1
|
Jeon S, Jung WG, Bae H, Ahn S, Koo B, Yu W, Kim S, Oh D, Kim U, Barnett SA, Seo J, Kim BJ, Jung W. Concurrent Amorphization and Nanocatalyst Formation in Cu-Substituted Perovskite Oxide Surface: Effects on Oxygen Reduction Reaction at Elevated Temperatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404103. [PMID: 39120472 DOI: 10.1002/adma.202404103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The activity and durability of chemical/electrochemical catalysts are significantly influenced by their surface environments, highlighting the importance of thoroughly examining the catalyst surface. Here, Cu-substituted La0.6Sr0.4Co0.2Fe0.8O3-δ is selected, a state-of-the-art material for oxygen reduction reaction (ORR), to explore the real-time evolution of surface morphology and chemistry under a reducing atmosphere at elevated temperatures. Remarkably, in a pioneering observation, it is discovered that the perovskite surface starts to amorphize at an unusually low temperature of approximately 100 °C and multicomponent metal nanocatalysts additionally form on the amorphous surface as the temperature raises to 400 °C. Moreover, this investigation into the stability of the resulting amorphous layer under oxidizing conditions reveals that the amorphous structure can withstand a high-temperature oxidizing atmosphere (≥650 °C) only when it has undergone sufficient reduction for an extended period. Therefore, the coexistence of the active nanocatalysts and defective amorphous surface leads to a nearly 100% enhancement in the electrode resistance for the ORR over 200 h without significant degradation. These observations provide a new catalytic design strategy for using redox-dynamic perovskite oxide host materials.
Collapse
Affiliation(s)
- SungHyun Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hohan Bae
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sejong Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bonjae Koo
- School of Chemistry and Energy, Sungshin Women's University, 2 Bomun-ro 34da-gil, Seoul, 02844, Republic of Korea
| | - WonJeong Yu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Uisik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Scott A Barnett
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jongsu Seo
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Vera E, Trillaud V, Metaouaa J, Aouine M, Boreave A, Burel L, Roiban IL, Steyer P, Vernoux P. Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7219-7231. [PMID: 38308580 DOI: 10.1021/acsami.3c17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
This study investigated the redox exsolution of Ni nanoparticles from a nanoporous La0.52Sr0.28Ti0.94Ni0.06O3 perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H2-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved. The activity and stability of exsolved nanoparticles were compared with their impregnated counterparts on a perovskite material with a similar chemical composition (La0.65Sr0.35TiO3) and a comparable specific surface area and Ni loading. After an aging step at 800 °C, the catalytic activity of exsolved Ni nanoparticles at 300 °C was found to be 10 times higher than that of impregnated ones, emphasizing the thermal stability of Ni nanoparticles prepared by redox exsolution.
Collapse
Affiliation(s)
- Elizabeth Vera
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Victor Trillaud
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Jamila Metaouaa
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Mimoun Aouine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Antoinette Boreave
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Laurence Burel
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Ioan-Lucian Roiban
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Philippe Steyer
- Univ. Lyon, INSA - Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5510, Mateis, 7 av Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Philippe Vernoux
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
3
|
Zhu S, Fan J, Li Z, Wu J, Xiao M, Du P, Wang X, Jia L. Metal exsolution from perovskite-based anodes in solid oxide fuel cells. Chem Commun (Camb) 2024; 60:1062-1071. [PMID: 38167745 DOI: 10.1039/d3cc05688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Solid oxide fuel cells (SOFCs) are highly efficient and environmentally friendly devices for converting fuel into electrical energy. In this regard, metal nanoparticles (NPs) loaded onto the anode oxide play a crucial role due to their exceptional catalytic activity. NPs synthesized through exsolution exhibit excellent dispersion and stability, garnering significant attention for comprehending the exsolution process mechanism and consequently improving synthesis effectiveness. This review presents recent advancements in the exsolution process, focusing on the influence of oxygen vacancies, A-site defects, lattice strain, and phase transformation on the variation of the octahedral crystal field in perovskites. Moreover, we offer insights into future research directions to further enhance our understanding of the mechanism and achieve significant exsolution of NPs on perovskites.
Collapse
Affiliation(s)
- Shasha Zhu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, P. R. China
| | - Zongbao Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Jun Wu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Mengqin Xiao
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Pengxuan Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Xin Wang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lichao Jia
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Comparán-Padilla VE, Romero-de la Cruz MT, García-Díaz R, Pérez-Camacho O. CO to formaldehyde transformation study on pristine and Au-modified BaTiO 3(001) through DFT calculations. J Mol Model 2023; 29:285. [PMID: 37608185 DOI: 10.1007/s00894-023-05697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
CONTEXT BaTiO3 is one of the most important ferroelectric oxides in electronic applications. Also, it has attractive properties for catalysis that could be used for reducing contamination levels, especially carbon monoxide, CO. CO is one of the main gaseous pollutants generally released from the combustion of fossil fuel. In this work, the CO transformation on pristine and Au-modified BaTiO3 perovskite for H2CO obtention is studied. The CO adsorption and hydrogenation on pristine BaTiO3 leads to formaldehyde synthesis as the most stable product through two possible routes. Furthermore, hydrogenation stages are less probable on pristine BaTiO3. On Au-modified BaTiO3 formaldehyde is the principal product too but Au adatom generates H2CO competition with HCOH. After BaTiO3 modification with Au unpaired electrons were generated. These unpaired electrons are related to the adatom reactivity. According to the obtained results, pristine and Au-modified BaTiO3 can adsorb and hydrogenate CO generating formaldehyde as the principal product. BaTiO3 modifications with Au increase the reactivity of the perovskite in the CO hydrogenation reactions. CO hydrogenation process on Au suggests that further hydrogenation stages beyond formaldehyde are possible. METHODS The study was performed through ab initio calculations using the periodic spin-polarized Density Functional Theory (DFT) as implemented in Quantum ESPRESSO. DFT calculations were carried out using the Plane Wave self-consistent field (PWscf). Spin density difference allows us to identify reactive regions related to dangling bonds and unpaired electrons. A plane wave basis set was used to represent the electron states. Vanderbilt pseudopotentials with nonlinear core correction were used to model the ionic cores and valence electrons interaction. Exchange-correlation energies were treated within the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parameterization.
Collapse
Affiliation(s)
- Víctor E Comparán-Padilla
- Centro de Investigación en Química Aplicada, Química Macromolecular y Nanomateriales, Blvd. Enrique Reyna, C.P. 25294, Saltillo, Coahuila, Mexico.
| | - María Teresa Romero-de la Cruz
- Universidad Autónoma de Coahuila, Facultad de Ciencias Físico Matemáticas, Prol. David Berlanga S/N Edif. "A" Unidad Camporredondo, C.P. 25000, Saltillo, Coahuila, Mexico
| | - Reyes García-Díaz
- CONAHCYT-Universidad Autónoma de Coahuila, Facultad de Ciencias Físico Matemáticas, Prol. David Berlanga S/N Edif. "A" Unidad Camporredondo, C.P. 25000, Saltillo, Coahuila, Mexico
| | - Odilia Pérez-Camacho
- Centro de Investigación en Química Aplicada, Química Macromolecular y Nanomateriales, Blvd. Enrique Reyna, C.P. 25294, Saltillo, Coahuila, Mexico
| |
Collapse
|
5
|
Tan T, Wang Z, Huang K, Yang C. High-Performance Co-production of Electricity and Light Olefins Enabled by Exsolved NiFe Alloy Nanoparticles from a Double-Perovskite Oxide Anode in Solid Oxide-Ion-Conducting Fuel Cells. ACS NANO 2023; 17:13985-13996. [PMID: 37399582 DOI: 10.1021/acsnano.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Light olefins (LOs) such as ethylene and propylene are critical feedstocks for many vital chemicals that support our economy and daily life. LOs are currently mass produced via steam cracking of hydrocarbons, which is highly energy intensive and carbon polluting. Efficient, low-emission, and LO-selective conversion technologies are highly desirable. Electrochemical oxidative dehydrogenation of alkanes in oxide-ion-conducting solid oxide fuel cell (SOFC) reactors has been reported in recent years as a promising approach to produce LOs with high efficiency and yield while generating electricity. We report here an electrocatalyst that excels in the co-production. The efficient catalyst is NiFe alloy nanoparticles (NPs) exsolved from a Pr- and Ni-doped double perovskite Sr2Fe1.5Mo0.5O6 (Pr0.8Sr1.2Ni0.2Fe1.3Mo0.5O6-δ, PSNFM) matrix during SOFC operation. We show evidence that Ni is first exsolved, which triggers the following Fe-exsolution, forming the NiFe NP alloy. At the same time as the NiFe exsolution, abundant oxygen vacancies are created at the NiFe/PSNFM interface, which promotes the oxygen mobility for oxidative dehydrogenation of propane (ODHP), coking resistance, and power generation. At 750 °C, the SOFC reactor with the PSNFM catalyst reaches a propane conversion of 71.40% and LO yield of 70.91% under a current density of 0.3 A cm-2 without coking. This level of performance is unmatchable by the current thermal catalytic reactors, demonstrating the great potential of electrochemical reactors for direct hydrocarbon conversion into value-added products.
Collapse
Affiliation(s)
- Ting Tan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ziming Wang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kevin Huang
- Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Summerer H, Nenning A, Rameshan C, Opitz AK. Exsolved catalyst particles as a plaything of atmosphere and electrochemistry. EES CATALYSIS 2023; 1:274-289. [PMID: 37213935 PMCID: PMC10193834 DOI: 10.1039/d2ey00036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 05/23/2023]
Abstract
A new type of catalyst preparation yields its active sites not by infiltration but exsolution of reducible transition metals of its own host lattice. These exsolution catalysts offer a high dispersion of catalytically active particles, slow agglomeration, and the possibility of reactivation after poisoning due to redox cycling. The formation of exsolved particles by partial decomposition of the host lattice can be driven by applying a sufficiently reducing atmosphere, elevated temperatures but also by a cathodic bias voltage (provided the host perovskite is an electrode on an oxide ion conducting electrolyte). In addition, such an electrochemical polarisation can change the oxidation state and thus the catalytic activity of exsolved particles. In this work, we investigate the electrochemical switching between an active and an inactive state of iron particles exsolved from thin film mixed conducting model electrodes, namely La0.6Sr0.4FeO3-δ (LSF) and Nd0.6Ca0.4FeO3-δ (NCF), in humid hydrogen atmospheres. We show that the transition between two activity states exhibits a hysteresis-like behaviour in the electrochemical I-V characteristics. Ambient pressure XPS measurements proofed that this hysteresis is linked to the oxidation and reduction of iron particles. Furthermore, it is demonstrated that the surface kinetics of the host material itself has only a negligible impact on the particle exsolution, and that the main impact factors are the surrounding atmosphere as well as the applied electrochemical overpotential. In particular, we suggest a 'kinetic competition' between gas atmosphere and oxygen chemical potential in the mixed conducting electrode and discuss possible ways of how this process takes place.
Collapse
Affiliation(s)
- Harald Summerer
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-EC 1060 Vienna Austria
- TU Wien, Institute of Materials Chemistry, Getreidemarkt 9/165-PC 1060 Vienna Austria
| | - Andreas Nenning
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-EC 1060 Vienna Austria
| | - Christoph Rameshan
- TU Wien, Institute of Materials Chemistry, Getreidemarkt 9/165-PC 1060 Vienna Austria
| | - Alexander K Opitz
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-EC 1060 Vienna Austria
| |
Collapse
|
7
|
Wang H, Zhang D, Zhang R, Ma H, Zhang H, Yao R, Liang M, Zhao Y, Miao Z. Dealloying Synthesis of Bimetallic (Au-Pd)/CeO 2 Catalysts for CO Oxidation. ACS OMEGA 2023; 8:11889-11896. [PMID: 37033829 PMCID: PMC10077571 DOI: 10.1021/acsomega.2c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The nanorod-structured (Au-Pd)/CeO2 catalysts with different Au/Pd ratios were prepared from Al-Ce-Au-Pd precursor alloys through combined dealloying and calcination treatment. XRD, SEM, TEM, XPS, Raman spectroscopy, and N2 adsorption-desorption measurements were applied to test the structure and physicochemical properties of samples. Catalytic evaluation results imply that the (Pd0.15-Au0.15)/CeO2 catalyst calcined at 500 °C possesses optimal catalytic activity for CO oxidation when compared with other catalysts with different Au/Pd ratios or (Pd0.15-Au0.15)/CeO2 calcined at other temperatures, whose 50% and 99% reaction temperature can be reached as low as 50 and 85 °C, respectively. This superior catalytic property is attributed to their robust nanorod structure and the introduction of noble bimetal Pd and Au, which can construct a nanoscale interface to access fast electron motion, thus enhancing catalytic efficiency.
Collapse
|
8
|
Shah S, Hong J, Cruz L, Wasantwisut S, Bare SR, Gilliard-AbdulAziz KL. Dynamic Tracking of NiFe Smart Catalysts using In Situ X-Ray Absorption Spectroscopy for the Dry Methane Reforming Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Soham Shah
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California 92507, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Luz Cruz
- Department of Material Science and Engineering, Bourns College of Engineering, University of California Riverside, Material Science, and Engineering Building, 900 University Ave, Riverside, California 92507, United States
| | - Somchate Wasantwisut
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California 92507, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kandis Leslie Gilliard-AbdulAziz
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California 92507, United States
- Department of Material Science and Engineering, Bourns College of Engineering, University of California Riverside, Material Science, and Engineering Building, 900 University Ave, Riverside, California 92507, United States
| |
Collapse
|
9
|
Kim YB, Kim S, Kim J, Kim JK, Jeong SJ, Oh D, Jung W. Synthesis of Highly Tunable Alloy Nanocatalyst through Heterogeneous Doping Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204693. [PMID: 36509675 PMCID: PMC9929244 DOI: 10.1002/advs.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The combination of supported metal nanoparticles and functional host oxides catalyze many major industrial reactions. However, uniform dispersion and ideal chemical configuration of such nanoparticles, which determines the catalytic activity, are often difficult to achieve. In this study, a unique combination is proposed of heterogeneous doping and ex-solution for the fabrication of Pt-Ni alloy nanoparticles on CeO2 . By manipulating the reducing conditions, both the particle size and composition are precisely controlled, thereby achieving a highly dispersed and stable alloy nanocatalyst. The unique behavior of controlled alloy composition is elucidated through classical diffusion and precipitation kinetics with elemental analysis of the grain boundaries. Finally, Pt-Ni alloy nanocatalysts are successfully tuned showcasing a breakthrough performance compared to single element catalyst in reverse water gas shift reaction with superior stability and reproducibility.
Collapse
Affiliation(s)
- Yong Beom Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jinwook Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Advanced Institute of Technology (SAIT)130 Samsung‐ro, YeongtongguSuwon16678Republic of Korea
| | - Seung Jin Jeong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- Present address:
Samsung Electronics129, Samsung‐ro, Yeongtong‐guSuwon16677Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - WooChul Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
10
|
Kim H, Jan A, Kwon DH, Ji HI, Yoon KJ, Lee JH, Jun Y, Son JW, Yang S. Exsolution of Ru Nanoparticles on BaCe 0.9 Y 0.1 O 3-δ Modifying Geometry and Electronic Structure of Ru for Ammonia Synthesis Reaction Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205424. [PMID: 36464649 DOI: 10.1002/smll.202205424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Green ammonia is an efficient, carbon-free energy carrier and storage medium. The ammonia synthesis using green hydrogen requires an active catalyst that operates under mild conditions. The catalytic activity can be promoted by controlling the geometry and electronic structure of the active species. An exsolution process is implemented to improve catalytic activity by modulating the geometry and electronic structure of Ru. Ru nanoparticles exsolved on a BaCe0.9 Y0.1 O3-δ support exhibit uniform size distribution, 5.03 ± 0.91 nm, and exhibited one of the highest activities, 387.31 mmolNH3 gRu -1 h-1 (0.1 MPa and 450 °C). The role of the exsolution and BaCe0.9 Y0.1 O3-δ support is studied by comparing the catalyst with control samples and in-depth characterizations. The optimal nanoparticle size is maintained during the reaction, as the Ru nanoparticles prepared by exsolution are well-anchored to the support with in-plane epitaxy. The electronic structure of Ru is modified by unexpected in situ Ba promoter accumulation around the base of the Ru nanoparticles.
Collapse
Affiliation(s)
- Hayoung Kim
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Asif Jan
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Deok-Hwang Kwon
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ho-Il Ji
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Kyung Joong Yoon
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul, 02792, Republic of Korea
| | - Jong-Ho Lee
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| | - Yongseok Jun
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Won Son
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Sungeun Yang
- Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul, 02792, Republic of Korea
| |
Collapse
|
11
|
Rudolph B, Tsiotsias AI, Ehrhardt B, Dolcet P, Gross S, Haas S, Charisou ND, Goula MA, Mascotto S. Nanoparticle Exsolution from Nanoporous Perovskites for Highly Active and Stable Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205890. [PMID: 36683242 PMCID: PMC9951582 DOI: 10.1002/advs.202205890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52 Sr0.28 Ti0.94 Ni0.06 O3±δ . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2 conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2 O3 catalyst.
Collapse
Affiliation(s)
- Benjamin Rudolph
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| | | | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 2076133KarlsruheGermany
| | - Silvia Gross
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 2076133KarlsruheGermany
- Dipartimento di Scienze ChimicheUniversità degli Studi di Padovavia Marzolo 1Padova35131Italy
| | - Sylvio Haas
- Deutsches Elektronen Synchrotron (DESY)Notkestr. 8522607HamburgGermany
| | - Nikolaos D. Charisou
- Department of Chemical EngineeringUniversity of Western MacedoniaKoilaKozani50100Greece
| | - Maria A. Goula
- Department of Chemical EngineeringUniversity of Western MacedoniaKoilaKozani50100Greece
| | - Simone Mascotto
- Institut für Anorganische und Angewandte ChemieUniversität HamburgMartin‐Luther‐King‐Platz, 620146HamburgGermany
| |
Collapse
|