1
|
Iqfath M, Wali SN, Amer S, Hernly E, Laskin J. Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review. ACS MEASUREMENT SCIENCE AU 2024; 4:475-487. [PMID: 39430971 PMCID: PMC11487661 DOI: 10.1021/acsmeasuresciau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.
Collapse
Affiliation(s)
- Mushfeqa Iqfath
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Syeda Nazifa Wali
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sara Amer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Espenship MF, Laskin J. Writing with Mass-Selected Ions Using a Dynamic Field Wien Filter. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2472-2479. [PMID: 39255390 DOI: 10.1021/jasms.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We have designed and constructed a low-cost Wien filter based on strong permanent magnets and integrated it into an ion soft-landing instrument to enable parallel deposition as well as one- and two-dimensional surface patterning of mass-selected ions using dynamic fields. We show the capabilities of this device for separating ions from a multicomponent high-flux continuous ion beam and simultaneous deposition of ions of different mass-to-charge ratios onto discrete locations on a surface. When a dynamic electric field is applied parallel to the magnetic field, ions are deposited in one-dimensional arrays, laterally separated by mass. The field's strength, frequency, and waveform type determine both the lengths of the arrays and the density of ions across the 1-D pattern. Additionally, a second dynamic field from user-defined waveforms orthogonal to the magnetic field enables two-dimensional surface patterning of ions while maintaining mass separation. These experiments demonstrate the practical utility of a Wien filter for the controlled fabrication of interfaces with arbitrary patterns of mass-selected ions.
Collapse
Affiliation(s)
- Michael F Espenship
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Hernly E, Hu H, Laskin J. MSIGen: An Open-Source Python Package for Processing and Visualizing Mass Spectrometry Imaging Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2315-2323. [PMID: 39221961 DOI: 10.1021/jasms.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mass spectrometry imaging (MSI) provides information about the spatial localization of molecules in complex samples with high sensitivity and molecular selectivity. Although point-wise data acquisition, in which mass spectra are acquired at predefined points in a grid pattern, is common in MSI, several MSI techniques use line-wise data acquisition. In line-wise mode, the imaged surface is continuously sampled along consecutive parallel lines and MSI data are acquired as a collection of line scans across the sample. Furthermore, aside from the standard imaging mode in which full mass spectra are acquired, other acquisition modes have been developed to enhance molecular specificity, enable separation of isobaric and isomeric species, and improve sensitivity to facilitate the imaging of low abundance species. These methods, including MS/MS-MSI in both MS2 and MS3 modes, multiple-reaction monitoring (MRM)-MSI, and ion mobility spectrometry (IMS)-MSI have all demonstrated their capabilities, but their broader implementation is limited by the existing MSI analysis software. Here, we present MSIGen, an open-source Python package for the visualization of MSI experiments performed in line-wise acquisition mode containing MS1, MS2, MRM, and IMS data, which is available at https://github.com/LabLaskin/MSIGen. The package supports multiple vendor-specific and open-source data formats and contains tools for targeted extraction of ion images, normalization, and exportation as images, arrays, or publication-style images. MSIGen offers multiple interfaces, allowing for accessibility and easy integration with other workflows. Considering its support for a wide variety of MSI imaging modes and vendor formats, MSIGen is a valuable tool for the visualization and analysis of MSI data.
Collapse
Affiliation(s)
- Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Wang J, Fan W, Cheng SB, Chen J. Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering. J Phys Chem A 2024; 128:7869-7878. [PMID: 39231803 DOI: 10.1021/acs.jpca.4c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic Bn (n = 20 and 40) clusters with CO, PEt3, F, NO2, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt3 with F, NO2, or CN converted the B20 cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt3, F, NO2, and CN ligands to B20 can significantly modulate the electronic properties of B20 to realize the formation of metal-free superalkali (B20(PEt3)n, n = 3-5) and superhalogen (B20F, B20NO2, and B20CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B20(PEt3)3+B20F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
5
|
Rohdenburg M, Kawa S, Ha-Shan M, Reichelt M, Knorke H, Denecke R, Warneke J. Probing fragment ion reactivity towards functional groups on coordination polymer surfaces. Chem Commun (Camb) 2024; 60:10306-10309. [PMID: 39101945 DOI: 10.1039/d4cc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Functionalization of surface-grown coordination polymer layers by ion soft-landing of highly reactive molecular fragment ions is demonstrated. The ions form covalent bonds to terminal functional groups of the polymer at the vacuum interface, opening new perspectives for controlled bond formation using reactive ions.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Sebastian Kawa
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Maegan Ha-Shan
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Manuela Reichelt
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Reinhard Denecke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
6
|
Samayoa-Oviedo HY, Knorke H, Warneke J, Laskin J. Spontaneous ligand loss by soft landed [Ni(bpy) 3] 2+ ions on perfluorinated self-assembled monolayer surfaces. Chem Sci 2024; 15:10770-10783. [PMID: 39027285 PMCID: PMC11253159 DOI: 10.1039/d4sc02527j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal (TM) complexes are widely used in catalysis, photochemical energy conversion, and sensing. Understanding factors that affect ligand loss from TM complexes at interfaces is important both for generating catalytically-active undercoordinated TM complexes and for controlling the degradation pathways of photosensitizers and photoredox catalysts. Herein, we demonstrate that well-defined TM complexes prepared on surfaces using ion soft landing undergo substantial structural rearrangements resulting in ligand loss and formation of both stable and reactive undercoordinated species. We employ nickel bipyridine (Ni-bpy) cations as a model system and explore their structural reorganization on surfaces using a combination of experimental and computational approaches. The controlled preparation of surface layers by mass-selected deposition of [Ni(bpy)3]2+ cations provides insights into the chemical reactivity of these species on surfaces. Both surface characterization using mass spectrometry and electronic structure calculations using density functional theory (DFT) indicate that [Ni(bpy)3]2+ undergoes a substantial geometry distortion on surfaces in comparison with its gas-phase structure. This distortion reduces the ligand binding energy and facilitates the formation of the undercoordinated [Ni(bpy)2]2+. Additionally, charge reduction by the soft landed [Ni(bpy)3]2+ facilitates ligand loss. We observe that ligand loss is inhibited by co-depositing [Ni(bpy)3]2+ with a stable anion such as closo-dodecaborate dianion, [B12F12]2-. The strong electrostatic interaction between [Ni(bpy)3]2+ and [B12F12]2- diminishes the distortion of the cation due to interactions with the surface. This interaction stabilizes the soft landed cation by reducing the extent of charge reduction and its structural reorganization. Overall, this study shows the intricate interplay of charge state, ion surface interactions, and stabilization by counterions on the structure and reactivity of metal complexes on surfaces. The combined experimental and computational approach used in this study offers detailed insights into factors that affect the integrity and stability of active species relevant to energy production and catalysis.
Collapse
Affiliation(s)
- Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
- Leibniz Institut für Oberflächenmodifizierung (IOM) Permoserstraße 15 04318 Leipzig Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| |
Collapse
|
7
|
Kawa S, Kaur J, Knorke H, Warneke Z, Wadsack M, Rohdenburg M, Nierstenhöfer M, Jenne C, Kenttämaa H, Warneke J. Generation and reactivity of the fragment ion [B 12I 8S(CN)] - in the gas phase and on surfaces. Analyst 2024; 149:2573-2585. [PMID: 38469706 DOI: 10.1039/d3an02175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Gaseous fragment ions generated in mass spectrometers may be employed as "building blocks" for the synthesis of novel molecules on surfaces using ion soft-landing. A fundamental understanding of the reactivity of the fragment ions is required to control bond formation of deposited fragments in surface layers. The fragment ion [B12X11]- (X = halogen) is formed by collision-induced dissociation (CID) from the precursor [B12X12]2- dianion. [B12X11]- is highly reactive and ion soft-landing experiments have shown that this ion binds to the alkyl chains of organic molecules on surfaces. In this work we investigate whether specific modifications of the precursor ion affect the chemical properties of the fragment ions to such an extent that attachment to functional groups of organic molecules on surfaces occurs and binding of alkyl chains is prevented. Therefore, a halogen substituent was replaced by a thiocyanate substituent. CID of the precursor [B12I11(SCN)]2- ion preferentially yields the fragment ion [B12I8S(CN)]-, which shows significantly altered reactivity compared to the fragment ions of [B12I12]2-. [B12I8S(CN)]- has a previously unknown structural element, wherein a sulfur atom bridges three boron atoms. Gas-phase reactions with different neutral reactants (cyclohexane, dimethyl sulfide, and dimethyl amine) accompanied by theoretical studies indicate that [B12I8S(CN)]- binds with higher selectivity to functional groups of organic molecules than fragment ions of [B12I12]2- (e.g., [B12I11]- and [B12I9]-). These findings were further confirmed by ion soft-landing experiments, which showed that [B12I8S(CN)]- ions attacked ester groups of adipates and phthalates, whereas [B12I11]- ions only bound to alkyl chains of the same reagents.
Collapse
Affiliation(s)
- Sebastian Kawa
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Jaskiran Kaur
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Ziyan Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Myriam Wadsack
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Marc Nierstenhöfer
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Carsten Jenne
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Hilkka Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
8
|
Yang F, Urban RD, Lorenz J, Griebel J, Koohbor N, Rohdenburg M, Knorke H, Fuhrmann D, Charvat A, Abel B, Azov VA, Warneke J. Control of Intermediates and Products by Combining Droplet Reactions and Ion Soft-Landing. Angew Chem Int Ed Engl 2024; 63:e202314784. [PMID: 37917653 DOI: 10.1002/anie.202314784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified. In our study, we showcase the synergy between two sequentially applied "preparative mass spectrometry" methods: initiating accelerated reactions within microdroplets during electrospray ionization to generate gaseous ionic intermediates in high abundance, which are subsequently mass-selected and soft-landed to react with a provided reagent on a substrate. This allows the generation of products at a nanomolar scale, amenable to further characterization. In this proof-of-concept study, the contrasting reaction pathways between intrinsically neutral and pre-charged reagents, respectively, both in microdroplets and in layers generated by ion soft-landing are investigated. This provides new insights into the role of partially solvated reagents at microdroplet surfaces for increased reaction rates. Additionally, further insights into reactions of ions of the same polarity under various conditions is obtained.
Collapse
Affiliation(s)
- Fangshun Yang
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Raphael D Urban
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Jonas Lorenz
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Nima Koohbor
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Harald Knorke
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Daniel Fuhrmann
- Institute for Inorganic Chemistry, University Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, 04103, Leipzig, Germany
| | - Vladimir A Azov
- Department of Chemistry, University of the Free State, 9300, Bloemfontein, South Africa
| | - Jonas Warneke
- Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|