1
|
Luo C, Ding Y, Ren Z, Wu C, Huo Y, Zhou X, Zheng Z, Wang X, Chen Y. Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. LIGHT, SCIENCE & APPLICATIONS 2024; 13:273. [PMID: 39327426 PMCID: PMC11427692 DOI: 10.1038/s41377-024-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
The high pixel resolution is emerging as one of the key parameters for the next-generation displays. Despite the development of various quantum dot (QD) patterning techniques, achieving ultrahigh-resolution (>10,000 pixels per inch (PPI)) and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently. Here, we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090 (PPI) with a high fidelity of up to 99%. Meanwhile, the proposed strategy is compatible with the preparation of QD pixels based on perovskite CsPbBr3 and conventional CdSe QDs, exhibiting a wide applicability for QD pixel fabrication. Notably, we further demonstrate the great value of our approach to achieve efficiently electroluminescent QD pixels with a peak external quantum efficiency of 16.5%. Consequently, this work provides a general approach for realizing ultrahigh-resolution and high-fidelity patterns based on various QDs and a novel method for fabricating QD-patterned devices with high performance.
Collapse
Affiliation(s)
- Chengzhao Luo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yanhui Ding
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhenwei Ren
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Chenglong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yonghuan Huo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xin Zhou
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhiyong Zheng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xinwen Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yu Chen
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- National University of Singapore Suzhou Research Institute, Dushu Lake Science and Education Innovation District, Suzhou, 215123, China.
| |
Collapse
|
2
|
Saito K, Ichiyanagi K, Fukaya R, Haruki R, Nozawa S, Sasaki D, Arai T, Sasaki YC, McGehee K, Saikawa M, Gao M, Wei Z, Kwaria D, Norikane Y. Visualization of the Dynamics of Photoinduced Crawling Motion of 4-(Methylamino)Azobenzene Crystals via Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:17462. [PMID: 38139291 PMCID: PMC10744157 DOI: 10.3390/ijms242417462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.
Collapse
Affiliation(s)
- Koichiro Saito
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan; (D.K.); (Y.N.)
| | - Kouhei Ichiyanagi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo 679-5198, Hyogo, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Ibaraki, Japan; (R.F.); (R.H.); (S.N.)
| | - Rie Haruki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Ibaraki, Japan; (R.F.); (R.H.); (S.N.)
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Ibaraki, Japan; (R.F.); (R.H.); (S.N.)
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan (T.A.); (Y.C.S.)
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan (T.A.); (Y.C.S.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan (T.A.); (Y.C.S.)
| | - Keegan McGehee
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| | - Makoto Saikawa
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| | - Minghao Gao
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| | - Zhichao Wei
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| | - Dennis Kwaria
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan; (D.K.); (Y.N.)
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan; (D.K.); (Y.N.)
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
3
|
Luo C, Zheng Z, Ding Y, Ren Z, Shi H, Ji H, Zhou X, Chen Y. High-Resolution, Highly Transparent, and Efficient Quantum Dot Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303329. [PMID: 37335765 DOI: 10.1002/adma.202303329] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Aiming at next-generation displays, high-resolution quantum dot light-emitting diodes (QLEDs) with high efficiency and transparency are highly desired. However, there is limited study involving the improvements of QLED pixel resolution, efficiency, and transparency simultaneously, which undoubtedly restricts the practical applications of QLED for next-generation displays. Here, the strategy of electrostatic force-induced deposition (EF-ID) is proposed by introducing alternating polyethyleneimine (PEI) and fluorosilane patterns to synergistically improve the pixel accuracy and transmittance of QD patterns. More importantly, the leakage current induced by the void spaces between pixels that is usually reported for high-resolution QLEDs is greatly suppressed by substrate-assisted insulating fluorosilane patterns. Finally, high-performance QLEDs with high resolution ranging from 1104 to 3031 pixels per inch (PPI) and a high efficiency of 15.6% are achieved, among the best performances of high resolution QLEDs. Notably, the high resolution QD pixels greatly enhance the transmittance of the QD patterns, thus prompting an impressive transmittance of 90.7% for the transparent QLEDs (2116 PPI), which represents the highest transmittance of transparent QLED devices. Consequently, this work contributes an effective and general approach for high-resolution QLEDs with high efficiency and transparency.
Collapse
Affiliation(s)
- Chengzhao Luo
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Zhishuai Zheng
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yanhui Ding
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Zhenwei Ren
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Hengfei Shi
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Huifeng Ji
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Xin Zhou
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yu Chen
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- National University of Singapore Suzhou Research Institute, Dushu Lake Science and Education Innovation District, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Nam TW, Choi MJ, Jung YS. Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices. Chem Commun (Camb) 2023; 59:2697-2710. [PMID: 36751869 DOI: 10.1039/d2cc05874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quantum dots have attracted significant scientific interest owing to their optoelectronic properties, which are distinct from their bulk counterparts. In order to fully utilize quantum dots for next generation devices with advanced functionalities, it is important to fabricate quantum dot colloids into dry patterns with desired feature sizes and shapes with respect to target applications. In this review, recent progress in ultrahigh-resolution quantum dot patterning technologies will be discussed, with emphasis on the characteristic advantages as well as the limitations of diverse technologies. This will provide guidelines for selecting suitable tools to handle quantum dot colloids throughout the fabrication of quantum dot based solid-state devices. Additionally, epitaxially fabricated single-particle level quantum dot arrays are discussed. These are extreme in terms of pattern resolution, and expand the potential application of quantum dots to quantum information processing.
Collapse
Affiliation(s)
- Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Min-Jae Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|