1
|
Shang H, Peng J, Zhou Y, Guo L, Li H, Wang W. Graphdiyne and its heteroatom-doped derivatives for Li-ion/metal batteries. Dalton Trans 2025. [PMID: 39829409 DOI: 10.1039/d4dt03268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries. GDY is primarily synthesized via a cross-coupling reaction of hexaethynylbenzene (HEB). Under similar preparation conditions, the cross-coupling reaction of aryne precursors, other than HEB, yields many GDY heteroatom-doped derivatives. This introduces numerous heteroatomic defects as well as electrochemically active sites, potentially enhancing electrochemical performance. Recent advancements have focused on utilizing GDY and its heteroatom-doped derivatives as electrode materials or composite materials in Li-ion/metal batteries. This review systematically summarizes the strategies developed for GDY and its heteroatom-doped derivatives. Notably, recent research on the effects of morphology and chemical/electronic structure on performance, particularly new conceptual mechanisms in Li-ion/metal batteries, including self-expanding Li-ion transport channels and a capture/pore filling-intercalation hybrid mechanism, is briefly described. The results presented herein highlight the significant potential of GDY and its heteroatom-doped derivatives for energy storage applications and inspire further development.
Collapse
Affiliation(s)
- Hong Shang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Jia Peng
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Yougui Zhou
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Lihua Guo
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Huipeng Li
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Weiliang Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| |
Collapse
|
2
|
Liu Y, Xu A, Wang J, Jiang F, Pang H, Yang J, Zhou Y. Amorphous MoS 3 Anchored within Hollow Carbon as a Cathode Material for Magnesium-Ion Batteries. ACS NANO 2024. [PMID: 39568212 DOI: 10.1021/acsnano.4c12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Magnesium-ion batteries are considered the next-generation promising large-scale energy storage devices owing to the low-cost and nondendritic features of metallic Mg anode. Nevertheless, such strong electrostatic interaction between bivalent Mg2+ and crystalline cathode materials will lead to low capacity and poor diffusion kinetics, which seriously hinders the further development of magnesium-ion batteries. Herein, amorphization and anion-rich strategies are employed to prepare well-designed cathode materials with MoS3 anchored on hollow carbon nanospheres (a-MoS3/HCS). The amorphous MoS3 provides unrestricted 3D diffusion access and effectively boosts the Mg2+ diffusion kinetics, while the anion-rich feature of MoS3 offers rich active sites for Mg2+ storage and finally contributes to a high discharge capacity driven by the anionic redox mechanism. Moreover, the effective modification of hollow carbon nanospheres buffers the volumetric changes of MoS3 and improves the electron transfer efficiency. Owing to the above-mentioned multiple advantages, a-MoS3/HCS exhibits an ultrahigh discharge capacity (489.2 mAh g-1 at 50 mA g-1) and high cyclic performance (200.1 mAh g-1 at 2 A g-1 for 300 cycles), distinctly superior to those of crystalline 1T/2H-MoS2/HCS and 2H-MoS2/HCS and surpassing almost all of the molybdenum sulfide-based cathodes. Furthermore, the high-performance a-MoS3/HCS-based pouch cell with the ability to drive various mini-type devices confirms the potential application values. The excellent magnesium storage properties of a-MoS3/HCS are further verified by the related kinetics analysis, DFT theoretical calculation, and reversible electrochemical reactions. The amorphous and redox-rich tactics of a-MoS3/HCS provide an innovative pathway to explore high-efficiency cathode materials for various multivalent-ion batteries.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ao Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jiahui Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Fuyi Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanli Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
3
|
Fan Z, Li R, Zhang X, Zhao W, Pan Z, Yang X. Defect Engineering: Can it Mitigate Strong Coulomb Effect of Mg 2+ in Cathode Materials for Rechargeable Magnesium Batteries? NANO-MICRO LETTERS 2024; 17:4. [PMID: 39302540 DOI: 10.1007/s40820-024-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered a promising "post lithium-ion battery" system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market. However, the sluggish diffusion kinetics of bivalent Mg2+ in the host material, related to the strong Coulomb effect between Mg2+ and host anion lattices, hinders their further development toward practical applications. Defect engineering, regarded as an effective strategy to break through the slow migration puzzle, has been validated in various cathode materials for RMBs. In this review, we first thoroughly understand the intrinsic mechanism of Mg2+ diffusion in cathode materials, from which the key factors affecting ion diffusion are further presented. Then, the positive effects of purposely introduced defects, including vacancy and doping, and the corresponding strategies for introducing various defects are discussed. The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized. Finally, the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
Collapse
Affiliation(s)
- Zhengqing Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ruimin Li
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanyu Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Rahmatinejad J, Liu X, Raisi B, Ye Z. Synergistic Cathode Design for High-Performance Dual-Salt Magnesium/Lithium-Ion Batteries Using 2D/2D 1T/2H-MoS 2@Ti 3C 2T x MXene Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401391. [PMID: 38698578 DOI: 10.1002/smll.202401391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Magnesium-ion batteries (MIBs) and dual-salt magnesium/lithium-ion batteries (MLIBs) have emerged as promising contenders for next-generation energy storage. In contrast to lithium metal anode in lithium metal batteries, magnesium metal anode in MIBs and MLIBs presents a safer alternative due to the limited dendrite growth and higher volumetric capacity, along with higher natural abundance. This study explores a MLIB configuration with a novel cathode design by employing a 2D/2D nanocomposite of 1T/2H mixed phase MoS2 and delaminated Ti3C2Tx MXene (1T/2H-MoS2@MXene) to address challenges associated with slow kinetics of magnesium ions during cathode interactions. This cathode design takes advantage of the high electrical conductivity of Ti3C2Tx MXene and the expanded interlayer spacing with enhanced conductivity of the 1T metallic phase in 1T/2H mixed phase MoS2. Through a designed synthesis method, the resulting nanocomposite cathode maintains structural integrity, enabling the stable and reversible storage of dual Mg2+ and Li+ ions. The nanocomposite cathode demonstrates superior performance in MLIBs compared to individual components (253 mAh g-1 at 50 mA g-1, and 36% of capacity retention at 1,000 mA g-1), showcasing short ion transport paths and fast ion storage kinetics. This work represents a significant advancement in cathode material design for cost-effective and safe MLIBs.
Collapse
Affiliation(s)
- Jalal Rahmatinejad
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xudong Liu
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Bahareh Raisi
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
5
|
Wang W, Xiong F, Zhu S, Yan M, Liao X, Yu K, Cui L, Chen J, Wang J, Lan R, Xie J, An Q, Mai L. Electron-injection-engineering induced dual-phase MoO 2.8F 0.2/MoO 2.4F 0.6 heterostructure for magnesium storage. Natl Sci Rev 2024; 11:nwae238. [PMID: 39131923 PMCID: PMC11312365 DOI: 10.1093/nsr/nwae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Rechargeable magnesium batteries (RMBs) have received increased attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating the Mo 4d-orbital splitting manner and first fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improving its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mAh g-1 at 0.1 A g-1, pushing forward the orbital-scale manipulation for high-performance RMBs.
Collapse
Affiliation(s)
- Weixiao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fangyu Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohua Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Mengyu Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaobin Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lianmeng Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Junjun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruoqi Lan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| |
Collapse
|
6
|
Yang Y, Lv TR, Zhang WH, Zhang JY, Yin MJ, An QF. Tailored Polypyrrole Nanofibers as Ion-to-Electron Transduction Membranes for Wearable K + Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311802. [PMID: 38258398 DOI: 10.1002/smll.202311802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.
Collapse
Affiliation(s)
- Yaqiong Yang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wen-Hai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Yue Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
8
|
Zhang P, Wang X, Yang Y, Yang H, Lu C, Su M, Zhou Y, Dou A, Li X, Hou X, Liu Y. Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS 2/N-doped carbon anode for potassium-ion battery. J Colloid Interface Sci 2024; 655:383-393. [PMID: 37948812 DOI: 10.1016/j.jcis.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The 2H-MoS2/nitrogen-doped carbon (2H-MoS2/NC) composite is a promising anode material for potassium-ion batteries (PIBs). Various transition metal doping has been adopted to optimize the poor intrinsic electronic conductivity and lack of active sites in the intralayer of 2H-MoS2. However, its optimization mechanisms have not been well probed. In this paper, using Cobalt (Co) as an example, we aim to investigate the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2H-MoS2/NC via first-principles calculation. Co doping is found to be effective in improving the electronic conductivity and the areas of active sites on different positions (C surface, interface, and MoS2 surface) of 2H-MoS2/NC. The increased active sites can optimize K adsorption and diffusion capability/processes, where general smaller K adsorption energies and diffusion energy barriers are found after Co doping. This helps improve the rate performance. Especially, the pyridinic N (pyN), pyrrolic N (prN), and graphitic N (grN) are first unveiled to respectively work best in K kinetic adsorption, diffusion, and interfacial stability. These findings are instructive to experimental design of high rate 2H-MoS2/NC electrode materials. The roles of different N types provide new ideas for optimal design of other functional composite materials.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xu Wang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haifeng Yang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunsheng Lu
- School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6845, Australia
| | - Mingru Su
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Zhou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aichun Dou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Li
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochuan Hou
- Zhejiang New Era Zhongneng Circulation Technology Co., Ltd., Shaoxing 312369, China
| | - Yunjian Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Rahmatinejad J, Raisi B, Liu X, Zhang X, Sadeghi Chevinli A, Yang L, Ye Z. 1T-2H Mixed-Phase MoS 2 Stabilized with a Hyperbranched Polyethylene Ionomer for Mg 2+ /Li + Co-Intercalation Toward High-Capacity Dual-Salt Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304878. [PMID: 37691015 DOI: 10.1002/smll.202304878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Dual-salt magnesium/lithium-ion batteries (MLIBs) benefit from fast lithium ion diffusion on the cathode side while providing safety due to the dendrite-free Mg2+ stripping/plating mechanism on the anode side. Bulk MoS2 (B-MoS2 ), as a cathode for magnesium-ion batteries (MIBs), suffers from low conductivity and relatively van der Waals gaps and, consequently, resists against divalent Mg2+ insertion due to the high Coulombic interactions. In MLIBs, it exhibits a Daniell-cell type mechanism with the sole accommodation of Li+ . In this paper, the synthesis of a 1T/2H mixed-phase MoS2 (MP-MoS2 ) modified with a hyperbranched polyethylene ionomer, I@MP-MoS2 , for high-capacity MLIBs with a distinct Mg2+ /Li+ co-intercalation mechanism is reported. Benefiting from the enhanced conductivity (due to 53% metallic 1T phase), expanded van der Waals gaps (79% expansion compared to B-MoS2 , 1.11 vs 0.62 nm), and enhanced interactions with THF-based electrolytes following the modification, I@MP-MoS2 shows a dramatically increased Mg2+ storage compared to its parent analogue (144 mAh g-1 vs ≈2 mAh g-1 at 20 mA g-1 ). In MLIBs, I@MP-MoS2 is demonstrated to exhibit remarkable specific capacities up to ≈270 mAh g-1 at 20 mA g-1 through a Mg2+ /Li+ co-intercalation mechanism with 87% of capacity retention over 200 cycles at 100 mA g-1 .
Collapse
Affiliation(s)
- Jalal Rahmatinejad
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Bahareh Raisi
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xudong Liu
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Ximeng Zhang
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Ahmad Sadeghi Chevinli
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Liuqing Yang
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
10
|
Xie A, Guo R, Wu L, Dong W. Anion-substitution interfacial engineering to construct C@MoS 2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J Colloid Interface Sci 2023; 651:1-8. [PMID: 37536255 DOI: 10.1016/j.jcis.2023.07.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Developing an effective strategy to regulate the interfacial properties of hierarchical structure is of great significance for preparation of high-performance electromagnetic wave absorption (EMA) materials. Ion-substitution can change intrinsic structure and properties of a materials, but its effect on the interfacial properties of hierarchical structure remained to be explored. Herein, we first constructed a C@MoS2 hierarchical structure via simple hydrothermal reaction, then used the ion-substitution strategy to replace the S atoms in MoS2 with O, F and Se, and finally obtained anion-substituted hierarchical structure (C@X-MoS2, X = O, F, Se). The results show that ion-substitution destroys the MoS2 crystal structure and realizes tunable dielectric properties of C@MoS2, which leads to further enhancement of overall interfacial polarization. After optimization, the absorption strength and width of C@O-MoS2 has been significantly improved. The minimum reflection loss (RLmin) reaches -62.17 dB, and the maximum effective absorption bandwidth (EABmax) is 7.0 GHz. The simulation results show the obtained absorbent can greatly reduce the radar cross section of target, indicating it has broad application potential. Therefore, this work provides a novel method for regulation of EMA performance of hierarchical structure and preparation of high-performance absorbents.
Collapse
Affiliation(s)
- Aming Xie
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ronghui Guo
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lipeng Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Li B, Nie K, Zhang Y, Yi L, Yuan Y, Chong S, Liu Z, Huang W. Engineering Single-Layer Hollow Structure of Transition Metal Dichalcogenides with High 1T-Phase Purity for Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303285. [PMID: 37534746 DOI: 10.1002/adma.202303285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Rational design and controllable synthesis of hollow structures based on transition metal dichalcogenides (TMDs) have gained tremendous attention in the field of clean energy. However, the general synthetic strategies to fabricate single-layer hollow structures of TMDs, especially with unconventional phases (e.g., 1T or 1T'), still pose significant challenges. Herein, a scalable method is reported for the synthesis of single-layer hollow spheres (SLHS) of TMDs with high 1T-phase purity by etching bismuth (Bi) cores from pre-synthesized Bi@TMDs core-shell heterostructures including SLHS-1T-MoS2 , SLHS-1T-MoSe2 , SLHS-1T-WS2 , and SLHS-1T-WSe2 . Additionally, the etched Bi ions can be adsorbed on the single-layer TMDs shells in the form of single atoms (SAs) via the Bi─S bond. Due to the benefits of the single-layer hollow structure, high conductivity of 1T phase, and synergistic effect of Bi SAs and TMDs supports, the fabricated SLHS-1T-MoS2 exhibits superior electrocatalytic performance for hydrogen production. This work provides a way to manufacture advanced functional materials based on the single-layer hollow structures of 1T-TMDs and to expand their applications.
Collapse
Affiliation(s)
- Binjie Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Kunkun Nie
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Yujia Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Lixin Yi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Yanling Yuan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
12
|
Fei Y, Man Y, Sun J, Du Y, Chen B, Bao J, Zhou X. Implanting CuS Quantum Dots into Carbon Nanorods for Efficient Magnesium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301954. [PMID: 37086143 DOI: 10.1002/smll.202301954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Magnesium-ion batteries (MIBs) are emerging as potential next-generation energy storage systems due to high security and high theoretical energy density. Nevertheless, the development of MIBs is limited by the lack of cathode materials with high specific capacity and cyclic stability. Currently, transition metal sulfides are considered as a promising class of cathode materials for advanced MIBs. Herein, a template-based strategy is proposed to successfully fabricate metal-organic framework-derived in-situ porous carbon nanorod-encapsulated CuS quantum dots (CuS-QD@C nanorods) via a two-step method of sulfurization and cation exchange. CuS quantum dots have abundant electrochemically active sites, which facilitate the contact between the electrode and the electrolyte. In addition, the tight combination of CuS quantum dots and porous carbon nanorods increases the electronic conductivity while accelerating the transport speed of ions and electrons. With these architectural and compositional advantages, when used as a cathode material for MIBs, the CuS-QD@C nanorods exhibit remarkable performance in magnesium storage, including a high reversible capacity of 323.7 mAh g-1 at 100 mA g-1 after 100 cycles, excellent long-term cycling stability (98.5 mAh g-1 after 1000 cycles at 1.0 A g-1 ), and satisfying rate performance (111.8 mA g-1 at 1.0 A g-1 ).
Collapse
Affiliation(s)
- Yating Fei
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yuehua Man
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Bingbing Chen
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jianchun Bao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Yu S, Chen J, Chen C, Zhou M, Shen L, Li B, Lin H. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
14
|
Ma J, Zhang Y, Wang B, Jiang Z, Zhang Q, Zhuo S. Interfacial Engineering of Bimetallic Ni/Co-MOFs with H-Substituted Graphdiyne for Ammonia Electrosynthesis from Nitrate. ACS NANO 2023; 17:6687-6697. [PMID: 36930780 DOI: 10.1021/acsnano.2c12491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical synthesis of ammonia is highly dependent on the coupling reaction between nitrate and water, for which an electrocatalyst with a multifunctional interface is anticipated to promote the deoxygenation and hydrogenation of nitrate with water. Herein, by engineering the surface of bimetallic Ni/Co-MOFs (NiCoBDC) with hydrogen-substituted graphdiyne (HsGDY), a hybrid nanoarray of NiCoBDC@HsGDY with a multifunctional interface has been achieved toward scale-up of the nitrate-to-ammonia conversion. On the one hand, a partial electron transfers from Ni2+ to the coordinatively unsaturated Co2+ on the surface of NiCoBDC, which not only promotes the deoxygenation of *NO3 on Co2+ but also activates the water-dissociation to *H on Ni2+. On the other hand, the conformal coated HsGDY facilitates both electrons and NO3- ions gathering on the interface between NiCoBDC and HsGDY, which moves forward the rate-determining step from the deoxygenation of *NO3 to the hydrogenation of *N with both *H on Ni2+ and *H2O on Co2+. As a result, such a NiCoBDC@HsGDY nanoarray delivers high NH3 yield rates with Faradaic efficiency above 90% over both wide potential and pH windows. When assembled into a galvanic Zn-NO3- battery, a power density of 3.66 mW cm-2 is achieved, suggesting its potential in the area of aqueous Zn-based batteries.
Collapse
Affiliation(s)
- Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| | - Yuting Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zixin Jiang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| |
Collapse
|
15
|
Ma J, Wang R, Wang B, Luo J, Zhang Q, Zhuo S. Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chem Commun (Camb) 2023; 59:4348-4351. [PMID: 36946210 DOI: 10.1039/d2cc06989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
To mimic enzymes in nature, a set of hybrid nanoarrays of Cu-MOFs sealed in hydrogen-substituted graphdiyne has been developed in order to serve as Lewis-acid-promoted catalysts. By regulating the electron-withdrawing capability of the ligands bridging Cu2+ sites, these Cu-MOFs provided different levels of Lewis acidity toward nitrate affinity, a feature crucial for nitrate-to-ammonia conversion.
Collapse
Affiliation(s)
- Jiahao Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Ru Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jiaxin Luo
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Sifei Zhuo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
16
|
Liu B, Zhang J, Han Q, Shu Y, Wang L, Li H, Li L, Wang Z. Redispersion mechanisms of 2D nanosheets: combined role of intersheet contact and surface chemistry. NANOSCALE 2023; 15:3159-3168. [PMID: 36723369 DOI: 10.1039/d2nr05471j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Redispersion behavior recovers the important features of nanomaterials and thus holds great promise for exciting applications of nanomaterials in different fields. In contrast to the redispersion of nanoparticles, which is mainly determined by surface chemistry, the redispersion of 2D nanosheets could be more complicated and is not well understood. In the present study, the redispersion behavior of 2D NMs was investigated by selecting representative nanosheets, MoS2, graphene oxide and their derivatives with both experimental methods and molecular dynamics (MD) simulations. The good agreement between experiments and MD simulations suggested that the redispersion in response to surface chemistry was regulated by the alignment configurations of the nanosheets. More importantly, we revealed that the difference in the hydrophilicity properties is responsible for the distinctive separation distances of the 1T and 2H MoS2 nanosheets. Appropriately adjusting the alignment configuration of the nanosheets can alter the effect of surface hydrophilicity on the redispersion behavior. Based on these fundamental findings, we identified three distinctive zones for the redispersion tendency of the 2D nanosheets with different surface hydrophilicity, Hamaker constants and intersheet contacts. As one of the implications, the results serve as a prescreening for the stability of the 2D restacking-based membrane. For the first time, the study systematically reported the interplay of intersheet configuration and surface chemistry in the redispersion of nanosheets, which provides a theoretical foundation for the processing and applications of 2D nanomaterials.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jingyan Zhang
- Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Li
- Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
17
|
Zeng R, Xu J, Liang T, Li M, Tang D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens 2023; 8:317-325. [PMID: 36617728 DOI: 10.1021/acssensors.2c02314] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work presents a photocurrent-polarity-switching-based photoelectrochemical (PEC) biosensing platform for ultrasensitive detection of microRNA-21 (miR-21) through target-triggered catalytic hairpin assembly (CHA) for modulation of methylene blue (MB) and ferrocene (Fc) positional configurations using double-shelled Cu-doped ZnS nanocages (NCs)-Au nanoparticles (NPs) as photoactive materials. In the presence of miR-21, the assembly of MB-labeled HP1 and Fc-labeled HP2 leads to the generation of a large amount of double-stranded DNA (HP1-HP2), which pushes MB away from the electrode surface and brings Fc close to the electrode surface, resulting in effectively quenching the enhanced PEC signal to activate the photocurrent-polarity-switching system. Benefiting from the distance-controllable strategy, the designed PEC bioanalysis can effectively eliminate false-positive and false-negative signals due to the change of different signal expression patterns (from traditional the "signal-on" mode to the photocurrent-polarity-switching mode), thereby significantly improving the sensing specificity and sensitivity. The proposed PEC sensing system exhibited satisfying photocurrent responses toward target miR-21 within the working range from 1.0 fM to 1 nM at a low limit of detection (LOD) of 0.58 fM. More importantly, we demonstrated the successful integration of the proposed PEC biosensor with a handheld wireless device for instant detection of miR-21 concentrations in practical samples.
Collapse
Affiliation(s)
- Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tikai Liang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
18
|
Yuan J, Qiu M, Hu X, Liu Y, Zhong G, Zhan H, Wen Z. Pseudocapacitive Vanadium Nitride Quantum Dots Modified One-Dimensional Carbon Cages Enable Highly Kinetics-Compatible Sodium Ion Capacitors. ACS NANO 2022; 16:14807-14818. [PMID: 35981317 DOI: 10.1021/acsnano.2c05662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetics incompatibility between battery-type anode and capacitive-type cathode for sodium ion hybrid capacitors (SIHCs) seriously hinders their overall performance output. Herein, we construct a SIHCs device by coupling with quantum grade vanadium nitride (VN) nanodots anchored in one-dimensional N/F co-doped carbon nanofiber cages hybrids (VNQDs@PCNFs-N/F) as the freestanding anode and the corresponding activated N/F co-doped carbon nanofiber cages (APCNFs-N/F) as cathode. The strong coupling of VN quantum dots with N/F co-doped 1D conductive carbon cages effectively facilitates the ion/electron transport and intercalation-conversion-deintercalation reactions, ensuring fast sodium storage to surmount aforesaid kinetics incompatibility. Additionally, density functional theory calculations cogently manifest that the abundant active sites in the VNQDs@PCNFs-N/F configuration boost the Na+ adsorption/reaction activity well which will promote both "intrinsic" and "extrinsic" pseudocapacitance and further improve anode kinetics. Consequently, the assembled SIHCs device can achieve high energy densities of 157.1 and 95.0 Wh kg-1 at power densities of 198.8 and 9100.5 W kg-1, respectively, with an ultralong cycling life over 8000 cycles. This work further verified the feasibility of kinetics-compatible electrode design strategy toward metal ion hybrid capacitors.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Min Qiu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350000, China
| | - Xiang Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yangjie Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Guobao Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
19
|
Du Y, Zhao S, Tang H, Ni Z, Xia S. An active MoS2 with Pt-doping and sulfur vacancy for strengthen CO2 adsorption and fast Capture: A DFT approach. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
21
|
Li X, Zhang S, Chen Y, Wang S, Xu Q, Xu J. Designing anisotropic inorganic nanocapsules via self-assembly of polymer-like ultrathin Au nanowires. NANOSCALE 2022; 14:10060-10066. [PMID: 35791869 DOI: 10.1039/d2nr01749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anisotropic assembly of nanomaterials into hollow structures is an attractive technique in biomedicine and biosensing. Commonly used polymer materials are easy to assemble yet it is hard to form anisotropic morphologies. Here in this work, we successfully prepared a novel gold nanocapsule with an anisotropic ellipsoidal shape and cavity structure by the self-assembly of ultrathin Au nanowires. The assembly mechanism is further studied by tuning the assembly conditions such as nanowire concentration, solvent composition, and temperature. It is found that the controlling forces of the nanowire assembly process are mainly the symmetric interfacial tension and the asymmetric nanowire deformation potential, which contribute together to result in anisotropic nanocapsules. Finally, the obtained Au nanocapsules were used as nanocarriers to load pyrene as a model drug, showing great drug loading ability and pH-responsive drug release behavior. We believe that this unique anisotropic assembly product will bring new insights into nanostructure design and soft matter research.
Collapse
Affiliation(s)
- Xingyun Li
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | - Sai Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | - Yuan Chen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 119077
| | - Shanshan Wang
- Department of Chemistry, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, Guangdong, China
| |
Collapse
|
22
|
Li J, Xu Y, He Y, Zhang Z, Zhu C, Zhou X. Core-Shell-Structured Carbon Nanotube@VS 4 Nanonecklaces as a High-Performance Cathode Material for Magnesium-Ion Batteries. J Phys Chem Lett 2022; 13:5726-5733. [PMID: 35713610 DOI: 10.1021/acs.jpclett.2c01299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a typical layered transition metal chalcogenide, VS4 is considered as a promising cathode material for advanced magnesium-ion batteries. However, the poor electronic conductivity and severe polarization effect restrict its practical applications. Herein, we report a betaine-assisted solvothermal strategy to coat VS4 nanoblocks on the surface of carbon nanotubes (CNTs), obtaining unique core-shell-structured CNT@VS4 nanonecklaces. As a result of the morphology-controlling effect of betaine, VS4 exhibits an unusual nanoblock morphology, which renders abundant active sites and promotes the contact between the electrode and electrolyte. CNTs serve as a highly conductive skeleton, combining with the VS4 nanoblocks and ensuring their uniform distribution. As a benefit from the synergistic effect of abundant active sites and electron-conductive highways, the as-synthesized CNT@VS4 nanonecklaces manifest remarkable performance for magnesium storage, including a large reversible capacity of 170 mAh g-1 at 0.1 A g-1, outstanding cycle stability (76.3 mAh g-1 after 800 cycles at 0.5 A g-1), and superior rate performance (77.2 mAh g-1 at 2 A g-1).
Collapse
Affiliation(s)
- Jianbo Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yifan Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yanan He
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhuangzhuang Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Chuannan Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|