1
|
Zhou Z, Chen R, Li P, Fan P, Ma L, Cai X, Hou Y, Li B, Su J. Natural borneol improves cellular uptake of curcumin to enhance its photodynamic bactericidal activity against Escherichia coli ATCC 8739. Food Microbiol 2025; 127:104686. [PMID: 39667858 DOI: 10.1016/j.fm.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Photodynamic inactivation (PDI), a non-thermal sterilization method, has attracted considerable attention due to its broad-spectrum antimicrobial activity, environmental friendliness and cost-effectiveness. Curcumin (Cur), a food-grade photosensitizer, exhibits photodynamic antimicrobial activity based primarily on its efficiency in intracellular accumulation. However, Cur's low water solubility and the barriers presented by the outer membrane of Gram-negative bacteria challenge its ability to penetrate the cytoplasm. Natural borneol (NB), a monoterpene food flavoring agent, has also been shown to improve the efficiency of drug absorption. In this study, we demonstrated that NB significantly improved the cellular uptake of Cur, thereby enhancing its photodynamic bactericidal activity against Gram-negative Escherichia coli (E. coli) ATCC 8739, a potential alternative to enterohemorrhagic E. coli O157:H7. This effect was attributed to NB's ability to disrupt the integrity of the E. coli bacterial membrane, thereby increasing cellular permeability. Transcriptomic analysis further confirmed that NB dysregulated the expression of genes associated with bacterial membrane structure and function in E. coli. Consequently, the increased accumulation of Cur in E. coli led to excessive production of intracellular reactive oxygen species (ROS) upon exposure to 6.5 J/cm2 blue light (BL). These ROS, analyzed biochemically and transcriptionally, primarily disrupted bacterial membrane structure and function, the antioxidant system, and ultimately caused bacterial death. Remarkably, this combined strategy not only reduced E. coli contamination in the tested orange juice, but also preserved its nutritional quality. In conclusion, this research provides an innovative and effective approach to maintaining food safety.
Collapse
Affiliation(s)
- Zhenlong Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Ruoxin Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Pengzhen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Penghui Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Lin Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xinyu Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Yuchao Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Binbin Li
- School of Architecture, South China University of Technology, Guangzhou, 510641, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
2
|
Sui M, Zhang J, Li J, Wang L, Gao Z, Dan W, Dai J. Antibacterial activity and multi-target mechanism of harmane against Escherichia coli O157:H7 and its application on ready-to-eat leafy greens. Int J Food Microbiol 2025; 431:111084. [PMID: 39862743 DOI: 10.1016/j.ijfoodmicro.2025.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E. coli O157:H7 (MIC = 64 μg/mL). It exhibited bacteriostatic mode at 1 X and 2 X MIC treatment, and bactericidal mode at 4 X MIC treatment. Moreover, it showed good in vitro stability in sheep plasma, low in vitro hemolysis and no in vivo acute toxicity with LD50 > 50 mg/kg. Moreover, harmane significantly decreased the colony number of E. coli O157:H7 in fresh-cut lettuce samples after 5 days of storage without affecting appearance. The mechanism study elucidated that harmane significantly decomposed the mature biofilm by reducing exopolysaccharide contents, and killed the viable bacterial cells in biofilm. The cell wall was damaged by harmane via interacting with peptidoglycan. Fluorescent staining and intracellular macromolecular leakage assays showed that irreversible destruction to membrane permeability and integrity. When entering the cell, harmane could defeat the redox balance, suppress metabolic activity and target to ribosome. These findings not only revealed the application potential of harmane as new natural preservative, but also preliminarily elucidated the multi-target mechanism, providing a new strategy for controlling E. coli O157:H7 in the food industry.
Collapse
Affiliation(s)
- Meixia Sui
- College of Biology and Oceanography, Weifang University, Weifang, Shandong, China
| | - Jiaoyue Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jingying Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Li Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhenzhen Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Ye T, Li Y, Zhou X, Ye Y, Liu X, Xiong W. Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137207. [PMID: 39827804 DOI: 10.1016/j.jhazmat.2025.137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes. The results indicated that BPNSs exhibited concentration-dependent hormesis-like effects on bacterial conjugation gene transfer. Specifically, at sub-inhibitory concentrations (0.0001-1 mg/L), BPNSs promoted both intra- and intergeneric conjugative transfer, demonstrating an initial increase followed by a decline, with transfer rates rising by 1.5-3.1-fold and 1.5-3.3-fold, respectively. BPNSs were found to induce reactive oxygen species (ROS) production, increase malondialdehyde levels, and trigger the SOS response, enhancing plasmid uptake. Additionally, BPNSs increased membrane permeability by forming pores and upregulating outer membrane porins (OMPs) genes. At higher BPNSs concentrations (0.1-1 mg/L), conjugative frequency was inhibited due to the disruption of the cellular antioxidant system and changes in the adsorption process. These findings underscore the influence of BPNSs on the conjugative transfer of ARGs, complementing current knowledge of the biotoxicity and potential ecological risks associated with BPNSs.
Collapse
Affiliation(s)
- Tao Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yingbin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Zhang X, Zeng J, White JC, Li F, Xiong Z, Zhang S, Xu Y, Yang J, Tang W, Zhao Q, Wu F, Xing B. Mechanistic evaluation of enhanced graphene toxicity to Bacillus induced by humic acid adsorption. Nat Commun 2025; 16:184. [PMID: 39753547 PMCID: PMC11699226 DOI: 10.1038/s41467-024-55270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus. Contrary to previous data, GNSs-HA exhibits greater toxicity compared to GNSs. Multi-omics combined with sensitive bioassays and electrochemical methods reveals GNSs disrupt oxidative phosphorylation by causing physical membrane damage. This leads to the accumulation of intracellular reactive oxygen species and inhibition of ATP production, subsequently suppressing synthetic and metabolic processes and ultimately causing bacterial death. Conversely, GNSs-HA directly extracts electrons from bacteria and oxidized biomolecules due to HA-improved electron transfer. This finding suggests that the HA corona does not always mitigate the toxicity of nanoparticles, thereby introducing uncertainty over the interaction between environmental corona and nanoparticles during ecological risk evaluation.
Collapse
Grants
- 42394150, 42192574, 42277423, 42077394, 42230713, 22176196 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Major Project of Basic and Applied Basic Research (2023B0303000006), National Key Research and Development Program of China (2023YFC3708700), GDAS’ Project of Science and Technology Development (2022GDASZH-2022010105, 2023GDASQNRC-0103, 2023GDASQNRC-0106, and 2020GDASYL-20200101002), and Guangdong Foundation for Program of Science and Technology Research (Grant No.2023B1212060044).
Collapse
Affiliation(s)
- Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, US
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Siyu Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuze Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Jingjing Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
- Wuhu Haichuang Environmental Protection Technology Co., Ltd., Wuhu, 723309, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Yang F, Chen L, Zhou H, Zhang Q, Hao T, Hu Y, Wang S, Guo Z. An LF-NMR homogeneous sensor for highly sensitive and precise detection of E. coli based on target-triggered CuAAC click reaction. Talanta 2024; 278:126550. [PMID: 39013338 DOI: 10.1016/j.talanta.2024.126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/02/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
In this study, a low field nuclear magnetic resonance (LF-NMR) homogeneous sensor was constructed for detection of Escherichia coli (E. coli) based on the copper metabolism of E. coli triggered click reaction. When live E. coli was present, a large amount of Cu2+ ions were transformed into Cu+ via copper metabolism, which then catalyzed a Cu+-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between two materials, azide group modified gadolinium oxide nanorods (Gd2O3-Az) and PA-GO@Fe3O4 i.e., graphene oxide (GO) loaded with large amounts of alkynyl (PA) groups and Fe3O4 nanoparticles simultaneously. After magnetic separation, unbound Gd2O3-Az was dissolved by added hydrochloric acid (HCl) to generate homogeneous Gd3+ solution, enabling homogeneous detection of E. coli. Triple signal amplification was achieved through the CuAAC reaction induced by E. coli copper metabolism, functional nanomaterials, and HCl assisted homogeneous detection. Under the optimal experimental conditions, the linear range and limit of detection (LOD) for E. coli were 10-1.0 × 107 CFU/mL and 3.5 CFU/mL, respectively, and the relative standard deviations (RSDs) were all less than 2.8 %. In addition, the sensor has satisfactory selectivity, stability and practical sample application capability, providing a new approach for the LF-NMR detection of food-borne pathogenic bacteria.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Qingqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
6
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
7
|
Li C, Fang X, Zhang H, Zhang B. Recent Advances of Emerging Metal-Containing Two-Dimensional Nanomaterials in Tumor Theranostics. Int J Nanomedicine 2024; 19:805-824. [PMID: 38283201 PMCID: PMC10822123 DOI: 10.2147/ijn.s444471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
In recent years, metal-containing two-dimensional (2D) nanomaterials, among various 2D nanomaterials have attracted widespread attention because of their unique physical and chemical properties, especially in the fields of biomedical applications. Firstly, the review provides a brief introduction to two types of metal-containing 2D nanomaterials, based on whether metal species take up the major skeleton of the 2D nanomaterials. After this, the synthetical approaches are summarized, focusing on two strategies similar to other 2D nanomaterials, top-down and bottom-up methods. Then, the performance and evaluation of these 2D nanomaterials when applied to cancer therapy are discussed in detail. The specificity of metal-containing 2D nanomaterials in physics and optics makes them capable of killing cancer cells in a variety of ways, such as photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and so on. Besides, the integrated platform of diagnosis and treatment and the clinical translatability through metal-containing 2D nanomaterials is also introduced in this review. In the summary and perspective section, advanced rational design, challenges and promising clinical contributions to cancer therapy of these emerging metal-containing 2D nanomaterials are discussed.
Collapse
Affiliation(s)
- Chenxi Li
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- Graduate Collaborative Training Base of Shenzhen Second People’s Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| | - Han Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| |
Collapse
|