1
|
Yu Z, Wang Z, Chen Y, Wang Y, Tang L, Xi Y, Lai K, Zhang Q, Li S, Xu D, Tian A, Wu M, Wang Y, Yang G, Gao C, Huang T. Programmed surface platform orchestrates anti-bacterial ability and time-sequential bone healing for implant-associated infection. Biomaterials 2025; 313:122772. [PMID: 39190942 DOI: 10.1016/j.biomaterials.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.
Collapse
Affiliation(s)
- Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Shuangyang Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danyu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Anrong Tian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Han M, Li X, Shi S, Hou A, Yin H, Sun L, Li J, Luo J, Li J, Yang J. Thermal control of photothermal implants inspired by polar bear skin for the treatment of infected bone defects. MATERIALS HORIZONS 2024; 11:4651-4664. [PMID: 38990315 DOI: 10.1039/d4mh00453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Photothermal therapy (PTT) encounters challenges in addressing deep tissue infections, characterized by limited penetration or potential hyperthermal damage to surrounding tissues, initiating undesirable inflammatory cascades. Inspired by polar bear thermal regulation, we present a "bio-based endogenic thermal-adaptive booster" implant coating. This coating integrates a photothermal poly(tannic acid) (pTA) layer, mimicking the "polar bear dark skin", securely linked with anti-inflammatory dexamethasone (Dex), resembling the "secretion", and a red blood cell membrane (RBCM) layer, forming the insulating "transparent fur". The RBCM "fur" demonstrates unexpectedly superior local heat storage, amplifying the photothermal effect of the pTA "skin" by 1.30 times and boosting localized photothermal antibacterial efficiency by 1.30-fold (approximately 99%) compared to those without RBCM. Furthermore, RBCM sustains Dex release and offers additional protection against thermal inflammation, releasing Dex 1.90 times more under NIR irradiation than under non-photothermal conditions. In a rat infectious bone model, the photothermal-boosting implant coating provides a favorable biological interface and achieves a 99.97% photothermal antibacterial ratio, enhancing osseointegration without evident tissue harm, evidenced by a 2.47-fold increase in bone volume fraction and a 2.24-fold reduction in pro-inflammatory cytokines compared to those lacking a RBCM. Insights derived from cell membrane-based thermal-adaptive coatings herald a paradigm shift in efficient and safe PTT.
Collapse
Affiliation(s)
- Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xinlong Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shijie Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ailin Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Han Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhao J, Jing Q, Zhou T, Zhang X, Li W, Pang H. Controllable Synthesis of Manganese Organic Phosphate with Different Morphologies and Their Derivatives for Supercapacitors. Molecules 2024; 29:4186. [PMID: 39275034 PMCID: PMC11397101 DOI: 10.3390/molecules29174186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D Mn-MOP derivative calcined at 550 °C and exhibited a superior specific capacitance of 230.9 F g-1 at 0.5 A g-1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed flexible solid-state device demonstrated excellent rate performance. This performance reveals the promising application of 2D Mn-MOP materials for energy storage.
Collapse
Affiliation(s)
- Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qingling Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xinhuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Zhang D, Li M, Chen S, Du H, Zhong H, Wu J, Liu F, Zhang Q, Peng F, Liu X, Yeung KWK. Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404485. [PMID: 38760003 DOI: 10.1002/adma.202404485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design-a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co-transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen-loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD-like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
Collapse
Affiliation(s)
- Dongdong Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Mei Li
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuhan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Feihong Liu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qian Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
5
|
Xie E, Mei J, Xie S, Hu Z, Xi X, Song A, Yao B, Wang D, Wei J, Niu Y. Phytic Acid-Gallium Network on a Polyimide Fiber Woven Fabric as an Artificial Ligament for Boosting Ligament-Bone Healing and Infection Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042094 DOI: 10.1021/acsami.4c08621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The development of an artificial ligament with a multifunction of promoting bone formation, inhibiting bone resorption, and preventing infection to obtain ligament-bone healing for anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a novel artificial ligament based on a PI fiber woven fabric (PIF) was fabricated, which was coated with a phytic acid-gallium (PA-Ga) network via a layer-by-layer assembly method (PFPG). Compared with PIF, PFPG with PA-Ga coating significantly suppressed osteoclastic differentiation, while it boosted osteoblastic differentiation in vitro. Moreover, PFPG obviously inhibited fibrous encapsulation and bone absorption while accelerating new bone regeneration for ligament-bone healing in vivo. PFPG remarkably killed bacteria and destroyed biofilm, exhibiting excellent antibacterial properties in vitro as well as anti-infection ability in vivo, which were ascribed to the release of Ga ions from the PA-Ga coating. The cooperative effect of the surface characteristics (e.g., hydrophilicity/surface energy and protein absorption) and sustained release of Ga ions for PFPG significantly enhanced osteogenesis while inhibiting osteoclastogenesis, thereby achieving ligament-bone integration as well as resistance to infection. In summary, PFPG remarkably facilitated osteoblastic differentiation, while it suppressed osteoclastic differentiation, thereby inhibiting osteoclastogenesis for bone absorption while accelerating osteogenesis for ligament-bone healing. As a novel artificial ligament, PFPG represented an appealing option for graft selection in ACL reconstruction and displayed considerable promise for application in clinics.
Collapse
Affiliation(s)
- En Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Mei
- Department of Paediatrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Shangyu Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhitao Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Xi
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Yao
- Department of Orthopaedics, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200438, China
| | - Deqiang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunfei Niu
- Department of Orthopaedics, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200438, China
- Department of Trauma Orthopaedics, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Fonseca J, Cano-Sarabia M, Cortés P, Saldo J, Montpeyó D, Lorenzo J, Llagostera M, Imaz I, Maspoch D. Metal-Organic Framework-Based Antimicrobial Touch Surfaces to Prevent Cross-Contamination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403813. [PMID: 38771625 DOI: 10.1002/adma.202403813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Infection diseases are a major threat to global public health, with nosocomial infections being of particular concern. In this context, antimicrobial coatings emerge as a promising prophylactic strategy to reduce the transmission of pathogens and control infections. Here, antimicrobial door handle covers to prevent cross-contamination are prepared by incorporating iodine-loaded UiO-66 microparticles into a potentially biodegradable polyurethane polymer (Baycusan eco E 1000). These covers incorporate MOF particles that serve as both storage reservoirs and delivery systems for the biocidal iodine. Under realistic touching conditions, the door handle covers completely inhibit the transmission of Gram-positive bacterial species (Staphylococcus aureus, and Enterococcus faecalis), Gram-negative bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), and fungi (Candida albicans). The covers remain effective even after undergoing multiple contamination cycles, after being cleaned, and when tinted to improve discretion and usability. Furthermore, as the release of iodine from the door handle covers follow hindered Fickian diffusion, their antimicrobial lifetime is calculated to be as long as approximately two years. Together, these results demonstrate the potential of these antimicrobial door handle covers to prevent cross-contamination, and underline the efficacy of integrating MOFs into innovative technologies.
Collapse
Affiliation(s)
- Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Pilar Cortés
- Departament de Genètica i Microbiologia, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Jordi Saldo
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Montserrat Llagostera
- Departament de Genètica i Microbiologia, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
7
|
Chu G, Guan M, Jin J, Luo Y, Luo Z, Shi T, Liu T, Zhang C, Wang Y. Mechanochemically Reprogrammed Interface Orchestrates Neutrophil Bactericidal Activity and Apoptosis for Preventing Implant-Associated Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311855. [PMID: 38164817 DOI: 10.1002/adma.202311855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The onset of implant-associated infection (IAI) triggers a cascade of immune responses, which are initially dominated by neutrophils. Bacterial aggregate formation and hypoxic microenvironment, which occur shortly after implantation, may be two major risk factors that impair neutrophil function and lead to IAI. Here, the implant surface with phytic acid-Zn2+ coordinated TiO2 nanopillar arrays (PA-Zn@TiNPs) and oxygen self-supporting CaO2 nanoparticles, named as CPZTs, is mechanochemically reprogrammed. The engineered CPZTs interface integrates multiple properties to inhibit the formation of nascent biofilm, encompassing antibacterial adhesion, mechanobactericidal effect, and chemobiocidal effect. Meanwhile, continuous oxygenation fuels the neutrophils with reactive oxygen species (ROS) for efficient bacterial elimination on the implant surface and inside the neutrophils. Furthermore, this surface modulation strategy accelerates neutrophil apoptosis and promotes M2 macrophage-mediated osteogenesis both in vitro and in a rat model of IAI. In conclusion, targeting neutrophils for immunomodulation is a practical and effective strategy to prevent IAI and promote bone-implant integration.
Collapse
Affiliation(s)
- Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yao Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
8
|
Liu Y, Wang S, Quan C, Luan S, Shi H, Wang L. Metal-organic framework-based platforms for implantation applications: recent advances and challenges. J Mater Chem B 2024; 12:637-649. [PMID: 38165820 DOI: 10.1039/d3tb02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of minimally invasive technology has promoted the widespread use of implant interventional materials, which play an important role in alleviating patients' pain during and after surgery. Metal-organic frameworks (MOFs) and their related hybrids formed by bridging ligands and metal nodes via covalent bonds represent one of the smart platforms in implant interventional fields due to their large surface area, adjustable compositions and structures, biodegradability, etc. Significant progresses in the implantation application of MOF-based materials have been achieved recently, but these studies are still in the initial stage. This review highlights the recent advances of MOFs and their related hybrids in orthopedic implantation, cardio-vascular implantation, neural tissue engineering, and biochemical sensing. Each correction between the structural features of MOFs and their corresponding implanted works is highlighted. Finally, the confronting challenges and future perspectives in the implant interventional field are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
9
|
Zhang Y, Cheng Z, Liu Z, Shen X, Cai C, Li M, Luo Z. Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303958. [PMID: 37705110 PMCID: PMC10582459 DOI: 10.1002/advs.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Zhuo Cheng
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Xinkun Shen
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Chunyuan Cai
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Menghuan Li
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zhong Luo
- School of Life ScienceChongqing UniversityChongqing400044China
| |
Collapse
|
10
|
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym 2023; 315:121013. [PMID: 37230629 DOI: 10.1016/j.carbpol.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Staphylococcus aureus (S. aureus) residing in host macrophages is hard to clear because intracellular S. aureus has evolved mechanisms to hijack and subvert the immune response to favor intracellular infection. To overcome this challenge, nitrogen-phosphorous co-doped carbonized chitosan nanoparticles (NPCNs), which possess the polymer/carbon hybrid structures, were fabricated to clear intracellular S. aureus infection through chemotherapy and immunotherapy. Multi-heteroatom NPCNs were fabricated through the hydrothermal method, where chitosan and imidazole were used as the C and N sources and phosphoric acid as the P source. NPCNs can not only be used as a fluorescent probe for bacteria imaging but also kill extracellular and intracellular bacteria with low cytotoxicity. NPCNs could generate ROS and polarize macrophages into classically activated (M1) phenotypes to increase antibacterial immunity. Furthermore, NPCNs could accelerate intracellular S. aureus-infected wound healing in vivo. We envision that these carbonized chitosan nanoparticles may provide a new platform for clearing intracellular bacterial infection through chemotherapy and ROS-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
11
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Zhang X, Peng F, Wang D. MOFs and MOF-Derived Materials for Antibacterial Application. J Funct Biomater 2022; 13:215. [PMID: 36412856 PMCID: PMC9680240 DOI: 10.3390/jfb13040215] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial infections pose a serious threat to people's health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for various antibacterial applications due to their high specific surface area, high enzyme-like activity, and continuous release of metal ions. This paper reviews the recent progress of MOFs as antibacterial agents, focusing on preparation methods, fundamental antibacterial mechanisms, and strategies to enhance their antibacterial effects. Finally, several prospects related to MOFs for antibacterial application are proposed, aiming to provide possible research directions in this field.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|