1
|
Yin L, Ding Y, Li Y, Liu C, Zhao Z, Ning H, Zhang P, Li F, Sun L, Li F. A Mechanistic Insight into the Acidic-stable MnSb 2O 6 for Electrocatalytic Water Oxidation. CHEMSUSCHEM 2025; 18:e202400623. [PMID: 38997233 DOI: 10.1002/cssc.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.
Collapse
Affiliation(s)
- Li Yin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Ning
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Deo S, Kreider ME, Kamat G, Hubert M, Zamora Zeledón JA, Wei L, Matthews J, Keyes N, Singh I, Jaramillo TF, Abild-Pedersen F, Burke Stevens M, Winther K, Voss J. Interpretable Machine Learning Models for Practical Antimonate Electrocatalyst Performance. Chemphyschem 2024; 25:e202400010. [PMID: 38547332 DOI: 10.1002/cphc.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Indexed: 07/03/2024]
Abstract
Computationally predicting the performance of catalysts under reaction conditions is a challenging task due to the complexity of catalytic surfaces and their evolution in situ, different reaction paths, and the presence of solid-liquid interfaces in the case of electrochemistry. We demonstrate here how relatively simple machine learning models can be found that enable prediction of experimentally observed onset potentials. Inputs to our model are comprised of data from the oxygen reduction reaction on non-precious transition-metal antimony oxide nanoparticulate catalysts with a combination of experimental conditions and computationally affordable bulk atomic and electronic structural descriptors from density functional theory simulations. From human-interpretable genetic programming models, we identify key experimental descriptors and key supplemental bulk electronic and atomic structural descriptors that govern trends in onset potentials for these oxides and deduce how these descriptors should be tuned to increase onset potentials. We finally validate these machine learning predictions by experimentally confirming that scandium as a dopant in nickel antimony oxide leads to a desired onset potential increase. Macroscopic experimental factors are found to be crucially important descriptors to be considered for models of catalytic performance, highlighting the important role machine learning can play here even in the presence of small datasets.
Collapse
Affiliation(s)
- Shyam Deo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Melissa E Kreider
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Gaurav Kamat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - McKenzie Hubert
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Jesse Matthews
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Nathaniel Keyes
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Ishaan Singh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Kirsten Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| |
Collapse
|
3
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
4
|
Zhang J, Hao L, Chen Z, Gao Y, Wang H, Zhang Y. Facile synthesis of Co-Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction. J Colloid Interface Sci 2023; 650:816-824. [PMID: 37450970 DOI: 10.1016/j.jcis.2023.06.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Owing to the high demand for clean and renewable energy technologies, several studies have focused on developing economically feasible, highly effective, and stable non-precious electrocatalysts for promoting the oxygen evolution reaction (OER). This development has stimulated an expansion of investigative quests and indicated the importance of advancing electrocatalytic research in this field. Through a facile and efficient method, Ni nanoparticles were uniformly embedded into nanoporous carbon nanorods (Ni-NCN), which are subsequently electrodeposited on CoFe-layered double hydroxide (LDH) nanosheets to produce highly efficient Ni-NCN/CoFe-LDH composites used for OER. The composite exhibited excellent catalytic activity toward OER owing to its low overpotential (ƞ10 mA = 280 mV), small Tafel slope (42 mV dec-1), and excellent durability. The Ni-NCN/CoFe-LDH catalyst exhibited higher OER activity owing to its uniformly dispersed Ni nanoparticles, large specific surface area, enhanced electron transport, and synergistic effect of multiple composites. Additionally, the enhanced synergistic effect of Ni-NCN promoted higher OER performance compared with Ni-undoped carbon nanorod/LDH, indicating that the Ni dopant and LDH significantly contributed to the overall OER performance. The synergistic effect of multiple composites significantly contributed to the excellent OER performance, indicating their potential as OER catalyst.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Zitong Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
5
|
Liu H, Zhang D, Holmes SM, D'Agostino C, Li H. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chem Sci 2023; 14:9000-9009. [PMID: 37655027 PMCID: PMC10466308 DOI: 10.1039/d3sc01827j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood. Herein, we propose a new theoretical framework to uncover the ORR mechanism of ZrN by integrating surface state analysis, electric field effect simulations, and pH-dependent microkinetic modelling. The ZrN surface was found to be covered by ∼1 monolayer (ML) HO* under ORR operating conditions, which can accommodate the adsorbates in a bridge-site configuration for the ORR. Electric field effect simulations demonstrate that O* adsorption on a 1 ML HO* covered surface only induces a consistently small dipole moment change, resulting in a moderate bonding strength that can account for the superior activity. Based on the identified surface state of ZrN and electric field simulations, pH-dependent microkinetic modelling found that ZrN reaches the Sabatier optimum of the kinetic ORR volcano model in alkaline media, with the simulated polarization curves being in excellent agreement with the experimental data of ZrN and Pt/C. Finally, we show that this theoretical framework can lead to a good explanation for the alkaline oxygen electrocatalysis of other transition metal nitrites such as Fe3N, TiN, and HfN. In summary, this study proposes a new framework to rationalize and design transition metal nitrides for alkaline ORR.
Collapse
Affiliation(s)
- Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna Via Terracini, 28 40131 Bologna Italy
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
6
|
Mahidashti Z, Rezaei M, Borrelli M, Shaygan Nia A. Insight into the stability mechanism of nickel and manganese antimonate catalytic films during the oxygen evolution reaction in acidic media. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Kreider ME, Kamat GA, Zamora Zeledón JA, Wei L, Sokaras D, Gallo A, Stevens MB, Jaramillo TF. Understanding the Stability of Manganese Chromium Antimonate Electrocatalysts through Multimodal In Situ and Operando Measurements. J Am Chem Soc 2022; 144:22549-22561. [PMID: 36453840 DOI: 10.1021/jacs.2c08600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.
Collapse
Affiliation(s)
- Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
8
|
Modeling the structural, electronic, optoelectronic, thermodynamic, and core-level spectroscopy of X–SnO3 (X = Ag, Cs, Hf) perovskites. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Kumar A, Zhang G, Liu W, Sun X. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kreider ME, Gunasooriya GTKK, Liu Y, Zamora Zeledón JA, Valle E, Zhou C, Montoya JH, Gallo A, Sinclair R, Nørskov JK, Stevens MB, Jaramillo TF. Strategies for Modulating the Catalytic Activity and Selectivity of Manganese Antimonates for the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Yunzhi Liu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - José A. Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eduardo Valle
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chengshuang Zhou
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Joseph H. Montoya
- Toyota Research Institute, Los Altos, California 94022, United States
| | - Alessandro Gallo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Jens K. Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|