1
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Debnath S, Meyyappan M, Giri PK. Printed MoSe 2/GaAs Photodetector Enabling Ultrafast and Broadband Photodetection up to 1.5 μm. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9039-9050. [PMID: 38324453 DOI: 10.1021/acsami.3c17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of high-performance and low-cost photodetectors (PDs) capable of detecting a broad range of wavelengths, from ultraviolet (UV) to near-infrared (NIR), is crucial for applications in sensing, imaging, and communication systems. This work presents a novel approach for printing a broadband PD based on a heterostructure of two-dimensional (2D) molybdenum diselenide (MoSe2) and gallium arsenide (GaAs). The fabrication process involves a precise technique to print MoSe2 nanoflower (NF) ink onto a prepatterned GaAs substrate. The resulting heterostructure exhibits unique properties, leveraging the exceptional electronic and optical characteristics of both GaAs and 2D MoSe2. The fabricated PD achieves an astounding on-off ratio of ∼105 at 5 V bias while demonstrating an exceptional on-off ratio of ∼104 at 0 V. The depletion region between GaAs and MoSe2 facilitates efficient charge generation and separation and collection of photogenerated carriers. This significantly improves the performance of the PD, resulting in a notably high responsivity across the spectrum. The peak responsivity of the device is 5.25 A/W at 5 V bias under 808 nm laser excitation, which is more than an order of magnitude higher than that of any commercial NIR PDs. Furthermore, the device demonstrates an exceptional responsivity of 0.36 A/W under an external bias of 0 V. The printing technology used here offers several advantages including simplicity, scalability, and compatibility with large-scale production. Additionally, it enables precise control over the placement and integration of the MoSe2 NF onto the GaAs substrate, ensuring uniformity and reliability in device performance. The exceptional responsivity across a broad spectral range (360-1550 nm) and the success of the printing technique make our MoSe2/GaAs heterostructure PD promising for future low-cost and efficient optoelectronic devices.
Collapse
Affiliation(s)
- Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Zhao X, Wang X, Jia R, Lin Y, Guo T, Wu L, Hu X, Zhao T, Yan D, Zhu L, Chen Z, Xu X, Chen X, Song X. High-sensitivity hybrid MoSe 2/AgInGaS quantum dot heterojunction photodetector. RSC Adv 2024; 14:1962-1969. [PMID: 38196903 PMCID: PMC10774710 DOI: 10.1039/d3ra07240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Zero-dimensional (0D)-two-dimensional (2D) hybrid photodetectors have received widespread attention due to their outstanding photoelectric performances. However, these devices with high performances mainly employ quantum dots that contain toxic elements as sensitizing layers, which restricts their practical applications. In this work, we used eco-friendly AgInGaS quantum dots (AIGS-QDs) as a highly light-absorbing layer and molybdenum diselenide (MoSe2) as a charge transfer layer to construct a 0D-2D hybrid photodetector. Notably, we observed that MoSe2 strongly quenches the photoluminescence (PL) of AIGS-QDs and decreases the decay time of PL in the MoSe2/AIGS-QDs heterojunction. The MoSe2/AIGS-QDs hybrid photodetector demonstrates a responsivity of 14.3 A W-1 and a high detectivity of 6.4 × 1011 Jones. Moreover, the detectivity of the hybrid phototransistor is significantly enhanced by more than three times compared with that of the MoSe2 photodetector. Our work suggests that 0D-2D hybrid photodetectors with multiplex I-III-VI QDs provide promising potential for future high-sensitivity photodetectors.
Collapse
Affiliation(s)
- Xunjia Zhao
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xusheng Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Runmeng Jia
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Yuhai Lin
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - TingTing Guo
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Linxiang Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xudong Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Tong Zhao
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Danni Yan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Lin Zhu
- Shangdong Gemei Tungsten & Molybdenum Material Co. Ltd Weihai 265222 China
| | - Zhanyang Chen
- Shangdong Gemei Tungsten & Molybdenum Material Co. Ltd Weihai 265222 China
| | - Xinsen Xu
- Shangdong Gemei Tungsten & Molybdenum Material Co. Ltd Weihai 265222 China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xiufeng Song
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
4
|
Intonti K, Faella E, Kumar A, Viscardi L, Giubileo F, Martucciello N, Lam HT, Anastasiou K, Craciun M, Russo S, Di Bartolomeo A. Temperature-Dependent Conduction and Photoresponse in Few-Layer ReS 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50302-50311. [PMID: 37862154 PMCID: PMC10623565 DOI: 10.1021/acsami.3c12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
The electrical behavior and the photoresponse of rhenium disulfide field-effect transistors (FETs) have been widely studied; however, only a few works have investigated the photocurrent as a function of temperature. In this paper, we perform the electrical characterization of few-layer ReS2-based FETs with Cr-Au contacts over a wide temperature range. We exploit the temperature-dependent transfer and output characteristics to estimate the effective Schottky barrier at the Cr-Au/ReS2 interface and to investigate the temperature behavior of parameters, such as the threshold voltage, carrier concentration, mobility, and subthreshold swing. Through time-resolved photocurrent measurements, we show that the photocurrent increases with temperature and exhibits a linear dependence on the incident light power at both low and room temperatures and a longer rise/decay time at higher temperatures. We surmise that the photocurrent is affected by the photobolometric effect and light-induced desorption of adsorbates which are facilitated by the high temperature and the low pressure.
Collapse
Affiliation(s)
- Kimberly Intonti
- Department
of Physics “E.R. Caianiello”, University of Salerno, Fisciano 84084, Salerno, Italy
- CNR-SPIN, Fisciano 84084, Salerno, Italy
| | - Enver Faella
- Department
of Physics “E.R. Caianiello”, University of Salerno, Fisciano 84084, Salerno, Italy
- CNR-SPIN, Fisciano 84084, Salerno, Italy
| | - Arun Kumar
- Department
of Physics “E.R. Caianiello”, University of Salerno, Fisciano 84084, Salerno, Italy
- CNR-SPIN, Fisciano 84084, Salerno, Italy
| | - Loredana Viscardi
- Department
of Physics “E.R. Caianiello”, University of Salerno, Fisciano 84084, Salerno, Italy
- CNR-SPIN, Fisciano 84084, Salerno, Italy
| | | | | | - Hoi Tung Lam
- University
of Exeter, Stocker Road 6, Exeter EX4 4QL, Devon, U.K.
| | | | - Monica Craciun
- University
of Exeter, Stocker Road 6, Exeter EX4 4QL, Devon, U.K.
| | - Saverio Russo
- University
of Exeter, Stocker Road 6, Exeter EX4 4QL, Devon, U.K.
| | - Antonio Di Bartolomeo
- Department
of Physics “E.R. Caianiello”, University of Salerno, Fisciano 84084, Salerno, Italy
- CNR-SPIN, Fisciano 84084, Salerno, Italy
| |
Collapse
|
5
|
Liu S, Carey T, Munuera J, Synnatschke K, Kaur H, Coleman E, Doolan L, Coleman JN. Solution-Processed Heterojunction Photodiodes Based on WSe 2 Nanosheet Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304735. [PMID: 37735147 DOI: 10.1002/smll.202304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed photodetectors incorporating liquid-phase-exfoliated transition metal dichalcogenide nanosheets are widely reported. However, previous studies mainly focus on the fabrication of photoconductors, rather than photodiodes which tend to be based on heterojunctions and are harder to fabricate. Especially, there are rare reports on introducing commonly used transport layers into heterojunctions based on nanosheet networks. In this study, a reliable solution-processing method is reported to fabricate heterojunction diodes with tungsten selenide (WSe2 ) nanosheets as the optical absorbing material and PEDOT: PSS and ZnO as injection/transport-layer materials. By varying the transport layer combinations, the obtained heterojunctions show rectification ratios of up to ≈104 at ±1 V in the dark, without relying on heavily doped silicon substrates. Upon illumination, the heterojunction can be operated in both photoconductor and photodiode modes and displays self-powered behaviors at zero bias.
Collapse
Affiliation(s)
- Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/Leopoldo Calvo Sotelo, 18 Oviedo, Asturias, 33007, Spain
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Emmet Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| |
Collapse
|
6
|
Debnath S, Ghosh K, Meyyappan M, Giri PK. A fully printed ultrafast Si/WS 2 quantum dot photodetector with very high responsivity over the UV to near-infrared region. NANOSCALE 2023; 15:13809-13821. [PMID: 37578279 DOI: 10.1039/d3nr02331a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Two-dimensional (2D) semiconducting material-based photodetectors (PDs) with high responsivity and fast photo-response are of great interest for various applications such as optical communications, biomedical imaging, security surveillance, environmental monitoring, etc. Additive manufacturing such as 2D printing is a potentially less cumbersome and cost-effective alternative to conventional microdevice fabrication processes used in the production of PDs. Here, we have fabricated a Si/WS2 quantum dot-based heterostructure PD with a very short electrode gap of 40 μm by a simple printing process. The printed p-Si/n-WS2 PD shows an excellent photo-to-dark current ratio of 5121 under 405 nm illumination (23.8 mW cm-2). The printed photodetector exhibits a peak responsivity of 126 A W-1 and a peak detectivity of 9.24 × 1012 Jones over a very broad wavelength range (300-1100 nm), which is much superior to commercial Si PDs. A high external quantum efficiency of 3.9 × 104% and an ultrafast photoresponse (7.8 μs rise time and 9.5 μs fall time) make the device an attractive candidate as an efficient photodetector. The origin of high-performance photodetection is traced to a nearly defect-free interface at the heterojunction, leading to highly efficient charge separation and high photocurrent. Finally, the 2D-printed device exhibits good photodetection even in self-powered conditions, which is very attractive.
Collapse
Affiliation(s)
- Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India.
| | - Koushik Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India.
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|