tumor immune microenvironment; the breaking away of primary tumors, circulating tumor cell dissemination, and premetastatic niche formation cause distant secondary site colonization. In this review, we focus on the opportunities and challenges of integrating immunotherapy with nanoparticle formulation to establish nanotechnology-based immunotherapy by modulating the tumor microenvironment for preclinical and clinical applications in the management of patients with metastatic lung cancer. We also discuss prospects for the emerging field and the clinical translation potential of these techniques.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honglin Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Wang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guixiu Xiao
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Cheng L, Mo Z, Zhang Q, Yang M, Liao X, Qiu L, Wang S, Yang X, Hu X. Development of hydroxypropyl cellulose and graphene oxide modified molecularly imprinted polymers for separation and enrichment of podophyllotoxin. J Chromatogr A 2023; 1711:464452. [PMID: 37857153 DOI: 10.1016/j.chroma.2023.464452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
A novel hydroxylpropyl cellulose (HPC) modified graphene oxide (GO)-based molecularly imprinted polymers (HPC-GO-MIP) have been developed as a solid phase extraction (SPE) material for the selective separation and extraction of podophyllotoxin. In this strategy, the cellulose with rich hydroxyl groups was introduced to form bi-functional monomers with methacrylic acid to provide more recognition sites for the improving of extraction efficiency, then GO was added as a two-dimensional substrate for MIP to improve the material morphology and surface area. The extraction performances of obtained HPC-GO-MIP material were tested, and the results prove its high efficiency and selectivity for podophyllotoxin extraction. The saturated adsorption capacity reached 23.1 μg/mg, and high enrichment efiiciency of 463.8 folds was realized under the premise of ensuring the recovery rate. The selective imprinting factor was much higher than those of kaempferol and quercetin, which were the main compounds in podophyllum fruit. Under the optimized SPE conditions, the HPC-GO-MIP based SPE-HPLC method showed the detection limit of 14.2 ng/mL for podophyllotoxin assay. When applied to podophyllum fruit samples, the material showed excellent ability of selective separation and enrichment of podophyllotoxin, and the relative standard deviations (RSD) of intra and inter batches were less than 8.1 % and 5.7 % in real samples detection. The HPC-GO-MIP SPE method broadened the application for high multiple extraction in trace analyte samples and provided a valuable solution to improve the selective separation and detection.
Collapse
Affiliation(s)
- Lidong Cheng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Zhiqing Mo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Qiongzhi Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Man Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xianglin Liao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Liyu Qiu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Xixiang Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaogang Hu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
11
|
Zhou X, Zhang P, Liu N, Zhang X, Lv H, Xu W, Huo M. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release 2023; 361:161-177. [PMID: 37536546 DOI: 10.1016/j.jconrel.2023.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Pancreatic cancer (PC) carries a poor prognosis among all malignancies and poses great challenges to clinical drug accessibility due to the severely fibrotic and hypoxic tumor microenvironment (TME). Therein, cancer-associated fibroblasts (CAFs), which are extremely abundant in PC, play a key role in forming the complex PC microenvironment. Therefore, a highly efficient TME reprogramming therapeutic paradigm that can specifically inhibit CAF function is urgently needed. Herein, we successfully developed a novel CAF-tailored nanosystem (Dex-GP-DOCA, DPD) loaded with a potent anti-fibrosis flavonoid compound (Quercetin, QUE), which possesses biological responsiveness to fibroblast activation protein alpha (FAP-α), prolonged TME remodeling and enhancement of clinical chemotherapeutics. Specifically, DPD/QUE allowed for extracellular matrix (ECM) reduction, vessel normalization, hypoxia-induced drug resistance reversal, and blockade of Wnt16 paracrine in CAFs. More importantly, this chemotherapy conducive microenvironment persisted for at least 8 days following treatment with DPD/QUE. It should also be noted that the effective and prolonged microenvironment modulation induced by DPD/QUE significantly improved the chemotherapy sensitivity of Abraxane and gemcitabine, the first-line chemotherapeutic drugs for PC, with inhibition rates increasing from 37.5% and 40.0% to 87.5% and 85.2%, respectively. Overall, our CAFs-targeted nanosystem showed promising prospects for remodeling the TME and facilitating chemotherapy for refractory pancreatic cancer.
Collapse
Affiliation(s)
- Xinyuan Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Pan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao Zhang
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Hui Lv
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Wei Xu
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
12
|
Niu J, Yuan M, Chen J, Wang L, Qi Y, Bai K, Fan Y, Gao P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023; 28:5712. [PMID: 37570682 PMCID: PMC10420961 DOI: 10.3390/molecules28155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.
Collapse
Affiliation(s)
| | | | | | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (J.N.); (M.Y.); (J.C.); (K.B.); (Y.F.)
| | | | | | | | | |
Collapse
|
13
|
Wang X, Wang Y, Yu J, Qiu Q, Liao R, Zhang S, Luo C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023; 15:784. [PMID: 36986645 PMCID: PMC10058384 DOI: 10.3390/pharmaceutics15030784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Podophyllotoxin (PPT) has shown strong antitumor effects on various types of cancers. However, the non-specific toxicity and poor solubility severely limits its clinical transformation. In order to overcome the adverse properties of PPT and explore its clinical potential, three novel PTT-fluorene methanol prodrugs linked by different lengths of disulfide bonds were designed and synthesized. Interestingly, the lengths of the disulfide bond affected the drug release, cytotoxicity, pharmacokinetic characteristics, in vivo biodistribution and antitumor efficacy of prodrug NPs. To be more specific, all three PPT prodrugs could self-assemble into uniform nanoparticles (NPs) with high drug loading (>40%) via the one-step nano precipitation method, which not only avoids the use of surfactants and cosurfactants, but also reduces the systemic toxicity of PPT and increases the tolerated dose. Among the three prodrug NPs, FAP NPs containing α-disulfide bond showed the most sensitive tumor-specific response and fastest drug release rate, thus demonstrating the strongest in vitro cytotoxicity. In addition, three prodrug NPs showed prolonged blood circulation and higher tumor accumulation. Finally, FAP NPs demonstrated the strongest in vivo antitumor activity. Our work will advance the pace of podophyllotoxin towards clinical cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
14
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- grid.410560.60000 0004 1760 3078The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- grid.49470.3e0000 0001 2331 6153Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- grid.410654.20000 0000 8880 6009Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- grid.443353.60000 0004 1798 8916Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
15
|
Tian Y, Huang Y, Zhang X, Tang G, Gao Y, Zhou Z, Li Y, Wang H, Yu X, Li X, Liu Y, Yan G, Wang J, Cao Y. Self-Assembled Nanoparticles of a Prodrug Conjugate Based on Pyrimethanil for Efficient Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11901-11910. [PMID: 36111893 DOI: 10.1021/acs.jafc.2c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled nanotechnology is a promising strategy for improving the effective utilization of pesticides due to its distinct advantages. Herein, an amide-bonded prodrug conjugate based on pyrimethanil (PYR) and butyric acid (BA) was successfully synthesized by the nucleophilic substitution reaction and subsequently self-assembled into spherical nanoparticles (PB NPs) with an average size of 85 nm through the solvent exchange method without using any toxic adjuvant. The results showed that PB NPs based on PYR and BA had a synergistic antimicrobial activity against S. sclerotiorum on plant leaves due to good photostability, low volatilization, good surface activity, and improved retention. Additionally, PB NPs could be used by plant cells as nutrients to promote the growth of plants and thus reduced the toxicity of PYR to plant. Therefore, this prodrug conjugate self-assembly nanotechnology would provide a promising strategy for improving the effective utilization rates of pesticides and reducing their toxicities to plants.
Collapse
Affiliation(s)
- Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| |
Collapse
|
16
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
17
|
Wang R, Xuan Y, Zhao Y, Wang W, Ma P, Ju B, Zhen Y, Zhang S. Cationic Nanoparticulate System for Codelivery of MicroRNA-424 and Podophyllotoxin as a Multimodal Anticancer Therapy. Mol Pharm 2022; 19:2092-2104. [PMID: 35533302 DOI: 10.1021/acs.molpharmaceut.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the complexity of cancer ecosystems, the efficacy of single-agent chemotherapy is limited. Herein, we report the use of cationic nanoparticles (designated PPCNs) generated from a chemically modified form of the chemotherapeutic agent podophyllotoxin (PPT) to deliver both microRNA-424 (miR-424) and PPT to tumor cells, thus combining chemotherapy and gene therapy. We evaluated the optimal loading ratio of miR-424─which targets programmed cell death ligand 1 (PD-L1) mRNA and reduces PD-L1 production, thus promoting the attack of tumor cells by T cells─for effective delivery of miR-424 and PPCNs into nonsmall-cell lung cancer cells (H460). Because miR-424 can reverse chemotherapy resistance, treatment of the tumor cells with the combination of miR-424 and PPT enhanced their sensitivity to PPT. Because miR-424 and the PPCNs regulated PD-L1 production in different ways, the miR-424@PPCN complexes were significantly more efficacious than either miR-424 or PPCNs alone. We also demonstrated that treatment of tumor-bearing mice with these complexes significantly inhibited tumor growth and extended survival. Moreover, additional in vitro experiments revealed that the complexes could remodel the tumor immune microenvironment, relieve immunosuppression, and achieve immune normalization. This novel system for delivering a combination of PPT and miR-424 shows great potential for the multimodal treatment of lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|