1
|
Tian Y, Hou P, Zhang H, Xie Y, Chen G, Li Q, Du F, Vojvodic A, Wu J, Meng X. Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes. Nat Commun 2024; 15:10099. [PMID: 39572580 PMCID: PMC11582733 DOI: 10.1038/s41467-024-54455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Significant efforts have been devoted to investigating the oxidation of MXenes in various environments. However, the underlying mechanism of MXene oxidation and its dependence on the electrode potential remain poorly understood. Here we show the oxidation behavior of MXenes under the working conditions of electrochemical processes in terms of kinetics and thermodynamics by using constant-potential ab initio simulations. The theoretical results indicate that the potential effects can be attributed to the nucleophilic attack of water molecules on metal atoms, similar to that taking place in the Oxygen Evolution Reaction. Building upon these findings, we deduced the oxidation potential of the common MXenes, and proposed antioxidant strategies for MXene. Finally, we demonstrated that MBenes, the boron analogs of MXenes, may undergo a similar nucleophilic attack in water and inferred that molecule-induced Walden inversion is widely present in material reconstructions. This work contributes to a fundamental understanding MXene stability at the atomic level, and promotes the transition in materials discovery from trial-and-error synthesis to rational design.
Collapse
Affiliation(s)
- Yumiao Tian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Pengfei Hou
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Huiwen Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
| | - Yu Xie
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
| | - Quan Li
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China.
- International Center of Future Science, Jilin University, Changchun, China.
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China.
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, United States of America.
| | - Xing Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China.
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun, China.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
2
|
Bi L, Garg R, Noriega N, Wang RJ, Kim H, Vorotilo K, Burrell JC, Shuck CE, Vitale F, Patel BA, Gogotsi Y. Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing. ACS NANO 2024; 18:23217-23231. [PMID: 39141004 PMCID: PMC11363215 DOI: 10.1021/acsnano.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Flexible fiber-based microelectrodes allow safe and chronic investigation and modulation of electrically active cells and tissues. Compared to planar electrodes, they enhance targeting precision while minimizing side effects from the device-tissue mechanical mismatch. However, the current manufacturing methods face scalability, reproducibility, and handling challenges, hindering large-scale deployment. Furthermore, only a few designs can record electrical and biochemical signals necessary for understanding and interacting with complex biological systems. In this study, we present a method that utilizes the electrical conductivity and easy processability of MXenes, a diverse family of two-dimensional nanomaterials, to apply a thin layer of MXene coating continuously to commercial nylon filaments (30-300 μm in diameter) at a rapid speed (up to 15 mm/s), achieving a linear resistance below 10 Ω/cm. The MXene-coated filaments are then batch-processed into free-standing fiber microelectrodes with excellent flexibility, durability, and consistent performance even when knotted. We demonstrate the electrochemical properties of these fiber electrodes and their hydrogen peroxide (H2O2) sensing capability and showcase their applications in vivo (rodent) and ex vivo (bladder tissue). This scalable process fabricates high-performance microfiber electrodes that can be easily customized and deployed in diverse bioelectronic monitoring and stimulation studies, contributing to a deeper understanding of health and disease.
Collapse
Affiliation(s)
- Lingyi Bi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Raghav Garg
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Natalia Noriega
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Ruocun John Wang
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hyunho Kim
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kseniia Vorotilo
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Justin C. Burrell
- Department
of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Christopher E. Shuck
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Flavia Vitale
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bhavik Anil Patel
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Yury Gogotsi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Rong C, Su T, Li Z, Chu T, Zhu M, Yan Y, Zhang B, Xuan FZ. Elastic properties and tensile strength of 2D Ti 3C 2T x MXene monolayers. Nat Commun 2024; 15:1566. [PMID: 38378699 PMCID: PMC10879101 DOI: 10.1038/s41467-024-45657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Two-dimensional (2D) transition metal nitrides and carbides (MXenes), represented by Ti3C2Tx, have broad applications in flexible electronics, electromechanical devices, and structural membranes due to their unique physical and chemical properties. Despite the Young's modulus of 2D Ti3C2Tx has been theoretically predicted to be 0.502 TPa, which has not been experimentally confirmed so far due to the measurement is extremely restricted. Here, by optimizing the sample preparation, cutting, and transfer protocols, we perform the direct in-situ tensile tests on monolayer Ti3C2Tx nanosheets using nanomechanical push-to-pull equipment under a scanning electron microscope. The effective Young's modulus is 0.484 ± 0.013 TPa, which is much closer to the theoretical value of 0.502 TPa than the previously reported 0.33 TPa by the disputed nanoindentation method, and the measured elastic stiffness is ~948 N/m. Moreover, during the process of tensile loading, the monolayer Ti3C2Tx shows an average elastic strain of ~3.2% and a tensile strength as large as ~15.4 GPa. This work corrects the previous reports by nanoindentation method and demonstrates that the Ti3C2Tx indeed keeps immense potential for broad range of applications.
Collapse
Affiliation(s)
- Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ting Su
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenkai Li
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mingliang Zhu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yabin Yan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
4
|
Wang J, Jiang D, Zhang Y, Du Y, Sun Y, Jiang M, Xu J, Liu J. High-strength nacre-like composite films based on pre-polymerised polydopamine and polyethyleneimine cross-linked MXene layers via multi-bonding interactions. J Colloid Interface Sci 2024; 653:229-237. [PMID: 37713921 DOI: 10.1016/j.jcis.2023.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Demands for high-strength flexible electrodes have significantly increased across various fields, especially in wearable electronics. Inspired by the strong integrated layered structure of the natural nacre via multi-bonding interactions, we report the fabrication of the strong integrated nacre-like composite films based on pre-polymerised polydopamine and polyethyleneimine cross-linked MXene layers (p-DEM), achieving the synergic effect of hydrogen bonding, covalent bonding and electrostatic interactions. As a result, a high-level tensile strength of ∼302 MPa, 10.8 times higher than that of the plain MXene film, is obtained for the prepared p-DE0.5M composite film. Meanwhile, the composite film also delivers superior energy storage (∼1218F cm-3 at 5 mV s-1) and rate performances (capacitance retention of 81.3% at 1000 mV s-1). To demonstrate the practical application of the composite films, a symmetrical supercapacitor based on p-DE0.5M electrodes is assembled, which shows stable energy storage performances under different deformation states such as bending angles at 0, 60, 90 and 180°, or withstand repeated bending times (1000 cycles). This type of multi-bonding interactions induced strong integrated MXene assembly may promote the wide applications of MXene-based films in flexible electronics, artificial intelligence, and tissue engineering, to name a few.
Collapse
Affiliation(s)
- Jianhua Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Degang Jiang
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Yi Zhang
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Yiqi Du
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yuesheng Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Mingyuan Jiang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| |
Collapse
|