1
|
Tao Y, Wang H, Ju E, Lao YH, Zhang Y, Li M. CRISPR-Cas12a-regulated DNA adsorption on MoS 2 quantum dots: Enhanced enzyme mimics for sensitive colorimetric detection of human monkeypox virus and human papillomavirus DNA. Talanta 2025; 283:127153. [PMID: 39520917 DOI: 10.1016/j.talanta.2024.127153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Diseases caused by viruses, such as monkeypox virus (MPXV) and human papillomavirus (HPV), pose serious threats to human health and safety. Although numerous strategies have been constructed for detecting MPXV and HPV DNA, most methods require either laborious procedures or complicated instruments involving skilled professionals. In this research, a CRISPR-Cas12a-mediated colorimetric detection platform for MPXV and HPV sensing was constructed for the first time by applying probe DNA to reprogram the catalytic properties of molybdenum disulfide quantum dots (MoS2 QDs). In the presence of MPXV or HPV targets, the CRISPR-Cas12a trans-cleavage activity is effectively motivated to decompose the probe DNA, leading to the suppression of enzymatic activity DNA enhancer adsorbed on MoS2 QDs, resulting in greatly decreased catalytic behaviors. The MoS2 QDs-DNA nanohybrids displayed prominent specificity and sensitivity, with detection limits at subpicomolar levels, as well as excellent stability and accuracy for determining MPXV and HPV DNA in human sera biosamples. Furthermore, the proposed colorimetric biosensing approach can be ensembled with a smartphone platform, allowing visible analysis of DNA targets. Taken together, this colorimetric strategy offers a novel diagnosis method for MPXV and HPV DNA detection, particularly favorable for highly endemic developing countries with restricted medical and instrumental support.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Li Z, Xie R, Sun G, Liu X, Xin H, Chen Y, Chen S, Rao L, Yan B, Wang K, Sang X, Yu C, Yuan J, Wu Q. Ultrasensitive detection of SCCA employing a graphene oxide integrated microfiber ring laser biosensor. Biosens Bioelectron 2025; 267:116772. [PMID: 39276440 DOI: 10.1016/j.bios.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Squamous cell carcinoma antigen (SCCA) is one of the most commonly detected cancer biomarkers for a variety of cancers. In this paper, a microfiber ring laser biosensor with a graphene oxide linking layer for SCCA detection was proposed and experimentally demonstrated. SCCA antibody immobilized on graphene oxide surface binds specifically to SCCA, and induces refractive index variation over the surface of the microfiber biosensor, which leads to a wavelength shift of the microfiber ring laser biosensor. The experimental results show that the proposed laser biosensor can detect SCCA with concentrations from 0.01 to 50 ng/mL, and the calculated detection limit can be as low as 1.3 pg/mL. Additionally, the label-free quantitative detection of SCCA using the proposed microfiber biosensor was verified experimentally according to the corresponding regression equation, and the results agree well with clinical examination detection. This constructed microfiber biosensor may have promising practical applications in analytical detection, medical diagnostics, etc.
Collapse
Affiliation(s)
- Zefeng Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ruen Xie
- Cancer Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Guoyong Sun
- Depatment of Applied Physics, Science College, Shantou University, Shantou, 515000, China
| | - Xiaokai Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Hu Xin
- Depatment of Applied Physics, Science College, Shantou University, Shantou, 515000, China
| | - Yuping Chen
- Cancer Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Shaobin Chen
- Cancer Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Lan Rao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Binbin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kuiru Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Chongxiu Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Qiang Wu
- Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom; Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China.
| |
Collapse
|
3
|
Chen Y, Fan H, Li R, Zhang H, Zhou R, Liu GL, Sun C, Huang L. Free Electron Density Gradients Enhanced Biosensor for Ultrasensitive and Accurate Affinity Assessment of the Immunotherapy Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404559. [PMID: 39443825 PMCID: PMC11633510 DOI: 10.1002/advs.202404559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Accurate affinity assessments play an important role in drug discovery, screening, and efficacy evaluation. Label-free affinity biosensors are recognized as a dependable and standard technology for addressing this challenge. This study constructs a free electron density gradient-enhanced meta-surface plasmon resonance (FED-MSPR) biosensor through a finite-difference time-domain simulation model, the biosensor demonstrates superior detection performance in accurately determining affinity and kinetic rate constants. By controlling the dielectric properties of the metal on the surface of the nanocup arrays, the plasmon resonance effects are easily tuned without changing the nanostructure design. Compared with the single-layer gold chip, the triple-layer FED-MSPR chip demonstrated a four-fold improvement in resolution at the optimal resonance peak. Additionally, the sensitivity and figure of merit (FOM) of the multi-layer chip increased by 3.5 and 7.99 times, respectively. Following modification with high- and low-staggered carboxylation, the noise-signal ratio and baseline stability of the real-time kinetic curves based on these chips are significantly enhanced. The developed carboxylation FED-MSPR platform is successfully used to perform affinity assays for Adalimumab and TNF-α protein, resulting in favorable dynamic curves. These findings validate the proposed FED-MSPR biosensor platform as cost-effective, rapid, sensitive, and label-free, facilitating real-time quality control in drug development.
Collapse
Affiliation(s)
- Youqian Chen
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Rui Li
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Huazhi Zhang
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
| | - Rui Zhou
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Chunmeng Sun
- Department of PharmaceuticsSchool of PharmacyChina Pharmaceutical University639 Longmian AvenueNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and ExcipientsChina Pharmaceutical University24 Tong Jia XiangNanjing210009P. R. China
| | - Liping Huang
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
4
|
Ahamed MA, Politza AJ, Liu T, Khalid MAU, Zhang H, Guan W. CRISPR-based strategies for sample-to-answer monkeypox detection: current status and emerging opportunities. NANOTECHNOLOGY 2024; 36:042001. [PMID: 39433062 PMCID: PMC11533882 DOI: 10.1088/1361-6528/ad892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Huanshu Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
5
|
Zhang J, Xiao L, Li X, Chen X, Wang Y, Hong X, Sun Z, Shao Y, Chen Y. Optical fiber SPR probe platform combined with oriented antibody optimized modification for ultrasensitive and portable detection of human thyroglobulin. Microchem J 2024; 206:111591. [DOI: 10.1016/j.microc.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
7
|
Zhou Z, Lau CH, Wang J, Guo R, Tong S, Li J, Dong W, Huang Z, Wang T, Huang X, Yu Z, Wei C, Chen G, Xue H, Zhu H. Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a. ACS OMEGA 2024; 9:28866-28878. [PMID: 38973832 PMCID: PMC11223203 DOI: 10.1021/acsomega.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.
Collapse
Affiliation(s)
- Zhongqi Zhou
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Cia-Hin Lau
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Jianchao Wang
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Rui Guo
- Animal
Husbandry and Veterinary Institute, Hubei
Academy of Agricultural Science, Wuhan, Hubei 430064, China
- Key
Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Wuhan, Hubei 430064, China
| | - Sheng Tong
- Department
of Biomedical Engineering, University of
Kentucky, Lexington, Kentucky 40506-0503, United States
| | - Jiaqi Li
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Wenjiao Dong
- Department
of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhihao Huang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Tao Wang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Xiaojun Huang
- Xiamen
Fly Gene Biomedical Technology CO., LTD, Biomedical Industrial Park, Xiamen, Fujian 361000, China
| | - Ziqing Yu
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chiju Wei
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Gang Chen
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Hongman Xue
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haibao Zhu
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| |
Collapse
|
8
|
Yin W, Li L, Yang Y, Yang Y, Liang R, Ma L, Dai J, Mao G, Ma Y. Ultra-Sensitive Detection of the SARS-CoV-2 Nucleocapsid Protein via a Clustered Regularly Interspaced Short Palindromic Repeat/Cas12a-Mediated Immunoassay. ACS Sens 2024; 9:3150-3157. [PMID: 38717584 DOI: 10.1021/acssensors.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 μL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Leyao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuxin Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Guobin Mao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Lee JC, Ryu SM, Lee Y, Jang H, Song J, Kang T, Lee KH, Park S. CRISPR/Cas12a antifouling nanocomposite electrochemical biosensors enable amplification-free detection of Monkeypox virus in complex biological fluids. NANOSCALE 2024; 16:11318-11326. [PMID: 38804270 DOI: 10.1039/d4nr01618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes. Notably, our electrochemical sensors exhibit the detection limit of 669 fM F3L gene without amplification, which is approximately a 15-fold improvement compared to fluorescence detection. This sensor also shows negligible changes in peak current after exposure to complex biological fluids, such as whole blood and serum, maintaining its sensitivity at 682 fM. This sensitivity is nearly identical to the conditions when only the F3L gene was present in PBS. In summary, our CRISPR-based electrochemical biosensors can be utilized as a high-performance diagnostic tool in resource-limited settings, representing a transformative leap forward in point-of-care testing. Beyond infectious diseases, the implications of this technology extend to various molecular diagnostics, establishing itself as a rapid, accurate, and versatile platform for detection of target analytes.
Collapse
Affiliation(s)
- Jeong-Chan Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seuk-Min Ryu
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - YongJin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Forensic Sciences, Sungkyunkwan University (SKKU), Suwon-si, Gyeongi-do 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon-si, Gyeongi-do 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon-si, Gyeongi-do 16419, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Mohammad N, Talton L, Dalgan S, Hetzler Z, Steksova A, Wei Q. Ratiometric nonfluorescent CRISPR assay utilizing Cas12a-induced plasmid supercoil relaxation. Commun Chem 2024; 7:130. [PMID: 38851849 PMCID: PMC11162422 DOI: 10.1038/s42004-024-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Most CRISPR-based biosensors rely on labeled reporter molecules and expensive equipment for signal readout. A recent approach quantifies analyte concentration by sizing λ DNA reporters via gel electrophoresis, providing a simple solution for label-free detection. Here, we report an alternative strategy for label-free CRISPR-Cas12a, which relies on Cas12a trans-nicking induced supercoil relaxation of dsDNA plasmid reporters to generate a robust and ratiometric readout. The ratiometric CRISPR (rCRISPR) measures the relative percentage of supercoiled plasmid DNA to the relaxed circular DNA by gel electrophoresis for more accurate target concentration quantification. This simple method is two orders of magnitude more sensitive than the typical fluorescent reporter. This self-referenced strategy solves the potential application limitations of previously demonstrated DNA sizing-based CRISPR-Dx without compromising the sensitivity. Finally, we demonstrated the applicability of rCRISPR for detecting various model DNA targets such as HPV 16 and real AAV samples, highlighting its feasibility for point-of-care CRISPR-Dx applications.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Logan Talton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Selen Dalgan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anastasiia Steksova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
11
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
12
|
Xia Y, Rao R, Xiong M, He B, Zheng B, Jia Y, Li Y, Yang Y. CRISPR-Powered Strategies for Amplification-Free Diagnostics of Infectious Diseases. Anal Chem 2024; 96:8091-8108. [PMID: 38451204 DOI: 10.1021/acs.analchem.3c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Yupiao Xia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiu Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bingxin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
13
|
Mohanto S, Biswas A, Gholap AD, Wahab S, Bhunia A, Nag S, Ahmed MG. Potential Biomedical Applications of Terbium-Based Nanoparticles (TbNPs): A Review on Recent Advancement. ACS Biomater Sci Eng 2024; 10:2703-2724. [PMID: 38644798 DOI: 10.1021/acsbiomaterials.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata, West Bengal 700118, India
| | - Amol Dilip Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor , Malaysia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
14
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
15
|
Wang Y, Chen H, Lin K, Han Y, Gu Z, Wei H, Mu K, Wang D, Liu L, Jin R, Song R, Rong Z, Wang S. Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device. Nat Commun 2024; 15:3279. [PMID: 38627378 PMCID: PMC11021474 DOI: 10.1038/s41467-024-47518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.
Collapse
Affiliation(s)
- Yunxiang Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Hong Chen
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, 100142, Beijing, China
| | - Yongjun Han
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Zhixia Gu
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Mu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Dongfeng Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Liyan Liu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| |
Collapse
|
16
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
17
|
Zhao F, Xu F, Wang X, Song R, Hu Y, Wei L, Xie Y, Huang Y, Mei S, Wang L, Wang L, Gao Z, Guo L, Fang J, Ren L, Jin R, Wang J, Guo F. A field diagnostic method for rapid and sensitive detection of mpox virus. J Med Virol 2024; 96:e29469. [PMID: 38376919 DOI: 10.1002/jmv.29469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
The mpox outbreak has subdued with fewer reported cases at the present in high-income countries. It is known that mpox virus (MPXV) infection has been epidemic for more than 50 years in African countries. The ancestral MPXV strain has changed into multiple clades, indicating the ongoing evolution of MPXV, which reflects the historical neglect of mpox in Africa, especially after smallpox eradication, and bestows the danger of more severe mpox epidemics in the future. It is thus imperative to continue the development of mpox diagnostics and treatments so we can be prepared in the event of a new mpox epidemic. In this study, we have developed an MPXV detection tool that leverages the recombinase-aid amplification assay by integrating lateral flow strips (RAA-LF) and one-step sample DNA preparation, with visible readout, no need of laboratory instrument, and ready for field deployment. The detection limit reaches 10 copies per reaction. The performance of our RAA-FL assay in diagnosing mpox clinical samples is on par with that of the quantitative polymerase chain reaction (PCR) assay. Taken together, we have developed a point-of-care RAA-LF method of high accuracy and sensitivity, readily deployable for field detection of MPXV. This diagnostic tool is expected to improve and accelerate field- and self-diagnosis, allow timely isolation and treatment, reduce the spread of MPXV, thus effectively mitigate MPXV outbreak in the future.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Fengwen Xu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xinming Wang
- Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Rui Song
- Beijing Ditan Hospital Capital Medical University, Beijing, People's Republic of China
| | - Yamei Hu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Liang Wei
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Xie
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Huang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Mei
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Liming Wang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Lingwa Wang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Guo
- Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Capital Medical University, Beijing, People's Republic of China
| | - Lili Ren
- Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ronghua Jin
- Beijing Ditan Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jianwei Wang
- Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Fei Guo
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
18
|
Wang J, Duan Z, Luo D. Fiber Optic SPR POCT: A Novel Nucleic Acid Detection Biosensor for Environmental Viruses. RESEARCH (WASHINGTON, D.C.) 2024; 7:0296. [PMID: 38288060 PMCID: PMC10823875 DOI: 10.34133/research.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
In the post-COVID-19 pandemic era, the long-term surveillance of pathogens is still important. The rapid detection of pathogens facilitates the accurate and convenient real-time monitoring of microbial contamination and improves the management of diseases. Here, a novel surface plasmon resonance (SPR)-based point of care testing (POCT) approach of microorganism nucleic acids with the guidance of CRISPR enzyme is described, including the application of optical fiber-based detection of trace SARS-CoV2 virus in sewage water on SPR and validation of the plasmonic biosensor for the detection of single-nucleotide mutations in natural water samples.
Collapse
Affiliation(s)
- Jing Wang
- Department of Laboratory Medicine,
Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, China
| | - Zhaojun Duan
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Dixian Luo
- Department of Laboratory Medicine,
Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, China
| |
Collapse
|
19
|
Alissa M, Hjazi A. Utilising biosensor-based approaches for identifying neurotropic viruses. Rev Med Virol 2024; 34:e2513. [PMID: 38282404 DOI: 10.1002/rmv.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| |
Collapse
|
20
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
21
|
Li T, Chen Y, Chen Z, Hao Y, Liang M, Liu Y, Ou G, Zhang H, Tang Y, Hao Y, Wageh S, Al-Hartomy OA, Kalam A, Zhang B, Shi X, Li X, Zhang H. Early and Sensitive Detection of Pathogens for Public Health and Biosafety: An Example of Surveillance and Genotyping of SARS-CoV-2 in Sewage Water by Cas12a-Facilitated Portable Plasmonic Biosensor. RESEARCH (WASHINGTON, D.C.) 2023; 6:0205. [PMID: 37521328 PMCID: PMC10380551 DOI: 10.34133/research.0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Infectious diseases severely threaten public health and global biosafety. In addition to transmission through the air, pathogenic microorganisms have also been detected in environmental liquid samples, such as sewage water. Conventional biochemical detection methodologies are time-consuming and cost-ineffective, and their detection limits hinder early diagnosis. In the present study, ultrafine plasmonic fiber probes with a diameter of 125 μm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface, causing a sharp reduction in the surface plasmon resonance (SPR) wavelength. The proposed fiber probe is virus-specific with the limit of detection of ~2,300 copies/ml, and genomic copy numbers can be reflected as shifts in wavelengths. A total of 21 sewage water samples have been examined, and the data obtained are consistent with those of quantitative polymerase chain reaction (qPCR). In addition, the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a. This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.
Collapse
Affiliation(s)
- Tianzhong Li
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuzhi Chen
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yuan Hao
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Minyi Liang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital,
Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Guanyong Ou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital,
Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- School of Medicine,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering,
Shandong University of Technology, Zibo 255049, China
| | - Yuxuan Tang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yabing Hao
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Swelm Wageh
- Department of Physics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar A. Al-Hartomy
- Department of Physics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS),
King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry,
College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xin Shi
- Health Sciences Institute,
China Medical University, Shenyang 110000, China
| | - Xuejin Li
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
- The Chinese University of Hong Kong, Shenzhen 518060, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|