1
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
You J, Qian Y, Xiong S, Zhang P, Mukwaya V, Levi-Kalisman Y, Raviv U, Dou H. Poly(ferrocenylsilane)-Based Redox-Active Artificial Organelles for Biomimetic Cascade Reactions. Chemistry 2024; 30:e202401435. [PMID: 38739532 DOI: 10.1002/chem.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghui Qian
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
4
|
Xie C, Wilson BA, Qin Z. Regulating nanoscale directional heat transfer with Janus nanoparticles. NANOSCALE ADVANCES 2024; 6:3082-3092. [PMID: 38868822 PMCID: PMC11166103 DOI: 10.1039/d3na00781b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Janus nanoparticles (JNPs) with heterogeneous compositions or interfacial properties can exhibit directional heating upon external excitation with optical or magnetic energy. This directional heating may be harnessed for new nanotechnology and biomedical applications. However, it remains unclear how the JNP properties (size, interface) and laser excitation method (pulsed vs. continuous) regulate the directional heating. Here, we developed a numerical framework to analyze the asymmetric thermal transport in JNP heating under photothermal stimulation. We found that JNP-induced temperature contrast, defined as the ratio of temperature increase on the opposite sides in the surrounding medium, is highest for smaller JNPs and when a low thermal resistance coating covers a minor fraction of JNP surface. Notably, we discovered up to 20-fold enhancement of the temperature contrast based on thermal confinement under pulsed heating compared with continuous heating. This work brings new insights to maximize the asymmetric thermal responses for JNP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Blake A Wilson
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080 USA
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390 USA
| |
Collapse
|
5
|
Zhao LX, Chen LL, Cheng D, Wu TY, Fan YG, Wang ZY. Potential Application Prospects of Biomolecule-Modified Two-Dimensional Chiral Nanomaterials in Biomedicine. ACS Biomater Sci Eng 2024; 10:2022-2040. [PMID: 38506625 DOI: 10.1021/acsbiomaterials.3c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chirality, one of the most fundamental properties of natural molecules, plays a significant role in biochemical reactions. Nanomaterials with chiral characteristics have superior properties, such as catalytic properties, optoelectronic properties, and photothermal properties, which have significant potential for specific applications in nanomedicine. Biomolecular modifications such as nucleic acids, peptides, proteins, and polysaccharides are sources of chirality for nanomaterials with great potential for application in addition to intrinsic chirality, artificial macromolecules, and metals. Two-dimensional (2D) nanomaterials, as opposed to other dimensions, due to proper surface area, extensive modification sites, drug loading potential, and simplicity of preparation, are prepared and utilized in diagnostic applications, drug delivery research, and tumor therapy. Current advanced studies on 2D chiral nanomaterials for biomedicine are focused on novel chiral development, structural control, and materials sustainability applications. However, despite the advances in biomedical research, chiral 2D nanomaterials still confront challenges such as the difficulty of synthesis, quality control, batch preparation, chiral stability, and chiral recognition and selectivity. This review aims to provide a comprehensive overview of the origins, synthesis, applications, and challenges of 2D chiral nanomaterials with biomolecules as cargo and chiral modifications and highlight their potential roles in biomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Di Cheng
- Dalian Gentalker Biological Technology Co., Ltd., Dalian 116699, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Lumata JL, Hagge LM, Gaspar MA, Trashi I, Ehrman RN, Koirala S, Chiev AC, Wijesundara YH, Darwin CB, Pena S, Wen X, Wansapura J, Nielsen SO, Kovacs Z, Lumata LL, Gassensmith JJ. TEMPO-conjugated tobacco mosaic virus as a magnetic resonance imaging contrast agent for detection of superoxide production in the inflamed liver. J Mater Chem B 2024; 12:3273-3281. [PMID: 38469725 DOI: 10.1039/d3tb02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jenica L Lumata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Miguel A Gaspar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Janaka Wansapura
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Lloyd L Lumata
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Physics, The University of Texas at Dallas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Bioengineering, The University of Texas at Dallas, USA
| |
Collapse
|
7
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ali M, Lin IN. Developing tiny-sized particles, different modification behaviors of gold atoms, and nucleating distorted particles. NANOSCALE ADVANCES 2023; 5:3871-3878. [PMID: 37496626 PMCID: PMC10367953 DOI: 10.1039/d3na00346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
The study of tiny-sized particles is beneficial in many ways. This has been the subject of many studies. The development of a tiny-sized particle depends on the attained dynamics of the atoms. In the development process of a tiny-sized particle, gold atoms must deal with different modification behaviors. Photons traveling along the air-solution interface also alter the characteristics of a developing tiny-sized particle. The electronic structures, modification behaviors, and attained dynamics of the atoms mainly contribute toward the development of tiny-sized particles. Energy under the supplied source and the local resulting forces collectively bind gold atoms. Both internally and externally driven dynamics influence the development process of different tiny-sized particles. Atoms in such developed tiny-sized particles do not experience the collective oscillations upon photons traveling along the air-solution interface. In the study of binding atoms, it is essential to consider the roles of both energy and force. Here, the development of tiny particles having different sizes presents a convincing discussion. Nucleating a distorted particle from the non-uniform amalgamation of tiny-sized particles is also discussed.
Collapse
Affiliation(s)
- Mubarak Ali
- Department of Physics, COMSATS University Islamabad Islamabad Campus, Park Road 45550 Pakistan
| | - I-Nan Lin
- Department of Physics, Tamkang University Tamsui District New Taipei City 25137 Taiwan
| |
Collapse
|
9
|
Trashi I, Durbacz MZ, Trashi O, Wijesundara YH, Ehrman RN, Chiev AC, Darwin CB, Herbert FC, Gadhvi J, De Nisco NJ, Nielsen SO, Gassensmith JJ. Self-assembly of a fluorescent virus-like particle for imaging in tissues with high autofluorescence. J Mater Chem B 2023; 11:4445-4452. [PMID: 37144595 DOI: 10.1039/d3tb00469d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qβ, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid. It is possible to usurp the native way infectious Qβ self-assembles to encapsidate its RNA to place enzymes inside the VLP's lumen as a protease-resistant cage. Further, using RNA templates that mimic the natural self-assembly of the native capsid, fluorescent proteins (FPs) have been placed inside VLPs in a "one pot" expression system. Autofluorescence in tissues can lead to misinterpretation of results and unreliable science, so we created a single-pot expression system that uses the fluorescent protein smURFP, which avoids autofluorescence and has spectral properties compatible with standard commercial filter sets on confocal microscopes. In this work, we were able to simplify the existing "one-pot" expression system while creating high-yielding fluorescent VLP nanoparticles that could easily be imaged inside lung epithelial tissue.
Collapse
Affiliation(s)
- Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Mateusz Z Durbacz
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Jashkaran Gadhvi
- Department of Biological Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Nicole J De Nisco
- Department of Biological Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|