1
|
Qi R, You Y, Grzeszczyk M, Jyothilal H, Bera A, Laverock J, Natera-Cordero N, Huang P, Nam GH, Kravets VG, Burrow D, Toscano Figueroa JC, Ho YW, Fox NA, Grigorenko AN, Vera-Marun IJ, Keerthi A, Koperski M, Radha B. Versatile Method for Preparing Two-Dimensional Metal Dihalides. ACS NANO 2024; 18:22034-22044. [PMID: 39106126 PMCID: PMC11342368 DOI: 10.1021/acsnano.4c04397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Ever since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach via anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX2, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr2 as an example, which forms large layered crystals. We investigate the structural properties of both the bulk and 2D CuBr2 using X-ray diffraction, along with Raman scattering and optical spectroscopy, revealing its quasi-1D chain structure, which translates to distinct emission and scattering characteristics. Furthermore, microultraviolet photoemission spectroscopy and electronic transport reveal the electronic properties of CuBr2 flakes, including their valence band structure. We extend our methodology to other metal halides and assess the stability of the metal halide flakes in controlled environments. We show that optical contrast can be used to characterize the flake thicknesses for these materials. Our findings demonstrate the versatility and potential applications of the proposed methodology for preparing and studying 2D metal halide flakes.
Collapse
Affiliation(s)
- Rongrong Qi
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Yi You
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Magdalena Grzeszczyk
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
| | - Hiran Jyothilal
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Achintya Bera
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Jude Laverock
- School of
Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
| | - Noel Natera-Cordero
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Pengru Huang
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
| | - Gwang-Hyeon Nam
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Vasyl G. Kravets
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Daniel Burrow
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | | | - Yi Wei Ho
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Neil A. Fox
- School of
Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
| | | | - Ivan J. Vera-Marun
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Ashok Keerthi
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Maciej Koperski
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117575, Singapore
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
| | - Boya Radha
- Department
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- National
Graphene Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Xiang F, Bisht N, Da B, Mohammed MSG, Neiss C, Görling A, Maier S. Intrinsically Patterned Two-Dimensional Transition Metal Halides. ACS NANO 2024; 18:18870-18879. [PMID: 39001861 DOI: 10.1021/acsnano.3c09580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Patterning and defect engineering are key methods for tuning the properties and enabling distinctive functionalities in two-dimensional (2D) materials. However, generating 2D periodic patterns of point defects in 2D materials, such as vacancy lattices that can serve as antidot lattices, has been elusive until now. Herein, we report on 2D transition metal dihalides epitaxially grown on metal surfaces featuring periodically assembled halogen vacancies that result in alternating coordination of the transition metal atom. Using low-temperature scanning probe microscopy and low-energy electron diffraction, we identified the structural properties of intrinsically patterned FeBr2 and CoBr2 monolayers grown epitaxially on Au(111). Density functional theory reveals that Br vacancies are facilitated by low formation energies, and the formation of a vacancy lattice results in a substantial decrease in the lattice mismatch with the underlying Au(111). We demonstrate that interfacial strain engineering presents a versatile strategy for controlled patterning in two dimensions with atomic precision over several hundred nanometers to solve a long-standing challenge of growing atomically precise antidot lattices. In particular, patterning of 2D materials containing transition metals provides a versatile method to achieve unconventional spin textures with noncollinear spin.
Collapse
Affiliation(s)
- Feifei Xiang
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Neeta Bisht
- Department of Chemistry and Pharmacy, Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Binbin Da
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Mohammed S G Mohammed
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian Neiss
- Department of Chemistry and Pharmacy, Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Görling
- Department of Chemistry and Pharmacy, Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sabine Maier
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
4
|
Zhou X, Jiang T, Tao Y, Ji Y, Wang J, Lai T, Zhong D. Evidence of Ferromagnetism and Ultrafast Dynamics of Demagnetization in an Epitaxial FeCl 2 Monolayer. ACS NANO 2024; 18:10912-10920. [PMID: 38613502 DOI: 10.1021/acsnano.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
The development of two-dimensional (2D) magnetism is driven not only by the interest of low-dimensional physics but also by potential applications in high-density miniaturized spintronic devices. However, 2D materials possessing a ferromagnetic order with a relatively high Curie temperature (Tc) are rare. In this paper, the evidence of ferromagnetism in monolayer FeCl2 on Au(111) surfaces, as well as the interlayer antiferromagnetic coupling of bilayer FeCl2, is characterized by using spin-polarized scanning tunneling microscopy. A Curie temperature (Tc) of ∼147 K is revealed for monolayer FeCl2, based on our static magneto-optical Kerr effect measurements. Furthermore, temperature-dependent magnetization dynamics is investigated by the time-resolved magneto-optical Kerr effect. A transition from one- to two-step demagnetization occurs as the lattice temperature approaches Tc, which supports the Elliott-Yafet spin relaxation mechanism. The findings contribute to a deeper understanding of the underlying mechanisms governing ultrafast magnetization in 2D ferromagnetic materials.
Collapse
Affiliation(s)
- Xuhan Zhou
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou No. 89 Secondary School, Guangzhou 510520, China
| | - Tianran Jiang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye Tao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Ji
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingying Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianshu Lai
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingyong Zhong
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Zhang L, Zhao Y, Liu Y, Gao G. High spin polarization, large perpendicular magnetic anisotropy and room-temperature ferromagnetism by biaxial strain and carrier doping in Janus MnSeTe and MnSTe. NANOSCALE 2023; 15:18910-18919. [PMID: 37975757 DOI: 10.1039/d3nr04627c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The emerging two-dimensional (2D) Janus systems with broken symmetry provide a new platform for designing ultrathin multifunctional spintronic materials. Recently, based on experimental monolayer MnSe2, ferromagnetism was predicted in Janus MnXY (X ≠ Y = S, Se, Te) monolayers; however, they exhibit low Curie temperatures and small magnetic anisotropic energies. To improve the Curie temperature and magnetic anisotropy, herein, we systemically explore the stability and electronic and magnetic properties of Janus MnSeTe and MnSTe monolayers under strain and carrier-doping using first-principles calculations and Monte Carlo simulations. It is found that both MnSeTe and MnSTe monolayers possess robustly high spin polarization with rational strain and carrier-doping. Both tensile strain and hole doping strengthen the ferromagnetic super-exchange interactions of the two nearest Mn atoms mediated by chalcogen atoms and exceedingly improve the perpendicular magnetic anisotropic energies (by up to 3.1 meV per f.u. for MnSeTe and 2.0 meV per f.u. for MnSTe). The Te-5p intraorbital hybridizations contributed to the main magnetic anisotropy. More remarkably, the tensile strain and hole doping collectively increase the Curie temperatures of MnSeTe and MnSTe to above and near room temperature (345 and 290 K, respectively). The present study reveals that Janus MnSeTe and MnSTe monolayers with robustly high spin polarization, room-temperature ferromagnetism and large perpendicular magnetic anisotropy are promising candidates for ultrathin multifunctional spintronic materials. This study will be of great interest for further experimental and theoretical explorations of 2D Janus manganese dichalcogenides.
Collapse
Affiliation(s)
- Long Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yan Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuqi Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guoying Gao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|