1
|
Liu X, Yu J, Tan Y, Zhang W, Zhu L, Ye S, Feng J. Engineering nitrogen-doped carbon quantum dots: Nitrogen content-controlled dual-phase emission behavior. J Colloid Interface Sci 2025; 686:951-959. [PMID: 39923699 DOI: 10.1016/j.jcis.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Nitrogen doping is a widely used method for enhancing the performance of carbon quantum dots (CQD). However, the precise relationship between nitrogen content and emission spectra remains unclear when preparing high-performance nitrogen-doped CQD (N-CQD). This study systematically investigates the effects of nitrogen content on the crystalline structure, optical properties, and electronic band structure of N-CQD. Citric acid was used as the carbon source, and ethylenediamine monohydrate was used as the nitrogen source, with their ratio controlled to hydrothermal synthesized N-CQD with N/C ratios ranging from 0 to 0.4. Notably, when the N/C ratio increases from 0 to 0.2, the N-CQD exhibits redshifted emission with excitation dependence. However, when the N/C ratio rises from 0.2 to 0.4, the N-CQD shows blueshifted emission with excitation-independence. We define it as the dual-phase emission behavior of N-CQD attributed to the transition of doping sites from graphitic nitrogen to pyridine nitrogen with increased nitrogen content. DFT calculations indicate that different doping sites influence electron transfer in N-CQD, resulting in distinct optical behaviors. Importantly, this work comprehensively explains the relationship between nitrogen content and the emission behavior of N-CQD for the first time, providing crucial insights for refining the theoretical framework of N-CQD.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jingyan Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yonggen Tan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wengao Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Lingquan Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shenglin Ye
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jun Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China; Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
2
|
Liu W, Jiang C, Feng J, Zhang L, Hou Q, Ji X. Enhancing photocatalytic destruction of lignin via cellulose derived carbon quantum dots/g-C 3N 4 heterojunctions. Int J Biol Macromol 2024; 260:129587. [PMID: 38253157 DOI: 10.1016/j.ijbiomac.2024.129587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Lignocellulosic biomass exhibits a promising potential for production of carbon materials. Nitrogen and phosphorus co-doped carbon quantum dots (N,P-CQDs) were fabricated via (NH4)2HPO4 assisted hydrothermal treatment of cellulose pulp fibers. The as-prepared N,P-CQDs were characterized by HRTEM, FTIR, fluorescence and UV-vis, and then incorporated into g-C3N4 (CN) through sonication and liquid deposition, forming N,P-CQDs/sonication treated g-C3N4 (C-SCN) composites, which were then explored as photocatalysts. The photocatalytic ability of C-SCN towards model lignin was further analyzed. The results showed that, the fluorescence intensity and photoluminescence performance of N,P-CQDs were much higher than that of CQDs; the heterojunction was successfully constructed between the composites of N,P-CQDs and SCN; the incorporation of N,P-CQDs enhanced the visible light absorption, but reduced the band gap of the composite heterojunction; the resultant photocatalysts exhibited a good photocatalytic ability of model lignin via catalyze the fracture of β-O-4' ether bond and CC bond, i.e., the photocatalytic degradation ratio reached up to 95.5 %; and the photocatalytic reaction generated some valuable organics such as phenyl formate, benzaldehyde, and benzoic acid. This study would promote the high value-added utilization of lignocellulosic resources especially in the transformation of lignin, conforming the concept of sustainable development.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinlong Feng
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liguo Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
3
|
Han JY, Noh B, Lee G, Lee C, Lee KJ, Yoon DK. Fabrication of Zigzag Parylene Nanofibers in Liquid Crystals with Electric Field-Induced Defect Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11125-11133. [PMID: 38373224 DOI: 10.1021/acsami.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Liquid crystals (LCs) have been adopted to induce tunable physical properties that dynamically originated from their unique intrinsic properties responding to external stimuli, such as surface anchoring condition and applied electric field, which enables them to be the template for aligning functional guest materials. We fabricate the fiber array from the electrically modulated (in-plain) nematic LC template using the chemical vapor polymerization (CVP) method. Under an electric field, an induced defect structure with a winding number of -1/2 contains a periodic zigzag disclination line. It is known that LC defect structures can trap the guest materials, such as particles and chemicals. However, the resulting fibers grow along the LC directors, not trapped in the defects. To show the versatility of our platform, nanofibers are fabricated on patterned electrodes representing the alphabets 'CVP.' In addition, the semifluorinated moieties are added to fibers to provide a hydrophobic surface. The resultant orientation-controlled fibers will be used in controllable smart surfaces that can be used in sensors, electronics, photonics, and biomimetic surfaces.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeongil Noh
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gunoh Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Carbon quantum dots (CQDs), also known as carbon dots (CDs), are novel zero-dimensional fluorescent carbon-based nanomaterials. CQDs have attracted enormous attention around the world because of their excellent optical properties as well as water solubility, biocompatibility, low toxicity, eco-friendliness, and simple synthesis routes. CQDs have numerous applications in bioimaging, biosensing, chemical sensing, nanomedicine, solar cells, drug delivery, and light-emitting diodes. In this review paper, the structure of CQDs, their physical and chemical properties, their synthesis approach, and their application as a catalyst in the synthesis of multisubstituted 4H pyran, in azide-alkyne cycloadditions, in the degradation of levofloxacin, in the selective oxidation of alcohols to aldehydes, in the removal of Rhodamine B, as H-bond catalysis in Aldol condensations, in cyclohexane oxidation, in intrinsic peroxidase-mimetic enzyme activity, in the selective oxidation of amines and alcohols, and in the ring opening of epoxides are discussed. Finally, we also discuss the future challenges in this research field. We hope this review paper will open a new channel for the application of CQDs as a catalyst in organic synthesis.
Collapse
|