1
|
Lin C, Li K, Li M, Dopphoopha B, Zheng J, Wang J, Du S, Li Y, Huang B. Pushing Radiative Cooling Technology to Real Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409738. [PMID: 39415410 DOI: 10.1002/adma.202409738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Indexed: 10/18/2024]
Abstract
Radiative cooling is achieved by controlling surface optical behavior toward solar and thermal radiation, offering promising solutions for mitigating global warming, promoting energy saving, and enhancing environmental protection. Despite significant efforts to develop optical surfaces in various forms, five primary challenges remain for practical applications: enhancing optical efficiency, maintaining appearance, managing overcooling, improving durability, and enabling scalable manufacturing. However, a comprehensive review bridging these gaps is currently lacking. This work begins by introducing the optical fundamentals of radiative cooling and its potential applications. It then explores the challenges and discusses advanced solutions through structural design, material selection, and fabrication processes. It aims to provide guidance for future research and industrial development of radiative cooling technology.
Collapse
Affiliation(s)
- Chongjia Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Keqiao Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Meng Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benjamin Dopphoopha
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jiongzhi Zheng
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH, 03755, USA
| | - Jiazheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shanshan Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian, Shenzhen, 518000, China
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| |
Collapse
|
2
|
Zhu K, Yao H, Song J, Liao Q, He S, Guang T, Wang H, Hao X, Lu B, Lin T, Cheng H, Liu X, Qu L. Temperature-adaptive dual-modal photonic textiles for thermal management. SCIENCE ADVANCES 2024; 10:eadr2062. [PMID: 39383222 PMCID: PMC11463281 DOI: 10.1126/sciadv.adr2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Maintaining a thermally comfortable living and working environment with renewable energy sources is crucial for human health. However, achieving temperature self-regulation in individual textiles without external interventions remains a challenge. Here, we present a dual-modal photonic textile capable of autonomously achieving both low-temperature solar heating and high-temperature radiative cooling under sunlight. This innovative textile is primarily composed of textile fibers that are functionalized with thermochromic microcapsules encapsulated in graphene and barium sulfate coatings, which exhibit approximately 80% visible light optical modulation when integrated into the fabric. We demonstrate that garment and tent (3.5 m × 2.9 m × 1.3 m) fabricated from these textiles can achieve temperature-adaptive, all-weather thermal management, expanding the thermal comfort range by 8.5°C. This research showcases notable potential for applications in fabric-related heat management and highlights the importance of exploring temperature-adaptive solutions for a sustainable and healthy lifestyle.
Collapse
Affiliation(s)
- Kaixuan Zhu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Houze Yao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - JiaJia Song
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
- Academy of Arts & Design, Tsinghua University, Beijing 100084, P. R. China
| | - Qihua Liao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Shuang He
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
- Academy of Arts & Design, Tsinghua University, Beijing 100084, P. R. China
| | - Tianlei Guang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Xuanzhang Hao
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Tengyu Lin
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
- HurRain NanoTech (Beijing) Co. Ltd., Beijing 102627, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Xin Liu
- Beijing Institute of Fashion Technology, Beijing 100105, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
3
|
Yan X, Yang M, Duan W, Cui H. Particle-Solid Transition Architecture for Efficient Passive Building Cooling. ACS NANO 2024; 18:27752-27763. [PMID: 39321467 DOI: 10.1021/acsnano.4c10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Electricity consumption for building cooling accounts for a significant portion of global energy usage and carbon emissions. To address this challenge, passive daytime radiative cooling (PDRC) has emerged as a promising technique for cooling buildings without electricity input. However, existing radiative coolers face material mismatch issues, particularly on cementitious composites like concrete, limiting their practical application. Here, we propose a cementitious radiative cooling armor based on a particle-solid transition architecture (PSTA) to overcome these challenges. The PSTA design features an asymmetric yet monolithic morphology and an all-inorganic nature, decoupling radiative cooling from building compatibility while ensuring UV resistance. In the PSTA design, nanoparticles on the surface serve as sunlight scatterers and thermal emitters, while those embedded within a cementitious substrate provide build compatibility and cohesiveness. This configuration results in enhanced interfacial bonding strength, high solar reflectance, and strong mid-infrared emittance. Specifically, the PSTA delivers an enhanced interfacial shear strength (0.93 MPa), several-fold higher than that in control groups (metal, glass, plastic) along with a cooling performance (a subambient temperature drop of ∼6.6 °C and a cooling power of ∼92.8 W under a direct solar irradiance of ∼680 W/m2) that rivals or outperforms previous reports. Importantly, the design concept of the PSTA is applicable to various particles and solids, facilitating the practical application of PDRC technology in building scenarios.
Collapse
Affiliation(s)
- Xiantong Yan
- Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meng Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Duan
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hongzhi Cui
- Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Du Y, Li A, Zhang F, Gao H, Zhou X, Zhu J, Ye Z. Anti-UV Passive Radiative Cooling Chiral Nematic Liquid Crystal Films for Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400578. [PMID: 38805746 DOI: 10.1002/smll.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Passive radiative cooling (PRC) can spontaneously dissipate heat to outer space through atmospheric transparent windows, providing a promising path to meet sustainable development goals. However, achieving simultaneously high transparency, color-customizable, and thermal management of PRC anti ultraviolet (anti-UV) films remains a challenge. Herein, a simple strategy is proposed to utilize liquid crystalline polymer, with high mid-infrared emissive, forming customizable structural color film by molecular self-assembly and polymerization-induced pitch gradient, which guarantees the balance of transparency in visible spectrum and sunlight reflection, rendering anti-UV colored window for thermal management. By performing tests, temperature fall of 5.4 and 7.9 °C are demonstrated at noon with solar intensity of 717 W m-2 and night, respectively. Vivid red-, green-, blue-structured colors, and colorless films are designed and implemented to suppress the solar input and control the effective visible light transmissivity considering the efficiency function of human vision. In addition, temperature rise of 11.1 °C is achieved by applying an alternating current field on the PRC film. This study provides a new perspective on the thermal management and aesthetic functionalities of smart windows and wearables.
Collapse
Affiliation(s)
- Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fan Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xuan Zhou
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jiliang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
5
|
Li Z, Long L, Tang Z, Chen X, Huang Z, Ren Y, Liu Y, Ye H. Stretchable Metamaterials with Tunable Infrared Emissivity for Dynamic Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47639-47645. [PMID: 39223078 DOI: 10.1021/acsami.4c09758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 μm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 μm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm2 for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
Collapse
Affiliation(s)
- Zhaoran Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Linshuang Long
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhipeng Tang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiaopeng Chen
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zizhen Huang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuan Ren
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuchi Liu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong Ye
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
6
|
Lee G, Kang H, Yun J, Chae D, Jeong M, Jeong M, Lee D, Kim M, Lee H, Rho J. Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces. Nat Commun 2024; 15:6537. [PMID: 39095384 PMCID: PMC11297326 DOI: 10.1038/s41467-024-50872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Sustainable energies from weather are the most ubiquitous and non-depleted resources. However, existing devices exploiting weather-dependent energies are sensitive to weather conditions and geographical locations, making their universal applicability challenging. Herein, we propose an all-weather sustainable glass surface integrating a triboelectric nanogenerator and radiative cooler, which serves as a sustainable device, harvesting energy from raindrops and saving energy on sunny days. By systematically designing transparent, high-performance triboelectric layers, functioning as thermal emitters simultaneously, particularly compatible with radiative cooling components optimized with an evolutionary algorithm, our proposed device achieves optimal performance for all-weather-dependent energies. We generate 248.28 Wm-2 from a single droplet with an energy conversion ratio of 2.5%. Moreover, the inner temperature is cooled down by a maximum of 24.1 °C compared to pristine glass. Notably, as the proposed device is realized to provide high transparency up to 80% in the visible range, we are confident that our proposed device can be applied to versatile applications.
Collapse
Affiliation(s)
- Geon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jooyeong Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dongwoo Chae
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Minseo Jeong
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Miso Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- SKKU Institute of Energy Science and Engineering (SIEST), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, Republic of Korea.
| |
Collapse
|
7
|
Liu BY, Wu J, Xue CH, Zeng Y, Liang J, Zhang S, Liu M, Ma CQ, Wang Z, Tao G. Bioinspired Superhydrophobic All-In-One Coating for Adaptive Thermoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400745. [PMID: 38810961 DOI: 10.1002/adma.202400745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The development of scalable and passive coatings that can adapt to seasonal temperature changes while maintaining superhydrophobic self-cleaning functions is crucial for their practical applications. However, the incorporation of passive cooling and heating functions with conflicting optical properties in a superhydrophobic coating is still challenging. Herein, an all-in-one coating inspired by the hierarchical structure of a lotus leaf that combines surface wettability, optical structure, and temperature self-adaptation is obtained through a simple one-step phase separation process. This coating exhibits an asymmetrical gradient structure with surface-embedded hydrophobic SiO2 particles and subsurface thermochromic microcapsules within vertically distributed hierarchical porous structures. Moreover, the coating imparts superhydrophobicity, high infrared emission, and thermo-switchable sunlight reflectivity, enabling autonomous transitions between radiative cooling and solar warming. The all-in-one coating prevents contamination and over-cooling caused by traditional radiative cooling materials, opening up new prospects for the large-scale manufacturing of intelligent thermoregulatory coatings.
Collapse
Affiliation(s)
- Bing-Ying Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao-Hua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yijun Zeng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Liang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shiliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingxiang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao-Qun Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Physical Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Lu X, Huang H, Zhang Y, Wang Z, Peng C, Zhang S, Lu R, Wang Y, Tang B. Confined Crystallization Polyether-Based Flexible Phase Change Film for Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38540-38549. [PMID: 38982645 DOI: 10.1021/acsami.4c06920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Phase change materials (PCMs) possess the potential to regulate temperature by utilizing their thermal properties to absorb and release heat. Nevertheless, the application of PCMs in thermal management is constrained by issues such as liquid leakage and limited flexibility. In this study, we propose a novel approach to address these challenges by incorporating a pore structure within nanofibers to confine the crystallization of phase change molecules, thereby enhancing the flexibility of the composite material. Additionally, inspired by the adaptive mechanisms observed in plants, we have developed a form stable PCM based on polyether, which effectively mitigates the issue of liquid leakage at higher temperatures. Despite being a solid-liquid PCM at its core, this material exhibits molecular-scale flow and macroscopic shape stability as a result of intermolecular forces. The composite film material possesses remarkable flexibility, efficient thermal management capabilities, adjustable phase transition temperature, and the ability to undergo repeated processing and utilization. Consequently, it holds promising potential for applications in personal thermal energy management.
Collapse
Affiliation(s)
- Xiaohe Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - He Huang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Rongwen Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yanshai Wang
- Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Ma JW, Zeng FR, Lin XC, Wang YQ, Ma YH, Jia XX, Zhang JC, Liu BW, Wang YZ, Zhao HB. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 2024; 385:68-74. [PMID: 38963855 DOI: 10.1126/science.adn5694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/14/2024] [Indexed: 07/06/2024]
Abstract
Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.
Collapse
Affiliation(s)
- Jian-Wen Ma
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Fu-Rong Zeng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Xin-Cen Lin
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Yi-Heng Ma
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Xu-Xu Jia
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Jin-Cheng Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
10
|
Li Y, Li P, Yu H, Diao X, Liu P, Zhao Z, Chen X. Photoelectric dual-mode triggered phase change materials for all-weather personal thermal management and shape memory. J Colloid Interface Sci 2024; 665:1007-1016. [PMID: 38579384 DOI: 10.1016/j.jcis.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
To cope with the demand of more complex and variable applications, it is urgent to develop dual-mode triggered, breathable, and shape-memory wearable heaters for all-weather personal thermal management of composite phase change materials (PCMs). Herein, after high-temperature carbonization of ZnCo-MOF (metal-organic framework) nanosheet array grown in situ on flexible and breathable carbon cloth (CC) and subsequent encapsulation of polyethylene glycol (PEG), the as-prepared PEG/CC@Co/CNT (carbon nanotube) composite PCMs exhibited good breathability, mechanical strength (tensile strength of 9.15 MPa), thermal energy storage density (114.19 J/g), and shape memory due to the synergy of flexible CC skeleton and rigid PEG. More importantly, composite PCMs possessed excellent solar-thermal (93.7 %, 100 mW/cm2) and electro-thermals (94.5 %, 2.0 V) conversion and storage capacity, benefiting from the conjugation effect of high graphitized carbon/carbon heterostructure with fast electron/photon/phonon transmission and the localized surface plasmon resonance effect of Co nanoparticles. Therefore, the integration of solar heating and Joule heating into breathable composite PCMs can be accurately used for next-generation all-weather, all-season, dual-mode triggered personal thermal management, including indoor/outdoor, daytime/night, rainy/cloudy and other complex and changeable scenarios.
Collapse
Affiliation(s)
- Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China; College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Peicheng Li
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Han Yu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China; College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Xuemei Diao
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China; College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China; College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Zhiyong Zhao
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China; College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
11
|
Qin M, Jia K, Usman A, Han S, Xiong F, Han H, Jin Y, Aftab W, Geng X, Ma B, Ashraf Z, Gao S, Wang Y, Shen Z, Zou R. High-Efficiency Thermal-Shock Resistance Enabled by Radiative Cooling and Latent Heat Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314130. [PMID: 38428436 DOI: 10.1002/adma.202314130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Radiative cooling technology is well known for its subambient temperature cooling performance under sunlight radiation. However, the intrinsic maximum cooling power of radiative cooling limits the performance when the objects meet the thermal shock. Here, a dual-function strategy composed of radiative cooling and latent heat storage simultaneously enabling the efficient subambient cooling and high-efficiency thermal-shock resistance performance is proposed. The electrospinning and absorption-pressing methods are used to assemble the dual-function cooler. The high sunlight reflectivity and high mid-infrared emissivity of radiative film allow excellent subambient temperature of 5.1 °C. When subjected the thermal shock, the dual-function cooler demonstrates a pinning effect of huge temperature drop of 39 °C and stable low-temperature level by isothermal heat absorption compared with the traditional radiative cooler. The molten phase change materials provide the heat-time transfer effect by converting thermal-shock heat to the delayed preservation. This strategy paves a powerful way to protect the objects from thermal accumulation and high-temperature damage, expanding the applications of radiative cooling and latent heat storage technologies.
Collapse
Affiliation(s)
- Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kaihang Jia
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shenghui Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haiwei Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yongkang Jin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaoye Geng
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingbing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zubair Ashraf
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhenghui Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
12
|
Sun M, Peng F, Xu S, Liu X, Dai K, Zheng G, Liu C, Shen C. Polyethylene fibers containing directional microchannels for passive radiative cooling. MATERIALS HORIZONS 2024; 11:1787-1796. [PMID: 38315195 DOI: 10.1039/d3mh01881d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Passive radiative cooling (PRC) that realizes thermal management without consuming any energy has attracted increasing attention. Unfortunately, polymer fibers with radiative cooling function fabricated via a facile, continuous, large-scale and eco-friendly method have been scarcely reported. Herein, polyethylene fibers containing directional microchannels (PFCDM) are facilely fabricated via melt extrusion and water leaching. Interestingly, fabric based on such hydrophobic PFCDM shows high sunlight reflectivity (93.6%), and mid-infrared emissivity (93.9%), endowing it with remarkable PRC performance. Compared with other reported examples, the as-prepared PFDCM fabric has the highest cooling power (i.e., 104.285 W m-2) and temperature drop (i.e., 27.71 °C). Furthermore, decent self-cleaning performance can keep the PFCDM fabric away from contamination and enable it to retain an excellent radiative cooling effect. The method proposed to fabricate PFCDM in this paper will widen the potential application of thermoplastic polyolefins in the field of radiative cooling.
Collapse
Affiliation(s)
- Mengxia Sun
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Fei Peng
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Shanshan Xu
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Xianhu Liu
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Guoqiang Zheng
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Changyu Shen
- School of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, P. R. China.
| |
Collapse
|
13
|
Zhou G, Huang J, Li H, Li Y, Jia G, Song N, Xiao J. Multispectral camouflage and radiative cooling using dynamically tunable metasurface. OPTICS EXPRESS 2024; 32:12926-12940. [PMID: 38571100 DOI: 10.1364/oe.517889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
With the increasing demand for privacy, multispectral camouflage devices that utilize metasurface designs in combination with mature detection technologies have become effective. However, these early designs face challenges in realizing multispectral camouflage with a single metasurface and restricted modes. Therefore, this paper proposes a dynamically tunable metasurface. The metasurface consists of gold (Au), antimony selenide (Sb2Se3), and aluminum (Al), which enables radiative cooling, light detection and ranging (LiDAR) and infrared camouflage. In the amorphous phase of Sb2Se3, the thermal radiation reduction rate in the mid wave infrared range (MWIR) is up to 98.2%. The echo signal reduction rate for the 1064 nm LiDAR can reach 96.3%. In the crystalline phase of Sb2Se3, the highest cooling power is 65.5 Wm-2. Hence the metasurface can reduce the surface temperature and achieve efficient infrared camouflage. This metasurface design provides a new strategy for making devices compatible with multispectral camouflage and radiative cooling.
Collapse
|
14
|
Fei J, Han D, Zhang X, Li K, Lavielle N, Zhou K, Wang X, Tan JY, Zhong J, Wan MP, Nefzaoui E, Bourouina T, Li S, Ng BF, Cai L, Li H. Ultrahigh Passive Cooling Power in Hydrogel with Rationally Designed Optofluidic Properties. NANO LETTERS 2024; 24:623-631. [PMID: 38048272 DOI: 10.1021/acs.nanolett.3c03694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m2 with ∼58% higher UV irradiation). So far, there has been no report of daytime radiative cooling that well achieves effective subambient cooling. Herein, through integrated passive cooling strategies in a hydrogel with desirable optofluidic properties, we demonstrate stable subambient (4-8 °C) cooling even under the strongest solar radiation in Singapore. The integrated passive cooler achieves an ultrahigh cooling power of ∼350 W/m2, 6-10 times higher than a radiative cooler in a tropical climate. An in situ study of radiative cooling with various hydration levels and ambient humidity is conducted to understand the interaction between radiation and evaporative cooling. This work provides insights for the design of an integrated cooler for various climates.
Collapse
Affiliation(s)
- Jipeng Fei
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Di Han
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuan Zhang
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nicolas Lavielle
- Univ Gustave Eiffel, CNRS, ESYCOM, Marne la Vallée F77454, France
| | - Kai Zhou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xingli Wang
- CINTRA CNRS/NTU/THALES, IRL 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Jun Yan Tan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Elyes Nefzaoui
- Univ Gustave Eiffel, CNRS, ESYCOM, Marne la Vallée F77454, France
| | - Tarik Bourouina
- Univ Gustave Eiffel, CNRS, ESYCOM, Marne la Vallée F77454, France
- CINTRA CNRS/NTU/THALES, IRL 3288, Research Techno Plaza, Singapore 637553, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bing Feng Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lili Cai
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, IRL 3288, Research Techno Plaza, Singapore 637553, Singapore
- School of Electric and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
15
|
Xiong L, Wei Y, Chen C, Chen X, Fu Q, Deng H. Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat Commun 2023; 14:6129. [PMID: 37783720 PMCID: PMC10545832 DOI: 10.1038/s41467-023-41797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Passive daytime radiative cooling is a promising path to tackle energy, environment and security issues originated from global warming. However, the contradiction between desired high solar reflectivity and necessary applicable performance is a major limitation at this stage. Herein, we demonstrate a "Solvent exchange-Reprotonation" processing strategy to fabricate a lamellar structure integrating aramid nanofibers with core-shell TiO2-coated Mica microplatelets for enhanced strength and durability without compromising optical performance. Such approach enables a slow but complete two-step protonation transition and the formation of three-dimensional dendritic networks with strong fibrillar joints, where overloaded scatterers are stably grasped and anchored in alignment, thereby resulting in a high strength of ~112 MPa as well as excellent environmental durability including ultraviolet aging, high temperature, scratches, etc. Notably, the strong backward scattering excited by multiple core-shell and shell-air interfaces guarantees a balanced reflectivity (~92%) and thickness (~25 μm), which is further revealed by outdoor tests where attainable subambient temperature drops are ~3.35 °C for daytime and ~6.11 °C for nighttime. Consequently, both the cooling capacity and comprehensive outdoor-services performance, greatly push radiative cooling towards real-world applications.
Collapse
Affiliation(s)
- Lianhu Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yun Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
16
|
Gu B, Xu Q, Wang H, Pan H, Zhao D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS NANO 2023; 17:18308-18317. [PMID: 37703206 DOI: 10.1021/acsnano.3c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Climate change has recently caused more and more severe temperatures, inducing a growing demand for personal thermal management at outdoors. However, designing textiles that can achieve personal thermoregulation without energy consumption in severely hot and cold environments remains a huge challenge. Herein, a hierarchically nanofibrous (HNF) textile with improved thermal insulation and radiative thermal management functions is fabricated for efficient personal thermal management in severe temperatures. The textile consists of a radiative cooling layer, an intermediate thermal insulation layer, and a radiative heating layer, wherein the porous lignocellulose aerogel membrane (LCAM) as intermediate layer has low thermal conductivity (0.0366 W·m-1·K-1), ensuring less heat loss in cold weather and blocking external heat in hot weather. The introduction of polydimethylsiloxane (PDMS) increases the thermal emissivity (90.4%) of the radiative cooling layer in the atmospheric window and also endows it with a perfect self-cleaning performance. Solar absorptivity (80.1%) of the radiative heating layer is dramatically increased by adding only 0.05 wt% of carbon nanotubes (CNTs) into polyacrylonitrile. An outdoor test demonstrates that the HNF textile can achieve a temperature drop of 7.2 °C compared with white cotton in a hot environment and can be as high as 12.2 °C warmer than black cotton in a cold environment. In addition, the HNF textile possesses excellent moisture permeability, breathability, and directional perspiration performances, making it promising for personal thermal management in severely hot and cold environments.
Collapse
Affiliation(s)
- Bin Gu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qihao Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongkui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Haodan Pan
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
- Institute of Science and Technology for Carbon Neutrality, Southeast University, Nanjing, Jiangsu 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing, Jiangsu 210096, China
| |
Collapse
|