1
|
Quan Z, Wang S, Xie H, Zhang J, Duan R, Li M, Zhang J. ROS Regulation in CNS Disorder Therapy: Unveiling the Dual Roles of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410031. [PMID: 39676433 DOI: 10.1002/smll.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
The treatment of brain diseases has always been the focus of attention. Due to the presence of the blood-brain barrier (BBB), most small molecule drugs are difficult to reach the brain, leading to undesirable therapeutic outcomes. Recently, nanomedicines that can cross the BBB and precisely target lesion sites have emerged as thrilling tools to enhance the early diagnosis and treat various intractable brain disorders. Extensive research has shown that reactive oxygen species (ROS) play a crucial role in the occurrence and progression of brain diseases, including brain tumors and neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, stroke, or traumatic brain injury, making ROS a potential therapeutic target. In this review, on the structure and function of BBB as well as the mechanisms are first elaborated through which nanomedicine traverses it. Then, recent studies on ROS production are summarized through photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT) for treating brain tumors, and ROS depletion for treating NDDs. This provides valuable guidance for the future design of ROS-targeted nanomedicines for brain disease treatment. The ongoing challenges and future perspectives in developing nanomedicine-based ROS management for brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Zhengyang Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sa Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanhuan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiayi Zhang
- International department, Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Vigo M, Haro-Martínez E, Ruiz E, Fumadó-Navarro J, Placci M, Muro S. New Cellular Models to Support Preclinical Studies on ICAM-1-Targeted Drug Delivery. J Drug Deliv Sci Technol 2024; 101:106170. [PMID: 39669707 PMCID: PMC11633371 DOI: 10.1016/j.jddst.2024.106170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein actively explored for targeted drug delivery. Anti-ICAM-1 nanocarriers (NCs) target ICAM-1-positive sites after intravenous injection in animal models, but quantitative mechanistic examination of cellular-level transport in vivo is not possible. Prior studies in human cell cultures indicated efficient uptake of these formulations via cell adhesion molecule-(CAM)-mediated endocytosis. However, ICAM-1 sequence differs among species; thus, whether anti-ICAM-1 NCs induce similar behavior in animal cells, key for intracellular drug delivery, is unknown. To begin bridging this gap, we first qualitatively verified intracellular transport of anti-ICAM-1 NCs in vivo and then developed new cellular models expressing ICAM-1 from mouse, dog, pig, and monkey, species relevant to pharmaceutical translation and veterinary medicine. ICAM-1 expression was verified by flow cytometry and confocal microscopy. These cells showed specific targeting compared to IgG NCs or cells treated with anti-ICAM-1 blocker. Anti-ICAM-1 NCs entered cells in a time- and temperature-dependent manner, with kinetics and pathway compatible with CAM-mediated endocytosis. All parameters tested were strikingly similar to those from human cells expressing ICAM-1 endogenously. Therefore, this new cellular platform represents a valuable tool that can be used in parallel to support in vivo studies on ICAM-1-targeted NCs during pharmaceutical translation.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biomedicine Doctorate Program, University of Barcelona, 08007, Spain
| | - Elena Haro-Martínez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eloy Ruiz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Josep Fumadó-Navarro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biotechnology Doctorate Program, University of Barcelona, 080007, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute for Bioscience and Biotechnology Research and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
4
|
Balcorta HV, Contreras Guerrero VG, Bisht D, Poon W. Nucleic Acid Delivery Nanotechnologies for In Vivo Cell Programming. ACS APPLIED BIO MATERIALS 2024; 7:5020-5036. [PMID: 38288693 DOI: 10.1021/acsabm.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In medicine, it is desirable for clinicians to be able to restore function and imbue novel function into selected cells for therapy and disease prevention. Cells damaged by disease, injury, or aging could be programmed to restore normal or lost functions, such as retinal cells in inherited blindness and neuronal cells in Alzheimer's disease. Cells could also be genetically programmed with novel functions such as immune cells expressing synthetic chimeric antigen receptors for immunotherapy. Furthermore, knockdown or modification of risk factor proteins can mitigate disease development. Currently, nucleic acids are emerging as a versatile and potent therapeutic modality for achieving this cellular programming. In this review, we highlight the latest developments in nanobiomaterials-based nucleic acid therapeutics for cellular programming from a biomaterial design and delivery perspective and how to overcome barriers to their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Hannia V Balcorta
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Veronica G Contreras Guerrero
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Deepali Bisht
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Nong J, Glassman PM, Shuvaev VV, Reyes-Esteves S, Descamps HC, Kiseleva RY, Papp TE, Alameh MG, Tam YK, Mui BL, Omo-Lamai S, Zamora ME, Shuvaeva T, Arguiri E, Gong X, Brysgel TV, Tan AW, Woolfork AG, Weljie A, Thaiss CA, Myerson JW, Weissman D, Kasner SE, Parhiz H, Muzykantov VR, Brenner JS, Marcos-Contreras OA. Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke. Mol Ther 2024; 32:1344-1358. [PMID: 38454606 PMCID: PMC11081939 DOI: 10.1016/j.ymthe.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.
Collapse
Affiliation(s)
- Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sahily Reyes-Esteves
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Helene C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Barbara L Mui
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco E Zamora
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tea Shuvaeva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evguenia Arguiri
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xijing Gong
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor V Brysgel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley G Woolfork
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kasner
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Zamora ME, Omo-Lamai S, Patel MN, Wu J, Arguiri E, Muzykantov VR, Myerson JW, Marcos-Contreras OA, Brenner JS. Combination of Physicochemical Tropism and Affinity Moiety Targeting of Lipid Nanoparticles Enhances Organ Targeting. NANO LETTERS 2024. [PMID: 38598417 DOI: 10.1021/acs.nanolett.3c05031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.
Collapse
Affiliation(s)
- Marco E Zamora
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania 19104, United States
| | - Manthan N Patel
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jichuan Wu
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Evguenia Arguiri
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Vladmir R Muzykantov
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Zhang Y, Xi K, Zhang Y, Fang Z, Zhang Y, Zhao K, Feng F, Shen J, Wang M, Zhang R, Cheng B, Geng H, Li X, Huang B, Wang KN, Ni S. Blood-Brain Barrier Penetrating Nanovehicles for Interfering with Mitochondrial Electron Flow in Glioblastoma. ACS NANO 2024; 18:9511-9524. [PMID: 38499440 DOI: 10.1021/acsnano.3c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Department of Pediatrics, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yuying Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Kaijie Zhao
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Jianyu Shen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Mingrui Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Runlu Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Bo Cheng
- Department of Radiation Oncology, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| |
Collapse
|
8
|
Thatte AS, Billingsley MM, Weissman D, Melamed JR, Mitchell MJ. Emerging strategies for nanomedicine in autoimmunity. Adv Drug Deliv Rev 2024; 207:115194. [PMID: 38342243 PMCID: PMC11015430 DOI: 10.1016/j.addr.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune disorders have risen to be among the most prevalent chronic diseases across the globe, affecting approximately 5-7% of the population. As autoimmune diseases steadily rise in prevalence, so do the number of potential therapeutic strategies to combat them. In recent years, fundamental research investigating autoimmune pathologies has led to the emergence of several cellular targets that provide new therapeutic opportunities. However, key challenges persist in terms of accessing and specifically combating the dysregulated, self-reactive cells while avoiding systemic immune suppression and other off-target effects. Fortunately, the continued advancement of nanomedicines may provide strategies to address these challenges and bring innovative autoimmunity therapies to the clinic. Through precise engineering and rational design, nanomedicines can possess a variety of physicochemical properties, surface modifications, and cargoes, allowing for specific targeting of therapeutics to pathological cell and organ types. These advances in nanomedicine have been demonstrated in cancer therapies and have the broad potential to advance applications in autoimmunity therapies as well. In this review, we focus on leveraging the power of nanomedicine for prevalent autoimmune disorders throughout the body. We expand on three key areas for the development of autoimmunity therapies - avoiding systemic immunosuppression, balancing interactions with the immune system, and elevating current platforms for delivering complex cargoes - and emphasize how nanomedicine-based strategies can overcome these barriers and enable the development of next-generation, clinically relevant autoimmunity therapies.
Collapse
Affiliation(s)
- Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jilian R Melamed
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
11
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
12
|
Chan WCW, Artzi N, Chen C, Chen X, Ho D, Hu T, Kataoka K, Liz-Marzán LM, Oklu R, Parak WJ. Noble Nanomedicine: Celebrating Groundbreaking mRNA Vaccine Innovations. ACS NANO 2023; 17:19476-19477. [PMID: 37819863 DOI: 10.1021/acsnano.3c09781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
|
13
|
Kisamore CO, Elliott BD, DeVries AC, Nelson RJ, Walker WH. Chronotherapeutics for Solid Tumors. Pharmaceutics 2023; 15:2023. [PMID: 37631237 PMCID: PMC10459260 DOI: 10.3390/pharmaceutics15082023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Circadian rhythms are internal manifestations of the 24-h solar day that allow for synchronization of biological and behavioral processes to the external solar day. This precise regulation of physiology and behavior improves adaptive function and survival. Chronotherapy takes advantage of circadian rhythms in physiological processes to optimize the timing of drug administration to achieve maximal therapeutic efficacy and minimize negative side effects. Chronotherapy for cancer treatment was first demonstrated to be beneficial more than five decades ago and has favorable effects across diverse cancer types. However, implementation of chronotherapy in clinic remains limited. The present review examines the evidence for chronotherapeutic treatment for solid tumors. Specifically, studies examining chrono-chemotherapy, chrono-radiotherapy, and alternative chronotherapeutics (e.g., hormone therapy, TKIs, antiangiogenic therapy, immunotherapy) are discussed. In addition, we propose areas of needed research and identify challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - Brittany D. Elliott
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| |
Collapse
|