1
|
Zhang P, Zhang L, Wang Z, Cheng Q, Wu W, Li J, Liang G, Narain R. Acid-Responsive Polymer Micelles for Targeted Delivery and Bioorthogonal Activation of Prodrug through Ru Catalyst in Tumor Cells. Biomacromolecules 2024; 25:5834-5846. [PMID: 39191734 DOI: 10.1021/acs.biomac.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bioorthogonal reactions present a promising strategy for minimizing off-target toxicity in cancer chemotherapy, yet a dependable nanoplatform is urgently required. Here, we have fabricated an acid-responsive polymer micelle for the specific delivery and activation of the prodrug within tumor cells through Ru catalyst-mediated bioorthogonal reactions. The decomposition of micelles, triggered by the cleavage of the hydrazone bond in the acidic lysosomal environment, facilitated the concurrent release of Alloc-DOX and the Ru catalyst within the cells. Subsequently, the uncaging process of Alloc-DOX was demonstrated to be induced by the high levels of glutathione within tumor cells. Notably, the limited glutathione inside normal cells prevented the conversion of Alloc-DOX into active DOX, thereby minimizing the toxicity toward normal cells. In tumor-bearing mice, this nanoplatform exhibited enhanced efficacy in tumor suppression while minimizing off-target toxicity. Our study provides an innovative approach for in situ drug activation that combines safety and effectiveness in cancer chemotherapy.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Zhihao Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Gaofeng Liang
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| |
Collapse
|
2
|
Yang X, Chen M, Weng C, Zhuge D, Jin F, Xiao Y, Tian D, Yin Q, Li L, Zhang X, Shi G, Lu X, Yan L, Wang L, Wen B, Zhao Y, Lin J, Wang F, Zhang W, Chen Y. Red Blood Cell Membrane-Coated Nanoparticles Enable Incompatible Blood Transfusions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310230. [PMID: 38837643 PMCID: PMC11304279 DOI: 10.1002/advs.202310230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Blood transfusions save lives and improve health every day. Despite the matching of blood types being stricter than it ever has been, emergency transfusions among incompatible blood types are still inevitable in the clinic when there is a lack of acceptable blood types for recipients. Here to overcome this, a counter measure nanoplatform consisting of a polymeric core coated by a red blood cell (RBC) membrane is developed. With A-type or B-type RBC membrane camouflaging, the nanoplatform is capable of specifically capturing anti-A or anti-B IgM antibodies within B-type or A-type whole blood, thereby decreasing the corresponding IgM antibody levels and then allowing the incompatible blood transfusions. In addition to IgM, the anti-RBC IgG antibody in a passive immunization murine model can likewise be neutralized by this nanoplatform, leading to prolonged circulation time of incompatible donor RBCs. Noteworthily, nanoplatform made by expired RBCs (>42 days stored hypothermically) and then subjected to lyophilization does not impair their effect on antibody neutralization. Most importantly, antibody-captured RBC-NP do not exacerbate the risk of inflammation, complement activation, and coagulopathy in an acute hemorrhagic shock murine model. Overall, this biomimetic nanoplatform can safely neutralize the antibody to enable incompatible blood transfusion.
Collapse
Affiliation(s)
- Xuewei Yang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Mengchun Chen
- Department of PharmacyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Cuiye Weng
- Department of Pediatric Allergy and ImmunologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Deli Zhuge
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Fangsi Jin
- Department of Blood TransfusionThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Yingnan Xiao
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Dongyan Tian
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qingqing Yin
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Li Li
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xufei Zhang
- Wenzhou Medical UniversityWenzhou325027China
| | - Genghe Shi
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Wenzhou Medical UniversityWenzhou325027China
| | - Xiaosheng Lu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Linzhi Yan
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ledan Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Bin Wen
- Wenzhou Medical UniversityWenzhou325027China
| | - Yingzheng Zhao
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Jiajin Lin
- Department of Blood TransfusionThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Fang Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Weixi Zhang
- Department of Pediatric Allergy and ImmunologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Yijie Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
- Wenzhou Medical UniversityWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315302China
| |
Collapse
|
3
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
4
|
He Y, Liu X, Xu Z, Gao J, Luo Q, He Y, Zhang X, Gao D, Wang D. Nanomedicine alleviates doxorubicin-induced cardiotoxicity and enhances chemotherapy synergistic chemodynamic therapy. J Colloid Interface Sci 2024; 663:1064-1073. [PMID: 38458046 DOI: 10.1016/j.jcis.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Doxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase H2O2 content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT. To address this issue, we introduced sodium ascorbate (AscNa), the main reason is that AscNa can be catalyzed to produce H2O2 by the abundant Fe3+ in the tumor site, thereby enhancing CDT. While the content of Fe3+ in heart tissue is relatively low, so the oxidation of AscNa had tumor specificity. Meanwhile, due to its inherent reducing properties, AscNa could also eliminate the oxidative stress generated by DOX, preventing cardiotoxicity. Due to the differences between myocardial tissue and tumor microenvironment, a novel nanomedicine was designed. MoS2 was employed as a carrier and CDT catalyst, loaded with DOX and AscNa, coating with homologous tumor cell membrane to construct an acid-responsive nanomedicine MoS2-DOX/AscNa@M (MDA@M). In tumor cells, AscNa enhances the synergistic therapy of DOX and MoS2. In cardiomyocytes, AscNa could effectively reduce the cardiomyopathy induced by DOX. Overall, this study enhanced the clinical potential of chemotherapy synergistic CDT.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoying Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Jiajun Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Qingzhi Luo
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
5
|
Cui L, Xu Q, Lou W, Wang Y, Xi X, Chen Y, Sun M, Wang Z, Zhang P, Yang S, Zhang L, Qu L. Chitosan oligosaccharide-functionalized nano-prodrug for cascade chemotherapy through oxidative stress amplification. Int J Biol Macromol 2024; 268:131641. [PMID: 38641277 DOI: 10.1016/j.ijbiomac.2024.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Redox nanoparticles have been extensively developed for chemotherapy. However, the intracellular oxidative stress induced by constant aberrant glutathione (GSH), reactive oxygen species (ROS) and gamma-glutamyl transpeptidase (GGT) homeostasis remains the primary cause of evading tumor apoptosis. Herein, an oxidative stress-amplification strategy was designed using a pH-GSH-H2O2-GGT sensitive nano-prodrug for precise synergistic chemotherapy. The disulfide bond- conjugated doxorubicin prodrug (DOX-ss) was constructed as a GSH-scavenger. Then, phenylboronic acid (PBA), DOX-ss and poly (γ-glutamic acid) (γ-PGA) were successively conjugated using chitosan oligosaccharide (COS) to obtain the nano-prodrug PBA-COS-ss-DOX/γ-PGA. The PBA-COS-ss-DOX/γ-PGA prodrug could tightly attach to the polymer chain segment by atom transfer radical polymerization. Simultaneously, the drug interacted relatively weakly with the polymer by encapsulating ionic crosslinkers in DOX@PBA-COS/γ-PGA. The disulfide bond of the DOX-ss prodrug as a GSH-scavenger could be activated using overexpressed GSH to release DOX. Particularly, PBA-COS-ss-DOX/γ-PGA could prevent premature drug leakage and facilitate DOX delivery by GGT-targeting and intracellular H2O2-cleavable linker in human hepatocellular carcinoma (HepG2) cells. Concurrently, the nano-prodrug induced strong oxidative stress and tumor cell apoptosis. Collectively, the pH-GSH-H2O2-GGT responsive nano-prodrug shows potential for synergistic tumor therapy.
Collapse
Affiliation(s)
- Lan Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Qingqing Xu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Weishuang Lou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yali Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xuelian Xi
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yanlin Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Mengyao Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zihua Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Pengshuai Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
6
|
Zhang J, Zhao D, Lu K, Yuan L, Du H. Gelation Behavior and Drug Sustained-Release Properties of a Helix Peptide Organohydrogel with pH Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8568-8579. [PMID: 38591865 DOI: 10.1021/acs.langmuir.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Based on the typical similar repeat units (abcdefg)n of α-helical structure, the peptide H was designed to self-assemble into an organohydrogel in response to pH. Depending on the different pH, the proportions of secondary structure, microstructure, and mechanical properties of the gel were investigated. Circular dichroism (CD) and Fourier transform infrared (FT-IR) showed that the proportion of α-helical structure gradually increased to become dominant with the increase of pH. Combining transmission electron microscopy (TEM) and atomic force microscopy (AFM), it was found that the increase of the ordered α-helix structure promoted fiber formation. The further increase in pH changed the intermolecular forces, resulting in an increase in the α-helix content and the enhancement of helix-helix interaction, causing the gel fibers to converge into thicker and more dense ones. The temperature test showed the stable rheological properties of the organohydrogel between 20-60 °C. Drug release and cytotoxicity showed that the DOX-loaded organohydrogel could have a better release in an acidic environment, indicating its potential application as a drug local delivery carrier.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou 450044, Henan Province, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Heng Du
- School of Food Science and Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| |
Collapse
|
7
|
Wang F, Xie M, Huang Y, Liu Y, Liu X, Zhu L, Zhu X, Guo Y, Zhang C. In Situ Vaccination with An Injectable Nucleic Acid Hydrogel for Synergistic Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202315282. [PMID: 38032360 DOI: 10.1002/anie.202315282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Recently, therapeutic cancer vaccines have emerged as promising candidates for cancer immunotherapy. Nevertheless, their efficacies are frequently impeded by challenges including inadequate antigen encapsulation, insufficient immune activation, and immunosuppressive tumor microenvironment. Herein, we report a three-in-one hydrogel assembled by nucleic acids (NAs) that can serve as a vaccine to in situ trigger strong immune response against cancer. Through site-specifically grafting the chemodrug, 7-ethyl-10-hydroxycamptothecin (also known as SN38), onto three component phosphorothioate (PS) DNA strands, a Y-shaped motif (Y-motif) with sticky ends is self-assembled, at one terminus of which an unmethylated cytosine-phosphate-guanine (CpG) segment is introduced as an immune agonist. Thereafter, programmed cell death ligand-1 (PD-L1) siRNA that performs as immune checkpoint inhibitor is designed as a crosslinker to assemble with the CpG- and SN38-containing Y-motif, resulting in the formation of final NA hydrogel vaccine. With three functional agents inside, the hydrogel can remarkably induce the immunogenic cell death to enhance the antigen presentation, promoting the dendritic cell maturation and effector T lymphocyte infiltration, as well as relieving the immunosuppressive tumor environment. When inoculated twice at tumor sites, the vaccine demonstrates a substantial antitumor effect in melanoma mouse model, proving its potential as a general platform for synergistic cancer immunotherapy.
Collapse
Affiliation(s)
- Fujun Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangyang Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuhe Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Shanghai Jiao Tong University Affiliated Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. Int J Nanomedicine 2024; 19:571-608. [PMID: 38260239 PMCID: PMC10802790 DOI: 10.2147/ijn.s442877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge. In recent years, biofilm mediated biomimetic nano-drug delivery system (BNDDS) has become a research hotspot focus in the field of life sciences. This new biomimetic platform uses bio-nanotechnology to encapsulate synthetic NPswithin biomimetic membrane, organically integrating the low immunogenicity, low toxicity, high tumor targeting, good biocompatibility of the biofilm with the adjustability and versatility of the nanocarrier, and shows promising applications in the field of precision tumor therapy. In this review, we systematically summarize the new progress in BNDDS used for optimizing drug delivery, providing a theoretical reference for optimizing drug delivery and designing safe and efficient treatment strategies to improve tumor treatment outcomes.
Collapse
Affiliation(s)
- Xiujuan Han
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Qingru Yang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Kaile Zheng
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
9
|
Mao X, Wang G, Wang Z, Duan C, Wu X, Xu H. Theranostic Lipid Nanoparticles for Renal Cell Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306246. [PMID: 37747365 DOI: 10.1002/adma.202306246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological malignancy and represents a leading threat to healthcare. Recent years have seen a series of progresses in the early diagnosis and management of RCC. Theranostic lipid nanoparticles (LNPs) are increasingly becoming one of the focuses in this field, because of their suitability for tumor targeting and multimodal therapy. LNPs can be precisely fabricated with desirable chemical compositions and biomedical properties, which closely match the physiological characteristics and clinical needs of RCC. Herein, a comprehensive review of theranostic LNPs is presented, emphasizing the generic tool nature of LNPs in developing advanced micro-nano biomaterials. It begins with a brief overview of the compositions and formation mechanism of LNPs, followed with an introduction to kidney-targeting approaches, such as passive, active, and stimulus responsive targeting. With examples provided, a series of modification strategies for enhancing the tumor targeting and functionality of LNPs are discussed. Thereafter, research advances on applications of these LNPs for RCC including bioimaging, liquid biopsy, drug delivery, physical therapy, and gene therapy are summarized and discussed from an interdisciplinary perspective. The final part highlights the milestone achievements of translation medicine, current challenges as well as future development directions of LNPs for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiongmin Mao
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
10
|
Geng S, Feng Q, Wang C, Li Y, Qin J, Hou M, Zhou J, Pan X, Xu F, Fang B, Wang K, Yu Z. A Versatile PDA(DOX) Nanoplatform for Chemo-Photothermal Synergistic Therapy against Breast Cancer and Attenuated Doxorubicin-Induced Cardiotoxicity. J Nanobiotechnology 2023; 21:338. [PMID: 37735669 PMCID: PMC10512561 DOI: 10.1186/s12951-023-02072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Photothermal therapy (PTT) is a highly clinical application promising cancer treatment strategy with safe, convenient surgical procedures and excellent therapeutic efficacy on superficial tumors. However, a single PTT is difficult to eliminate tumor cells completely, and tumor recurrence and metastasis are prone to occur in the later stage. Chemo-photothermal synergistic therapy can conquer the shortcomings by further killing residual tumor cells after PTT through systemic chemotherapy. Nevertheless, chemotherapy drugs' extreme toxicity is also a problematic issue to be solved, such as anthracycline-induced cardiotoxicity. Herein, we selected polydopamine nanoparticles (PDA) as the carrier of the chemotherapeutic drug doxorubicin (DOX) to construct a versatile PDA(DOX) nanoplatform for chemo-photothermal synergistic therapy against breast cancer and simultaneously attenuated DOX-induced cardiotoxicity (DIC). The excellent photothermal properties of PDA were used to achieve the thermal ablation of tumors. DOX carried out chemotherapy to kill residual and occult distant tumors. Furthermore, the PDA(DOX) nanoparticles significantly alleviate DIC, which benefits from PDA's excellent antioxidant enzyme activity. The experimental data of the chemotherapy groups showed that the results of the PDA(DOX) group were much better than the DOX group. This study not only effectively inhibits cancer but tactfully attenuates DIC, bringing a new perspective into synergistic therapy against breast cancer.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Qiang Feng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Chujie Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Ying Li
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Jiaying Qin
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Mingsheng Hou
- Department of Pathology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Jiedong Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Xiaoyu Pan
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Fei Xu
- Department of Ultrasound, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China.
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China.
| |
Collapse
|
11
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Unexpected worsening of doxorubicin cardiotoxicity upon intermittent fasting. MED 2023; 4:288-289. [PMID: 37178681 DOI: 10.1016/j.medj.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently in Cell Metabolism, Ozcan et al. used preclinical and clinical data to suggest that alternate-day fasting may exacerbate the cardiotoxic effects of doxorubicin through the TFEB/GDF15 pathway, leading to myocardial atrophy and impaired cardiac function. The link between caloric intake, chemotherapy-induced cachexia, and cardiotoxicity warrants more clinical attention.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China; Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| |
Collapse
|