1
|
Wang F, Ou Q, Zhang S. Single-atom infrared emission in doped silicon nanocrystals. Phys Chem Chem Phys 2023; 25:28744-28749. [PMID: 37850355 DOI: 10.1039/d3cp03698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Silicon luminescence, due to silicon being abundant, non-toxic and harmless, is a topic of pivotal importance in optoelectronics and biological imaging. However, a major challenge in developing high-efficiency silicon light sources is the relatively weak allowable transitions. This study focuses on single atom-doped silicon nanocrystals (Si NCs) and theoretically investigates the emission behavior of single atoms within a tetrahedral coordination field. Doping a single atom in Si NCs can result in a ∼102 times improvement at least in the squared transition dipole moment (TDM2), and induce a spectral shift towards near- and mid-infrared wavelengths. These findings offer a strong foundation for designing Si NCs for on-chip optical communication and single photon emitters.
Collapse
Affiliation(s)
- Feilong Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Qiongrong Ou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Shuyu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Baati T, Chaabani I, Salek A, Njim L, Selmi M, Al-Kattan A, Hosni K. Chitosan-coated ultrapure silicon nanoparticles produced by laser ablation: biomedical potential in nano-oncology as a tumor-targeting nanosystem. NANOSCALE ADVANCES 2023; 5:3044-3052. [PMID: 37260505 PMCID: PMC10228338 DOI: 10.1039/d3na00253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Ultrapure silicon nanoparticles (SiNPs) produced by femtosecond laser ablation in water have attracted great interest in the area of cancer therapy as they are efficient as photosensitizers in photodynamic therapy modality and can induce cell hyperthermia under radiofrequency radiation. Recently, we showed that these biocompatible nanoparticles were not able to reach tumors after intravenous injection in mice due to their rapid clearance from the bloodstream. In order to increase their half-life time and therefore their chances to reach and accumulate in tumors by an enhanced permeation retention (EPR) effect, a capping agent on SiNP surface acting as a colloidal stabilizer suspension is required. In this regard, this work focuses for the first time on the functionalization of SiNPs through the modification of their surface by chitosan (SiNPs-CH) in order to enhance their therapeutic properties in cancer therapy. Here, in vivo experiments were carried out during 15 days on nude mice developing a subcutaneously grafted malignant human brain tumor (glioblastoma). The characterization of SiNPs-CH showed an average hydrodynamic size of around 142 ± 65 nm as well as a relatively neutral charge (-5.2 mV) leading to a high colloidal suspension stability. The point of our work concerns the improvement of the biodistribution of SiNPs-CH with regard to tumors, the bloodstream, and organs. After the intravenous administration of 20 mg kg-1, all the studied parameters (animal behavior, organs' morphology, and histopathology) were in accord with the absence of toxicity due to SiNPs-CH, confirming their biocompatibility and even size and surface charge were modified compared to bare nanoparticles. Moreover an increased time in the bloodstream circulation of up to 7 days was observed, indicating the stealth of the nanoparticles, which could escape opsonization and premature elimination by macrophages and the reticuloendothelial system. As evidenced by silicon assessment, the interaction of the SiNPs-CH with the liver and spleen was significantly reduced compared to the bare nanoparticles. At the same time, SiNPs-CH were concentrated progressively in tumors from 12.03% after 1 day up to 39.55% after 7 days, confirming their uptake by the tumor microenvironment through the enhanced permeability retention effect. Subsequently, the silicon level declined progressively down to 33.6% after 15 days, evidencing the degradation of pH-sensitive SiNPs-CH under the acidic tumor microenvironment. Taken together, the stealthy SiNPs-CH exhibited an ideal biodistribution profile within the tumor microenvironment with a sustainable biodegradation and elimination profile, indicating their promising application in the nano-oncology field as a tumor-targeting system.
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique Biotechpôle Sidi Thabet 2020 Tunisia +216-71-537-688 +216-71-537-666
| | - Imen Chaabani
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique Biotechpôle Sidi Thabet 2020 Tunisia +216-71-537-688 +216-71-537-666
- Service de radiologie, Clinique Hospitalo-Universitaire de Médecine Dentaire 5000 Monastir Tunisia
| | - Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique Biotechpôle Sidi Thabet 2020 Tunisia +216-71-537-688 +216-71-537-666
| | - Leila Njim
- Service d'Anatomie Pathologique, EPS Fattouma Bourguiba de Monastir, Faculté de Médecine de Monastir, Université de Monastir 5000 Tunisia
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique Biotechpôle Sidi Thabet 2020 Tunisia +216-71-537-688 +216-71-537-666
| | - Ahmed Al-Kattan
- Aix-Marseille University, CNRS, LP3 UMR 7341 Campus de Luminy, Case 917 CEDEX 09 13288 Marseille France
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique Biotechpôle Sidi Thabet 2020 Tunisia +216-71-537-688 +216-71-537-666
| |
Collapse
|
3
|
Wang K, He Q, Yang D, Pi X. Highly Efficient Energy Transfer from Silicon to Erbium in Erbium-Hyperdoped Silicon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:277. [PMID: 36678030 PMCID: PMC9860861 DOI: 10.3390/nano13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Erbium-doped silicon (Er-doped Si) materials hold great potential for advancing Si photonic devices. For Er-doped Si, the efficiency of energy transfer (ηET) from Si to Er3+ is crucial. In order to achieve high ηET, we used nonthermal plasma to synthesize Si quantum dots (QDs) hyperdoped with Er at the concentration of ~1% (i.e., ~5 × 1020 cm-3). The QD surface was subsequently modified by hydrosilylation using 1-dodecene. The Er-hyperdoped Si QDs emitted near-infrared (NIR) light at wavelengths of ~830 and ~1540 nm. An ultrahigh ηET (~93%) was obtained owing to the effective energy transfer from Si QDs to Er3+, which led to the weakening of the NIR emission at ~830 nm and the enhancement of the NIR emission at ~1540 nm. The coupling constant (γ) between Si QDs and Er3+ was comparable to or greater than 1.8 × 10-12 cm3·s-1. The temperature-dependent photoluminescence and excitation rate of Er-hyperdoped Si QDs indicate that strong coupling between Si QDs and Er3+ allows Er3+ to be efficiently excited.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
4
|
Yamada H, Watanabe J, Nemoto K, Sun HT, Shirahata N. Postproduction Approach to Enhance the External Quantum Efficiency for Red Light-Emitting Diodes Based on Silicon Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234314. [PMID: 36500937 PMCID: PMC9735803 DOI: 10.3390/nano12234314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 05/08/2023]
Abstract
Despite bulk crystals of silicon (Si) being indirect bandgap semiconductors, their quantum dots (QDs) exhibit the superior photoluminescence (PL) properties including high quantum yield (PLQY > 50%) and spectral tunability in a broad wavelength range. Nevertheless, their low optical absorbance character inhibits the bright emission from the SiQDs for phosphor-type light emitting diodes (LEDs). In contrast, a strong electroluminescence is potentially given by serving SiQDs as an emissive layer of current-driven LEDs with (Si-QLEDs) because the charged carriers are supplied from electrodes unlike absorption of light. Herein, we report that the external quantum efficiency (EQE) of Si-QLED was enhanced up to 12.2% by postproduction effect which induced by continuously applied voltage at 5 V for 9 h. The active layer consisted of SiQDs with a diameter of 2.0 nm. Observation of the cross-section of the multilayer QLEDs device revealed that the interparticle distance between adjacent SiQDs in the emissive layer is reduced to 0.95 nm from 1.54 nm by “post-electric-annealing”. The shortened distance was effective in promoting charge injection into the emission layer, leading improvement of the EQE.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Junpei Watanabe
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Kazuhiro Nemoto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Hong-Tao Sun
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
- Correspondence: ; Tel.: +81-29-859-2743
| |
Collapse
|
5
|
Nakasha K, Fukuhara G. Dynamic hybridization of fluorescence polymers upon complexation of glucan. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Zhou J, Huang J, Chen H, Samanta A, Linnros J, Yang Z, Sychugov I. Low-Cost Synthesis of Silicon Quantum Dots with Near-Unity Internal Quantum Efficiency. J Phys Chem Lett 2021; 12:8909-8916. [PMID: 34498875 PMCID: PMC8474143 DOI: 10.1021/acs.jpclett.1c02187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As a cost-effective batch synthesis method, Si quantum dots (QDs) with near-infrared photoluminescence, high quantum yield (>50% in polymer nanocomposite), and near-unity internal quantum efficiency were fabricated from an inexpensive commercial precursor (triethoxysilane, TES), using optimized annealing and etching processes. The optical properties of such QDs are similar to those prepared from state-of-the-art precursors (hydrogen silsesquioxane, HSQ) yet featuring an order of magnitude lower cost. To understand the effect of synthesis parameters on QD optical properties, we conducted a thorough comparison study between common solid precursors: TES, HSQ, and silicon monoxide (SiO), including chemical, structural, and optical characterizations. We found that the structural nonuniformity and abundance of oxide inherent to SiO limited the resultant QD performance, while for TES-derived QDs this drawback can be avoided. The presented low-cost synthetic approach would significantly favor applications requiring high loading of good-quality Si QDs, such as light conversion for photovoltaics.
Collapse
Affiliation(s)
- Jingjian Zhou
- Department
of Applied Physics, KTH - Royal Institute
of Technology, Stockholm 10691, Sweden
| | - Jing Huang
- Department
of Applied Physics, KTH - Royal Institute
of Technology, Stockholm 10691, Sweden
| | - Huai Chen
- MOE
Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute
of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong China
| | - Archana Samanta
- Department
of Applied Physics, KTH - Royal Institute
of Technology, Stockholm 10691, Sweden
| | - Jan Linnros
- Department
of Applied Physics, KTH - Royal Institute
of Technology, Stockholm 10691, Sweden
| | - Zhenyu Yang
- MOE
Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute
of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong China
- Dongguan
Institute, Sun Yat-sen University, Dongguan, 523808, China
| | - Ilya Sychugov
- Department
of Applied Physics, KTH - Royal Institute
of Technology, Stockholm 10691, Sweden
| |
Collapse
|
7
|
Exciton-Photon Interactions in Semiconductor Nanocrystals: Radiative Transitions, Non-Radiative Processes and Environment Effects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this review, we discuss several fundamental processes taking place in semiconductor nanocrystals (quantum dots (QDs)) when their electron subsystem interacts with electromagnetic (EM) radiation. The physical phenomena of light emission and EM energy transfer from a QD exciton to other electronic systems such as neighbouring nanocrystals and polarisable 3D (semi-infinite dielectric or metal) and 2D (graphene) materials are considered. In particular, emission decay and FRET rates near a plane interface between two dielectrics or a dielectric and a metal are discussed and their dependence upon relevant parameters is demonstrated. The cases of direct (II–VI) and indirect (silicon) band gap semiconductors are compared. We cover the relevant non-radiative mechanisms such as the Auger process, electron capture on dangling bonds and interaction with phonons. Some further effects, such as multiple exciton generation, are also discussed. The emphasis is on explaining the underlying physics and illustrating it with calculated and experimental results in a comprehensive, tutorial manner.
Collapse
|
8
|
Jingjian Z, Pevere F, Gatty HK, Linnros J, Sychugov I. Wafer-scale fabrication of isolated luminescent silicon quantum dots using standard CMOS technology. NANOTECHNOLOGY 2020; 31:505204. [PMID: 33021208 DOI: 10.1088/1361-6528/abb556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A wafer-scale fabrication method for isolated silicon quantum dots (Si QDs) using standard CMOS technology is presented. Reactive ion etching was performed on the device layer of a silicon-on-insulator wafer, creating nano-sized silicon islands. Subsequently, the wafer was annealed at 1100 °C for 1 h in an atmosphere of 5% H2 in Ar, forming a thin oxide passivating layer due to trace amounts of oxygen. Isolated Si QDs covering large areas (∼mm2) were revealed by photoluminescence (PL) measurements. The emission energies of such Si QDs can span over a broad range, from 1.3 to 2.0 eV and each dot is typically characterized by a single emission line at low temperatures. Most of the Si QDs exhibited a high degree of linear polarization along Si crystallographic directions [[Formula: see text]] and [[Formula: see text]]. In addition, system resolution-limited (250 μeV) PL linewidths (full width at half maximum) were measured for several Si QDs at 10 K, with no clear correlation between emission energy and polarization. The initial part of PL decays was measured at room temperature for such oxide-embedded Si QDs, approximately several microseconds long. By providing direct access to a broad size range of isolated Si QDs on a wafer, this technique paves the way for the future fabrication of photonic structures with Si QDs, which can potentially be used as single-photon sources with a long coherence length.
Collapse
Affiliation(s)
- Zhou Jingjian
- Department of Applied Physics, KTH - Royal Institute of Technology, Kista 164 40, Sweden
| | - Federico Pevere
- Department of Applied Physics, KTH - Royal Institute of Technology, Kista 164 40, Sweden
| | - Hithesh K Gatty
- Department of Applied Physics, KTH - Royal Institute of Technology, Kista 164 40, Sweden
| | - Jan Linnros
- Department of Applied Physics, KTH - Royal Institute of Technology, Kista 164 40, Sweden
| | - Ilya Sychugov
- Department of Applied Physics, KTH - Royal Institute of Technology, Kista 164 40, Sweden
| |
Collapse
|
9
|
Izadi A, Sinha M, Papson C, Roccabianca S, Anthony R. Mechanical behavior of SiNC layers on PDMS: effects of layer thickness, PDMS modulus, and SiNC surface functionality. RSC Adv 2020; 10:39087-39091. [PMID: 35518434 PMCID: PMC9057323 DOI: 10.1039/d0ra06321e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Thin layers of nanomaterials on stretchable substrates have the potential to enable stretchable, bendable optoelectronic devices, wearable diagnostics, and more. Recently, our group reported on a novel method for finding the neo-Hookean coefficient of thin layers of silicon nanocrystals (SiNCs) on polydimethylsiloxane (PDMS). Here we elaborate on that initial study by examining the effects of the SiNC layer thickness, PDMS neo-Hookean coefficient, and SiNC surface functionality on the neo-Hookean coefficient of the SiNC layers. We found that, while the layer thickness and PDMS neo-Hookean coefficient influence the behavior of the SiNC layers, layers of surface-functionalized SiNCs do not exhibit disparate behavior from layers of bare SiNCs. Experimental/theoretical estimations of the neo-Hookean coefficients of SiNC layers on PDMS show a dependence on layer thickness as well as on the modulus of the PDMS, but not on the surface functionality of the SiNCs.![]()
Collapse
Affiliation(s)
- Alborz Izadi
- Department of Mechanical Engineering, Michigan State University East Lansing MI USA +1-517-353-1750 +1-517-432-7491
| | - Mayank Sinha
- Department of Mechanical Engineering, Michigan State University East Lansing MI USA +1-517-353-1750 +1-517-432-7491
| | - Cameron Papson
- Department of Mechanical Engineering, Michigan State University East Lansing MI USA +1-517-353-1750 +1-517-432-7491
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University East Lansing MI USA +1-517-353-1750 +1-517-432-7491
| | - Rebecca Anthony
- Department of Mechanical Engineering, Michigan State University East Lansing MI USA +1-517-353-1750 +1-517-432-7491
| |
Collapse
|
10
|
Koh TT, Huang T, Schwan J, Xia P, Roberts ST, Mangolini L, Tang ML. Low temperature radical initiated hydrosilylation of silicon quantum dots. Faraday Discuss 2020; 222:190-200. [PMID: 32104858 DOI: 10.1039/c9fd00144a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics of silicon quantum dots (QDs) is not well understood despite their potential for many optoelectronic applications. One of the barriers to the study and widespread adoption of Si QDs is the difficulty in functionalizing their surface, to make, for example, a solution-processable electronically-active colloid. While thermal hydrosilylation of Si QDs is widely used, the high temperature typically needed may trigger undesirable side-effects, like uncontrolled polymerization of the terminal alkene. In this contribution, we show that this high-temperature method for installing aromatic and aliphatic ligands on non-thermal plasma-synthesized Si QDs can be replaced with a low-temperature, radical-initiated hydrosilylation method. Materials prepared via this low-temperature route perform similarly to those created via high-temperature thermal hydrosilylation when used in triplet fusion photon upconversion systems, suggesting the utility of low-temperature, radical-initiated methods for creating Si QDs with a range of functional behavior.
Collapse
Affiliation(s)
- Timothy T Koh
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Galář P, Popelář T, Khun J, Matulková I, Němec I, Newell KD, Michalcová A, Scholtz V, Kůsová K. The red and blue luminescence in silicon nanocrystals with an oxidized, nitrogen-containing shell. Faraday Discuss 2020; 222:240-257. [PMID: 32104864 DOI: 10.1039/c9fd00092e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditionally, two classes of silicon nanocrystals (SiNCs) are recognized with respect to their light-emission properties. These are usually referred to as the "red" and the "blue" emitting SiNCs, based on the spectral region in which the larger part of their luminescence is concentrated. The origin of the "blue" luminescence is still disputed and is very probably different in different systems. One of the important contributions to the discussion about the origin of the "blue" luminescence was the finding that the exposure of SiNCs to even trace amounts of nitrogen in the presence of oxygen induces the "blue" emission, even in originally "red"-emitting SiNCs. Here, we obtained a different result. We show that the treatment of "red" emitting, already oxidized SiNCs in a water-based environment containing air-related radicals including nitrogen-containing species as well as oxygen, diminishes, rather than induces the "blue" luminescence.
Collapse
Affiliation(s)
- Pavel Galář
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fucikova A, Sychugov I, Linnros J. The shell matters: one step synthesis of core-shell silicon nanoparticles with room temperature ultranarrow emission linewidth. Faraday Discuss 2020; 222:135-148. [PMID: 32129337 DOI: 10.1039/c9fd00093c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present a one-step synthesis that provides silicon nanocrystals with a thin shell composed of a ceramic-like carbonyl based compound, embedded in a porous organosilicon film. The silicon nanocrystals were synthesised from hydrogen silsesquioxane molecules, modified with organic molecules containing carbonyl groups, which were annealed at 1000 °C in a slightly reducing 5% H2 : 95% Ar atmosphere. The organic character of the shell was preserved after annealing due to trapping of organic molecules inside the HSQ-derived oxide matrix that forms during the annealing. The individual silicon nanocrystals, studied by single dot spectroscopy, exhibited a significantly narrower emission peak at room temperature (lowest linewidth ∼ 17 meV) compared to silicon nanocrystals embedded in a silicon oxide shell (150 meV). Their emission linewidths are even significantly narrower than those of single CdSe quantum dots (>50 meV). It is hypothesized that the Si-core-thin shell structure of the nanoparticle is responsible for the unique optical properties. Its formation within one synthesis step opens new opportunities for silicon-based quantum dots. The luminescence from the produced nanocrystals covers a broad spectral range from 530-720 nm (1.7-2.3 eV) suggesting strong application potential for solar cells and LEDs, following the development of a suitable mass-fabrication protocol.
Collapse
Affiliation(s)
- Anna Fucikova
- Department of Chemical Physics and Optics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Praha 2
- Czech Republic
| | - Ilya Sychugov
- KTH Royal Institute of Technology
- Department of Applied Physics
- SE-16440 Kista
- Sweden
| | - Jan Linnros
- KTH Royal Institute of Technology
- Department of Applied Physics
- SE-16440 Kista
- Sweden
| |
Collapse
|
13
|
Fujii M, Minami A, Sugimoto H. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis. NANOSCALE 2020; 12:9266-9271. [PMID: 32313916 DOI: 10.1039/d0nr02764b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gel electrophoresis, which is a standard method for separation and analysis of macromolecules such as DNA, RNA and proteins, is applied for the first time to silicon (Si) quantum dots (QDs) for size separation. In the Si QDs studied, boron (B) and phosphorus (P) are simultaneously doped. Codoping induces a negative potential on the surface of a Si QD and makes it dispersible in water. Si QDs with different B and P concentrations and grown at different temperatures (950 °C-1200 °C) are studied. It is shown that native polyacrylamide gel electrophoresis can separate codoped Si QDs by size. The capability of gel electrophoresis to immobilize size-separated QDs in a solid matrix makes detailed analyses of size-purified Si QDs possible. For example, the photoluminescence (PL) studies of the dried gel of Si QDs grown at 1100 °C demonstrate that a PL spectrum of a Si QD solution with the PL maximum around 1.4 eV can be separated into more than 15 spectra with the PL maximum changing from 1.2 to 1.8 eV depending on the migration distance. It is found that the relationship between the PL peak energy and the migration distance depends on the growth temperature of Si QDs as well as the B and P concentration. For all the samples with different impurity concentrations and grown at different temperatures, a clear trend is observed in the relationship between the full width at half maximum (FWHM) and the peak energy of the PL spectra in a wide energy range. The FWHM increases with the increasing peak energy and it is nearly twice larger than those observed for undoped Si QDs. The large PL FWHM of codoped Si QDs suggests that excitons are further localized in codoped Si QDs due to the existence of charged impurities.
Collapse
Affiliation(s)
- Minoru Fujii
- Department of Electrical and Electronic Engineering, Kobe University, 657-8501 Kobe, Japan.
| | | | | |
Collapse
|
14
|
Pringle TA, Hunter KI, Brumberg A, Anderson KJ, Fagan JA, Thomas SA, Petersen RJ, Sefannaser M, Han Y, Brown SL, Kilin DS, Schaller RD, Kortshagen UR, Boudjouk PR, Hobbie EK. Bright Silicon Nanocrystals from a Liquid Precursor: Quasi-Direct Recombination with High Quantum Yield. ACS NANO 2020; 14:3858-3867. [PMID: 32150383 DOI: 10.1021/acsnano.9b09614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silicon nanocrystals (SiNCs) with bright bandgap photoluminescence (PL) are of current interest for a range of potential applications, from solar windows to biomedical contrast agents. Here, we use the liquid precursor cyclohexasilane (Si6H12) for the plasma synthesis of colloidal SiNCs with exemplary core emission. Through size separation executed in an oxygen-shielded environment, we achieve PL quantum yields (QYs) approaching 70% while exposing intrinsic constraints on efficient core emission from smaller SiNCs. Time-resolved PL spectra of these fractions in response to femtosecond pulsed excitation reveal a zero-phonon radiative channel that anticorrelates with QY, which we model using advanced computational methods applied to a 2 nm SiNC. Our results offer additional insight into the photophysical interplay of the nanocrystal surface, quasi-direct recombination, and efficient SiNC core PL.
Collapse
Affiliation(s)
- Todd A Pringle
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Katharine I Hunter
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth J Anderson
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jeffrey A Fagan
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Salim A Thomas
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Reed J Petersen
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mahmud Sefannaser
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yulun Han
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Samuel L Brown
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Uwe R Kortshagen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip Raymond Boudjouk
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
15
|
Fronya AA, Antonenko SV, Kharin AY, Muratov AV, Aleschenko YA, Derzhavin SI, Karpov NV, Dombrovska YI, Garmash AA, Kargin NI, Klimentov SM, Timoshenko VY, Kabashin AV. Tailoring Photoluminescence from Si-Based Nanocrystals Prepared by Pulsed Laser Ablation in He-N 2 Gas Mixtures. Molecules 2020; 25:E440. [PMID: 31973084 PMCID: PMC7037818 DOI: 10.3390/molecules25030440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Using methods of pulsed laser ablation from a silicon target in helium (He)-nitrogen (N2) gas mixtures maintained at reduced pressures (0.5-5 Torr), we fabricated substrate-supported silicon (Si) nanocrystal-based films exhibiting a strong photoluminescence (PL) emission, which depended on the He/N2 ratio. We show that, in the case of ablation in pure He gas, Si nanocrystals exhibit PL bands centered in the "red - near infrared" (maximum at 760 nm) and "green" (centered at 550 nm) spectral regions, which can be attributed to quantum-confined excitonic states in small Si nanocrystals and to local electronic states in amorphous silicon suboxide (a-SiOx) coating, respectively, while the addition of N2 leads to the generation of an intense "green-yellow" PL band centered at 580 nm. The origin of the latter band is attributed to a radiative recombination in amorphous oxynitride (a-SiNxOy) coating of Si nanocrystals. PL transients of Si nanocrystals with SiOx and a-SiNxOy coatings demonstrate nonexponential decays in the micro- and submicrosecond time scales with rates depending on nitrogen content in the mixture. After milling by ultrasound and dispersing in water, Si nanocrystals can be used as efficient non-toxic markers for bioimaging, while the observed spectral tailoring effect makes possible an adjustment of the PL emission of such markers to a concrete bioimaging task.
Collapse
Affiliation(s)
- Anastasiya A. Fronya
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Sergey V. Antonenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Alexander Yu. Kharin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Andrei V. Muratov
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Yury A. Aleschenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Sergey I. Derzhavin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Prokhorov General Physics Institute of the Russian Acad. Sci., Vavilova St. 38, 117942 Moscow, Russia
| | - Nikita V. Karpov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Yaroslava I. Dombrovska
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Alexander A. Garmash
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Nikolay I. Kargin
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Sergey M. Klimentov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Victor Yu. Timoshenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
- Lomonosov Moscow State University, Physics Dep., Leninskie Gory 1, 119991 Moscow, Russia
| | - Andrei V. Kabashin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288 Marseille, France
| |
Collapse
|
16
|
Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss 2020; 222:10-81. [DOI: 10.1039/d0fd00018c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights many spectroscopy-based studies and selected phenomenological studies of silicon-based nanostructures that provide insight into their likely PL mechanisms, and also covers six application areas.
Collapse
Affiliation(s)
- Leigh Canham
- School of Physics and Astronomy
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
17
|
Kabashin AV, Singh A, Swihart MT, Zavestovskaya IN, Prasad PN. Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. ACS NANO 2019; 13:9841-9867. [PMID: 31490658 DOI: 10.1021/acsnano.9b04610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review describes promising laser-based approaches to produce silicon nanostructures, including laser ablation of solid Si targets in residual gases and liquids and laser pyrolysis of silane. These methods are different from, and complementary to, widely used porous silicon technology and alternative synthesis routes. One can use these methods to make stable colloidal dispersions of silicon nanoparticles in both organic and aqueous media, which are suitable for a multitude of applications across the important fields of energy and healthcare. Size tailoring allows production of Si quantum dots with efficient photoluminescence that can be tuned across a broad spectral range from the visible to near-IR by varying particle size and surface functionalization. These nanoparticles can also be integrated with other nanomaterials to make multifunctional composites incorporating magnetic and/or plasmonic components. In the energy domain, this review highlights applications to photovoltaics and photodetectors, nanostructured silicon anodes for lithium ion batteries, and hydrogen generation from water. Application to nanobiophotonics and nanomedicine profits from the excellent biocompatibility and biodegradability of nanosilicon. These applications encompass several types of bioimaging and various therapies, including photodynamic therapy, RF thermal therapy, and radiotherapy. The review concludes with a discussion of challenges and opportunities in the applications of laser-processed nanosilicon.
Collapse
Affiliation(s)
- Andrei V Kabashin
- Aix-Marseille Univ , CNRS, LP3, Marseille 13288 , France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
| | - Ajay Singh
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Mark T Swihart
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
- Department of Chemical and Biological Engineering and RENEW Institute , University at Buffalo, The State University of New York , Buffalo , New York 14260-4200 , United States
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
18
|
Li Z, Kortshagen UR. Aerosol-Phase Synthesis and Processing of Luminescent Silicon Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:8451-8458. [PMID: 34163100 PMCID: PMC8218878 DOI: 10.1021/acs.chemmater.9b02743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silicon quantum dots are attractive materials for luminescent devices and bioimaging applications. For these light-emitting applications, higher photoluminescence efficiency is desired in order to achieve better device performance. Nonthermal plasma synthesis successfully allows for the continuous production of silicon nanocrystals, but postprocessing is necessary to improve photoluminescence quantum yields so that nanocrystals can be used for luminescence applications. In this work, we demonstrate an all-aerosol-phase synthesis and processing route that integrates nonthermal plasma synthesis, plasma-assisted surface functionalization with alkene ligands, and in-flight annealing within one flow stream. Here, luminescent silicon nanocrystals are synthesized and postprocessed on a time scale of only 100 ms, which is orders of magnitude faster than previous synthesis and functionalization schemes. The as-produced silicon nanocrystals have photoluminescence quantum yields exceeding 20%, which is a 5-fold increase compared to previous silicon nanocrystals synthesized with all-aerosol-phase approaches. We attribute the enhanced photoluminescence to the reduced "dark" nanocrystal fraction due to reduction of dangling bond density and desorption of surface silyl species induced by the in-flight annealing. We also demonstrate that the ligand coverage plays a minor role for the photoluminescence properties, but that the nature of the silicon hydride surface groups is a major factor.
Collapse
|
19
|
Liu L, Deng L, Huang S, Zhang P, Linnros J, Zhong H, Sychugov I. Photodegradation of Organometal Hybrid Perovskite Nanocrystals: Clarifying the Role of Oxygen by Single-Dot Photoluminescence. J Phys Chem Lett 2019; 10:864-869. [PMID: 30730749 DOI: 10.1021/acs.jpclett.9b00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photostability has been a major issue for perovskite materials. Understanding the photodegradation mechanism and suppressing it are of central importance for applications. By investigating single-dot photoluminescence spectra and the lifetime of MAPbX3 (MA = CH3NH3+, X = Br, I) nanocrystals with quantum confinement under different conditions, we identified two separate pathways in the photodegradation process. The first is the oxygen-assisted light-induced etching process (photochemistry). The second is the light-driven slow charge-trapping process (photophysics), taking place even in oxygen-free environment. We clarified the role of oxygen in the photodegradation process and show how the photoinduced etching can be successfully suppressed by OSTE polymer, preventing an oxygen-assisted reaction.
Collapse
Affiliation(s)
- Lige Liu
- Nanophotonics and Ultrafine Optoelectronic System, Beijing Key Laboratory, School of Physics , Beijing Institute of Technology , 5 South Street of Zhongguancun , 100081 Beijing , China
- Department of Applied Physics , KTH-Royal Institute of Technology , Electrum 229 , 16440 Kista , Sweden
| | - Luogen Deng
- Nanophotonics and Ultrafine Optoelectronic System, Beijing Key Laboratory, School of Physics , Beijing Institute of Technology , 5 South Street of Zhongguancun , 100081 Beijing , China
| | - Sheng Huang
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Street of Zhongguancun , 100081 Beijing , China
| | - Pei Zhang
- Department of Applied Physics , KTH-Royal Institute of Technology , Electrum 229 , 16440 Kista , Sweden
- Henan Key Lab of Information-based Electrical Appliances, School of Electrical and Information Engineering , Zhengzhou University of Light Industry , 450002 Zhengzhou , China
| | - Jan Linnros
- Department of Applied Physics , KTH-Royal Institute of Technology , Electrum 229 , 16440 Kista , Sweden
| | - Haizheng Zhong
- School of Materials Science & Engineering , Beijing Institute of Technology , 5 South Street of Zhongguancun , 100081 Beijing , China
| | - Ilya Sychugov
- Department of Applied Physics , KTH-Royal Institute of Technology , Electrum 229 , 16440 Kista , Sweden
| |
Collapse
|
20
|
Derbenyova NV, Shvetsov AE, Konakov AA, Burdov VA. Effects of surface halogenation on exciton relaxation in Si crystallites: prospects for photovoltaics. Phys Chem Chem Phys 2019; 21:20693-20705. [DOI: 10.1039/c9cp03714d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is shown that surface halogenation efficiently slows down Auger and radiative recombinations in Si nanocrystals.
Collapse
Affiliation(s)
| | - Artyom E. Shvetsov
- Lobachevsky State University of Nizhny Novgorod
- Nizhny Novgorod
- Russian Federation
| | - Anton A. Konakov
- Lobachevsky State University of Nizhny Novgorod
- Nizhny Novgorod
- Russian Federation
| | - Vladimir A. Burdov
- Lobachevsky State University of Nizhny Novgorod
- Nizhny Novgorod
- Russian Federation
| |
Collapse
|
21
|
Park Y, Yoo J, Kang MH, Kwon W, Joo J. Photoluminescent and biodegradable porous silicon nanoparticles for biomedical imaging. J Mater Chem B 2019; 7:6271-6292. [DOI: 10.1039/c9tb01042d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of unique properties including biodegradability, intrinsic photoluminescence, and mesoporous structure allows porous silicon nanoparticles to address current challenges of translational nanomedicine, especially in biomedical imaging.
Collapse
Affiliation(s)
- Yoonsang Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jounghyun Yoo
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Myoung-Hee Kang
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering
- Sookmyung Women's University
- Seoul 04310
- Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
22
|
Sugimoto H, Yamamura M, Fujii R, Fujii M. Donor-Acceptor Pair Recombination in Size-Purified Silicon Quantum Dots. NANO LETTERS 2018; 18:7282-7288. [PMID: 30265553 DOI: 10.1021/acs.nanolett.8b03489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Shallow impurity doping is an efficient route to tailor optical and electronic features of semiconductor quantum dots (QDs). However, the effect of doping is often smeared by the size, shape, and composition inhomogeneities. In this paper, we study optical properties of almost monodispersed spherical silicon (Si) QDs that are heavily doped with boron (B) and phosphorus (P). The narrow size distribution achieved by a size-separation process enables us to extract doping-induced phenomena clearly. The degree of doping-induced shrinkage of the optical band gap is obtained in a wide size range. Comparison of the optical band gap with theoretical calculations allow us to estimate the number of active donor-acceptor pairs in a QD. Furthermore, we found that the size and detection energy dependence of the luminescence decay rate is significantly modified below a critical diameter, that is ∼5.5 nm. In the diameter range above 5.5 nm, the luminescence decay rate is distributed in a wide range depending on the detection energy even in size-purified Si QDs. The distribution may arise from that of donor-acceptor distances. On the other hand, in the diameter range below 5.5 nm the detection energy dependence of the decay rate almost disappears. In this size range, which is smaller than twice of the effective Bohr radius of B and P in bulk Si crystal, the donor-acceptor distance is not a crucial factor to determine the recombination rate.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Masataka Yamamura
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Riku Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering , Kobe University , Rokkodai, Nada, Kobe 657-8501 , Japan
| |
Collapse
|
23
|
Sakiyama M, Sugimoto H, Fujii M. Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue. NANOSCALE 2018; 10:13902-13907. [PMID: 29999078 DOI: 10.1039/c8nr03571g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Boron (B) and phosphorus (P) codoped silicon quantum dots (Si QDs) are dispersible in polar solvents without organic ligands and exhibit photoluminescence (PL) in the first (NIR-I) and second (NIR-II) near infrared (NIR) windows in biological tissues due to the optical transition from the donor to acceptor states. We studied the relationship between the PL wavelength, lifetime and quantum yield (QY) of the colloidal solution and the composition of the starting material for the preparation. We found that the PL lifetime and the QY are primarily determined by the composition, while the PL wavelength is mainly determined by the growth temperature. By optimizing the composition, we achieved QYs of 20.1% and 1.74% in the NIR-I and NIR-II regions, respectively, in methanol. We demonstrate the application for time-gated imaging in the NIR-II range.
Collapse
Affiliation(s)
- Makoto Sakiyama
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
24
|
Basu TS, Diesch S, Scheer E. Single-electron transport through stabilised silicon nanocrystals. NANOSCALE 2018; 10:13949-13958. [PMID: 29781492 DOI: 10.1039/c8nr01552j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have fabricated organically capped stable luminescent silicon nanocrystals with narrow size distribution by a novel, high yield and easy to implement technique. We demonstrate transport measurements of individual silicon nanocrystals by scanning tunnelling microscopy at a low temperature in a double-barrier tunnel junction arrangement in which we observed pronounced single electron tunnelling effects. The tunnelling spectroscopy of these nanocrystals with different diameters reveals quantum confinement induced bandgap modifications. Furthermore, from the features in the tunnelling spectra, we differentiate several energy contributions arising from electronic interactions inside the nanocrystal. By applying a magnetic field, we have detected a variation in the differential conductance profile that we attribute to arising from higher order tunnelling processes. We have also systematically simulated our experimental data with the Orthodox theory, and the results show good agreement with the experiment. The study establishes a correlation between the nanocrystal size and quantum confinement induced band-structure modifications which will pave the way to devise tailored nanocrystals.
Collapse
Affiliation(s)
- Tuhin Shuvra Basu
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
25
|
Limpens R, Neale NR. Free electron-driven photophysics in n-type doped silicon nanocrystals. NANOSCALE 2018; 10:12068-12077. [PMID: 29911215 DOI: 10.1039/c8nr02173b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although there have been extensive speculation regarding the applicability of doped silicon nanocrystals (Si NCs) in optoelectronic technologies, a quantitative analysis on the photophysical workings of introduced free carriers remains elusive. Here, we present a comprehensive study on the photophysics of ∼7.5 nm heavily phosphorous-doped Si NCs, using a combination of spectroscopic techniques. We correlate the carrier dynamics with the location of the free carriers - which we tune from NC core to surface depending on the state of oxidation. The strength of the Coulomb interactions between the photoexcited electron-hole pairs and the doping-induced free carriers depends on (1) the concentration of free carriers, (2) the location of these carriers, and (3) the diameter of the NCs. In contrast to prior studies, the photoexcited carrier dynamics in these n-type doped Si NCs are dominated by strong Coulomb interactions with doping-induced free electrons, characterized by a negative trion lifetime of around 9 ns. While radiative recombination in doped direct bandgap NCs can often still compete with trion recombination (allowing emission to be present), emission in our doped Si NCs is completely quenched due to the relatively slow radiative recombination in these indirect bandgap NCs. Furthermore, multi-exciton interaction times are slightly shortened compared to those of intrinsic Si NCs, which we attribute to an increased number of free electrons, enhancing the oscillator strength of Auger recombination. These results constitute a framework for the optimization of doped Si NC synthesis techniques and device engineering directions for future doped-Si NC-based optoelectronic and photovoltaic applications.
Collapse
Affiliation(s)
- R Limpens
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | | |
Collapse
|
26
|
van Dam B, Osorio CI, Hink MA, Muller R, Koenderink AF, Dohnalova K. High Internal Emission Efficiency of Silicon Nanoparticles Emitting in the Visible Range. ACS PHOTONICS 2018; 5:2129-2136. [PMID: 29963583 PMCID: PMC6019024 DOI: 10.1021/acsphotonics.7b01624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Light-emitting silicon nanoparticles (Si-NPs) are interesting for lighting applications due to their nontoxicity, chemical robustness, and photostability; however, they are not practically considered due to their low emission efficiencies. While large Si-NPs emitting in the red to infrared spectral region show ensemble emission quantum efficiencies up to 60%, the emission efficiencies of smaller Si-NPs, emitting in the visible spectral range, are far lower, typically below 10-20%. In this work, we test this efficiency limit by measuring for the first time the internal quantum efficiency (IQE), i.e., the higher bound of the emission quantum efficiency, considering only the emissive NPs within the ensemble, of Si-NPs emitting in the visible spectral range between 350 and 650 nm. On the basis of photoluminescence decay measurements in a Drexhage geometry, we show that Si-NPs with organic passivation (C:Si-NPs) can have high direct-bandgap-like radiative rates, which enable a high IQE over ∼50%. In this way, we demonstrate that Si-NPs can in principle be considered a competitive candidate as a phosphor in lighting applications and medical imaging also in the visible spectral range. Moreover, our findings show that the reason for the much lower ensemble emission efficiency is due to the fact that the ensemble consists of a low fraction of emissive NPs, most likely due to a low PL "blinking" duty cycle.
Collapse
Affiliation(s)
- Bart van Dam
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Clara I. Osorio
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Mark A. Hink
- Section
of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Remmert Muller
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - A. Femius Koenderink
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Katerina Dohnalova
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Ohata Y, Sugimoto H, Fujii M. Assembling silicon quantum dots into wires, networks and rods via metal ion bridges. NANOSCALE 2018; 10:7597-7604. [PMID: 29638232 DOI: 10.1039/c8nr00631h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wires and networks of Si quantum dots (QDs) with a length of over 1 μm and a width of ∼30 nm are produced by bridging Si QDs with metal ions in solution. It is shown that the width of the wires is almost independent of the preparation parameters and is always about 30 nm, except for the case when Si QDs larger than 30 nm are used, while the length of the wires depends strongly on the kinds of ions, the amount of ions and the amount of Si QDs in a solution. In addition to the microscopic size assemblies, macroscopic size rods of Si QDs with a width of ∼20 μm are produced by using Zn2+ ions. The XPS analyses reveal that Si QDs are connected to each other via a ZnO layer in the rod. The rods have much higher conductivity and photo-response than Si QD solids produced without metal ions.
Collapse
Affiliation(s)
- Yuki Ohata
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
28
|
Liu X, Zhao S, Gu W, Zhang Y, Qiao X, Ni Z, Pi X, Yang D. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5959-5966. [PMID: 29345903 DOI: 10.1021/acsami.7b16980] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.
Collapse
Affiliation(s)
- Xiangkai Liu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Shuangyi Zhao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Wei Gu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Yuting Zhang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Zhenyi Ni
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Deren Yang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
29
|
Beri D, Busko D, Mazilkin A, Howard IA, Richards BS, Turshatov A. Highly photoluminescent and stable silicon nanocrystals functionalized via microwave-assisted hydrosilylation. RSC Adv 2018; 8:9979-9984. [PMID: 35540850 PMCID: PMC9078736 DOI: 10.1039/c7ra13577g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a microwave-assisted hydrosilylation (MWH) reaction for the surface passivation of silicon nanocrystals (Si-NCs) with linear alkenes. The MWH reaction requires only 20 minutes and allows us to produce Si-NCs with high photoluminescence quantum yields (PLQYs), reaching 39% with an emission maximum of 860 nm. Furthermore, we investigated the effect of ligand length on the photoluminescence properties of Si-NCs. We tested six alkenes with an even number of carbon atoms (from hexene-1 to hexadecene-1). The highest PLQY combined with a long stability (test period of 6 months) was observed when capping with the shortest ligand, hexene-1. The use of microwave heating turns the hydrosilylation step into a facile and sustainable process. In order to provide insight into the emissive properties of Si-NCs surface oxidation and luminescence decay were investigated using Fourier-transform infrared spectroscopy and time-resolved photoluminescence measurements. Herein, we report a microwave-assisted hydrosilylation (MWH) reaction for the surface passivation of silicon nanocrystals (Si-NCs) with linear alkenes.![]()
Collapse
Affiliation(s)
- Deski Beri
- Institute of Microstructure Technology
- Karlsruhe Institute of Technology
- Germany
- Chemistry Department
- Universitas Negeri Padang
| | - Dmitry Busko
- Institute of Microstructure Technology
- Karlsruhe Institute of Technology
- Germany
| | - Andrey Mazilkin
- Institute of Nanotechnology
- Karlsruhe Institute of Technology
- Germany
| | - Ian A. Howard
- Institute of Microstructure Technology
- Karlsruhe Institute of Technology
- Germany
- Light Technology Institute
- Karlsruhe Institute of Technology
| | - Bryce S. Richards
- Institute of Microstructure Technology
- Karlsruhe Institute of Technology
- Germany
- Light Technology Institute
- Karlsruhe Institute of Technology
| | - Andrey Turshatov
- Institute of Microstructure Technology
- Karlsruhe Institute of Technology
- Germany
| |
Collapse
|
30
|
Fujii M, Sugimoto H, Kano S. Silicon quantum dots with heavily boron and phosphorus codoped shell. Chem Commun (Camb) 2018; 54:4375-4389. [DOI: 10.1039/c8cc01612g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heavily boron and phosphorus codoped silicon quantum dots (QDs) are dispersible in water without organic ligands and exhibit near infrared luminescence. We summarize the fundamental properties and demonstrate the formation of a variety of nanocomposites.
Collapse
Affiliation(s)
- Minoru Fujii
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Shinya Kano
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
31
|
Marinins A, Zandi Shafagh R, van der Wijngaart W, Haraldsson T, Linnros J, Veinot JGC, Popov S, Sychugov I. Light-Converting Polymer/Si Nanocrystal Composites with Stable 60-70% Quantum Efficiency and Their Glass Laminates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30267-30272. [PMID: 28853276 DOI: 10.1021/acsami.7b09265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Thiol-ene polymer/Si nanocrystal bulk hybrids were synthesized from alkyl-passivated Si nanocrystal (Si NC) toluene solutions. Radicals in the polymer provided a copassivation of "dark" Si NCs, making them optically active and leading to a substantial ensemble quantum yield increase. Optical stability over several months was confirmed. The presented materials exhibit the highest photoluminescence quantum yield (∼65%) of any solid-state Si NC hybrid reported to date. The broad tunability of thiol-ene polymer reactivity provides facile glass integration, as demonstrated by a laminated structure. This, together with extremely fast polymerization, makes the demonstrated hybrid material a promising candidate for light converting applications.
Collapse
Affiliation(s)
- Aleksandrs Marinins
- Department of Applied Physics, KTH - Royal Institute of Technology , 16440 Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Micro and Nanosystems, KTH - Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Wouter van der Wijngaart
- Department of Micro and Nanosystems, KTH - Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Tommy Haraldsson
- Department of Micro and Nanosystems, KTH - Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Jan Linnros
- Department of Applied Physics, KTH - Royal Institute of Technology , 16440 Stockholm, Sweden
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Sergei Popov
- Department of Applied Physics, KTH - Royal Institute of Technology , 16440 Stockholm, Sweden
| | - Ilya Sychugov
- Department of Applied Physics, KTH - Royal Institute of Technology , 16440 Stockholm, Sweden
| |
Collapse
|
32
|
Li Y, Fu Q, Rojas R, Yan M, Lawoko M, Berglund L. Lignin-Retaining Transparent Wood. CHEMSUSCHEM 2017; 10:3445-3451. [PMID: 28719095 PMCID: PMC5601211 DOI: 10.1002/cssc.201701089] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK-1 , and work-tofracture of 1.2 MJ m-3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Fibre and Polymer TechnologyWallenberg Wood Science Center, Chemical Science and Engineering InstitutionKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSweden
| | - Qiliang Fu
- Department of Fibre and Polymer TechnologyWallenberg Wood Science Center, Chemical Science and Engineering InstitutionKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSweden
| | - Ramiro Rojas
- Department of Fibre and Polymer TechnologyWallenberg Wood Science Center, Chemical Science and Engineering InstitutionKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSweden
| | - Min Yan
- School of Engineering SciencesKTH Royal Institute of TechnologyIsafjordsgatan 22StockholmSweden
| | - Martin Lawoko
- Department of Fibre and Polymer TechnologyWallenberg Wood Science Center, Chemical Science and Engineering InstitutionKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSweden
| | - Lars Berglund
- Department of Fibre and Polymer TechnologyWallenberg Wood Science Center, Chemical Science and Engineering InstitutionKTH Royal Institute of TechnologyTeknikringen 56–58StockholmSweden
| |
Collapse
|
33
|
Cartoixà X, Palummo M, Hauge HIT, Bakkers EPAM, Rurali R. Optical Emission in Hexagonal SiGe Nanowires. NANO LETTERS 2017; 17:4753-4758. [PMID: 28654293 DOI: 10.1021/acs.nanolett.7b01441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.
Collapse
Affiliation(s)
- Xavier Cartoixà
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata" via della Ricerca Scientifica 1 , 00133 Roma, Italy
| | - Håkon Ikaros T Hauge
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
34
|
Brown SL, Miller JB, Anthony RJ, Kortshagen UR, Kryjevski A, Hobbie EK. Abrupt Size Partitioning of Multimodal Photoluminescence Relaxation in Monodisperse Silicon Nanocrystals. ACS NANO 2017; 11:1597-1603. [PMID: 28140563 DOI: 10.1021/acsnano.6b07285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intrinsic constraints on efficient photoluminescence (PL) from smaller alkene-capped silicon nanocrystals (SiNCs) put limits on potential applications, but the root cause of such effects remains elusive. Here, plasma-synthesized colloidal SiNCs separated into monodisperse fractions reveal an abrupt size-dependent partitioning of multilevel PL relaxation, which we study as a function of temperature. Guided by theory and simulation, we explore the potential role of resonant phonon interactions with "minigaps" that emerge in the electronic density of states (DOS) under strong quantum confinement. Such higher-order structures can be very sensitive to SiNC surface chemistry, which we suggest might explain the common implication of surface effects in both the emergence of multimodal PL relaxation and the loss of quantum yield with decreasing nanocrystal size. Our results have potentially profound implications for optimizing the radiative recombination kinetics and quantum yield of smaller ligand-passivated SiNCs.
Collapse
Affiliation(s)
- Samuel L Brown
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Joseph B Miller
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Rebecca J Anthony
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Uwe R Kortshagen
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrei Kryjevski
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
35
|
Sychugov I, Valenta J, Linnros J. Probing silicon quantum dots by single-dot techniques. NANOTECHNOLOGY 2017; 28:072002. [PMID: 27980232 DOI: 10.1088/1361-6528/aa542b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.
Collapse
Affiliation(s)
- Ilya Sychugov
- Materials and Nano Physics Department, KTH-Royal Institute of Technology, Kista, Stockholm, SE-16440, Sweden
| | | | | |
Collapse
|
36
|
Mazzaro R, Romano F, Ceroni P. Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys Chem Chem Phys 2017; 19:26507-26526. [DOI: 10.1039/c7cp05208a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding parameters affecting the luminescence of silicon nanocrystals will guide the design of improved systems for a plethora of applications.
Collapse
Affiliation(s)
- Raffaello Mazzaro
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Francesco Romano
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Paola Ceroni
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| |
Collapse
|
37
|
Mandal R, Anthony RJ. Aging of Silicon Nanocrystals on Elastomer Substrates: Photoluminescence Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35479-35484. [PMID: 27983777 DOI: 10.1021/acsami.6b10155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| | - Rebecca J Anthony
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
38
|
Sychugov I, Sangghaleh F, Bruhn B, Pevere F, Luo JW, Zunger A, Linnros J. Strong Absorption Enhancement in Si Nanorods. NANO LETTERS 2016; 16:7937-7941. [PMID: 27960529 DOI: 10.1021/acs.nanolett.6b04243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report two orders of magnitude stronger absorption in silicon nanorods relative to bulk in a wide energy range. The local field enhancement and dipole matrix element contributions were disentangled experimentally by single-dot absorption measurements on differently shaped particles as a function of excitation polarization and photon energy. Both factors substantially contribute to the observed effect as supported by simulations of the light-matter interaction and atomistic calculations of the transition matrix elements. The results indicate strong shape dependence of the quasidirect transitions in silicon nanocrystals, suggesting nanostructure shape engineering as an efficient tool for overcoming limitations of indirect band gap materials in optoelectronic applications, such as solar cells.
Collapse
Affiliation(s)
- Ilya Sychugov
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Fatemeh Sangghaleh
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Benjamin Bruhn
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Federico Pevere
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Jun-Wei Luo
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , P.O. Box 912, Beijing 100083, China
| | - Alex Zunger
- Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | - Jan Linnros
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| |
Collapse
|
39
|
Baati T, Al-Kattan A, Esteve MA, Njim L, Ryabchikov Y, Chaspoul F, Hammami M, Sentis M, Kabashin AV, Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution. Sci Rep 2016; 6:25400. [PMID: 27151839 PMCID: PMC4858730 DOI: 10.1038/srep25400] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/18/2016] [Indexed: 12/26/2022] Open
Abstract
Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).
Collapse
Affiliation(s)
- Tarek Baati
- Aix Marseille Université, INSERM, CRO2 UMR_S911, Faculté de Pharmacie, 27 boul. Jean Moulin, Marseille, France
| | - Ahmed Al-Kattan
- Aix Marseille Université, CNRS, LP3 UMR 7341, Campus de Luminy, 163 Avenue de Luminy, Case 917, 13288, Marseille Cedex 9, France
| | - Marie-Anne Esteve
- Aix Marseille Université, INSERM, CRO2 UMR_S911, Faculté de Pharmacie, 27 boul. Jean Moulin, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital Timone, 254 rue Saint Pierre, 13385 Marseille, France
| | - Leila Njim
- Service d’Anatomie et de Cytologie Pathologique, CHU Monastir 5000, Tunisie
| | - Yury Ryabchikov
- Aix Marseille Université, CNRS, LP3 UMR 7341, Campus de Luminy, 163 Avenue de Luminy, Case 917, 13288, Marseille Cedex 9, France
| | - Florence Chaspoul
- Aix-Marseille Université, CNRS, UMR 7263, Unité Chimie Physique, Prévention des Risques et Nuisances Technologiques, Faculté de Pharmacie, 13385 Marseille Cedex 5, France
| | - Mohamed Hammami
- Laboratoire des substances naturelles, Institut National de Recherche et d’Analyse Physicochimique, Sidi Thabet, 2020 Tunisie
| | - Marc Sentis
- Aix Marseille Université, CNRS, LP3 UMR 7341, Campus de Luminy, 163 Avenue de Luminy, Case 917, 13288, Marseille Cedex 9, France
- National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), International Laboratory “Bionanophotonics”,31 Kashirskoe sh., 115409 Moscow, Russia
| | - Andrei V. Kabashin
- Aix Marseille Université, CNRS, LP3 UMR 7341, Campus de Luminy, 163 Avenue de Luminy, Case 917, 13288, Marseille Cedex 9, France
| | - Diane Braguer
- Aix Marseille Université, INSERM, CRO2 UMR_S911, Faculté de Pharmacie, 27 boul. Jean Moulin, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital Timone, 254 rue Saint Pierre, 13385 Marseille, France
| |
Collapse
|
40
|
Chandra S, Ghosh B, Beaune G, Nagarajan U, Yasui T, Nakamura J, Tsuruoka T, Baba Y, Shirahata N, Winnik FM. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning. NANOSCALE 2016; 8:9009-19. [PMID: 27076260 DOI: 10.1039/c6nr01437b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles.
Collapse
Affiliation(s)
- Sourov Chandra
- WPI International Centre for Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gongalsky MB, Osminkina LA, Pereira A, Manankov AA, Fedorenko AA, Vasiliev AN, Solovyev VV, Kudryavtsev AA, Sentis M, Kabashin AV, Timoshenko VY. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging. Sci Rep 2016; 6:24732. [PMID: 27102695 PMCID: PMC4840388 DOI: 10.1038/srep24732] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/04/2016] [Indexed: 12/01/2022] Open
Abstract
Crystalline silicon (Si) nanoparticles present an extremely promising object for bioimaging based on photoluminescence (PL) in the visible and near-infrared spectral regions, but their efficient PL emission in aqueous suspension is typically observed after wet chemistry procedures leading to residual toxicity issues. Here, we introduce ultrapure laser-synthesized Si-based quantum dots (QDs), which are water-dispersible and exhibit bright exciton PL in the window of relative tissue transparency near 800 nm. Based on the laser ablation of crystalline Si targets in gaseous helium, followed by ultrasound-assisted dispersion of the deposited films in physiological saline, the proposed method avoids any toxic by-products during the synthesis. We demonstrate efficient contrast of the Si QDs in living cells by following the exciton PL. We also show that the prepared QDs do not provoke any cytoxicity effects while penetrating into the cells and efficiently accumulating near the cell membrane and in the cytoplasm. Combined with the possibility of enabling parallel therapeutic channels, ultrapure laser-synthesized Si nanostructures present unique object for cancer theranostic applications.
Collapse
Affiliation(s)
- M. B. Gongalsky
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
| | - L. A. Osminkina
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
- Bio-nanophotonics Laboratory, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russia
| | - A. Pereira
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - A. A. Manankov
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
| | - A. A. Fedorenko
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
| | - A. N. Vasiliev
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
| | - V. V. Solovyev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| | - A. A. Kudryavtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| | - M. Sentis
- Bio-nanophotonics Laboratory, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russia
- Aix Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy – case 917, 13288, Marseille Cedex 9, France
| | - A. V. Kabashin
- Aix Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy – case 917, 13288, Marseille Cedex 9, France
| | - V. Yu. Timoshenko
- Lomonosov Moscow State University, Department of Physics, 119991 Moscow, Russia
- Bio-nanophotonics Laboratory, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russia
| |
Collapse
|
42
|
Jiang ZC, Lin TN, Lin HT, Talite MJ, Tzeng TT, Hsu CL, Chiu KP, Lin CAJ, Shen JL, Yuan CT. A Facile and Low-Cost Method to Enhance the Internal Quantum Yield and External Light-Extraction Efficiency for Flexible Light-Emitting Carbon-Dot Films. Sci Rep 2016; 6:19991. [PMID: 26822337 PMCID: PMC4731801 DOI: 10.1038/srep19991] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022] Open
Abstract
Solution-processed, non-toxic carbon dots (CDs) have attracted much attention due to their unique photoluminescence (PL) properties. They are promising emissive layers for flexible light-emitting devices. To this end, the CDs in pristine aqueous solutions need to be transferred to form solid-state thin films without sacrificing their original PL characteristics. Unfortunately, solid-state PL quenching induced by extra non-radiative (NR) energy transfer among CDs would significantly hinder their practical applications in optoelectronics. Here, a facile, low-cost and effective method has been utilized to fabricate high-performance CD/polymer light-emitting flexible films with submicron-structured patterns. The patterned polymers can serve as a solid matrix to disperse and passivate CDs, thus achieving high internal quantum yields of 61%. In addition, they can act as an out-coupler to mitigate the waveguide-mode losses, approximately doubling the external light-extraction efficiency. Such CD/polymer composites also exhibit good photo-stability, and thus can be used as eco-friendly, low-cost phosphors for solid-state lighting.
Collapse
Affiliation(s)
- Z C Jiang
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - T N Lin
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - H T Lin
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - M J Talite
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - T T Tzeng
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - C L Hsu
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - K P Chiu
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - C A J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - J L Shen
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| | - C T Yuan
- Department of Physics, Chung Yuan Christian University, Chung Li, 320, Taiwan
| |
Collapse
|
43
|
Limpens R, Luxembourg SL, Weeber AW, Gregorkiewicz T. Emission efficiency limit of Si nanocrystals. Sci Rep 2016; 6:19566. [PMID: 26786062 PMCID: PMC4726123 DOI: 10.1038/srep19566] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 10(12) cm(12), which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible.
Collapse
Affiliation(s)
- Rens Limpens
- Van der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | - Arthur W. Weeber
- ECN Solar Energy, PO Box 1, 1755 ZG Petten, The Netherlands
- Photovoltaic Materials and Devices, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - Tom Gregorkiewicz
- Van der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
44
|
Dasog M, Kehrle J, Rieger B, Veinot JGC. Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications. Angew Chem Int Ed Engl 2015; 55:2322-39. [DOI: 10.1002/anie.201506065] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/18/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Mita Dasog
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 East California Boulevard Pasadena CA 91125 USA
| | - Julian Kehrle
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstrasse 4 85747 Garching Germany
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstrasse 4 85747 Garching Germany
| | - Jonathan G. C. Veinot
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
45
|
Dasog M, Kehrle J, Rieger B, Veinot JGC. Silicium-Nanokristalle und Silicium-Polymer-Hybridmaterialien: Synthese, Oberflächenmodifikation und Anwendungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mita Dasog
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 East California Boulevard Pasadena CA 91125 USA
| | - Julian Kehrle
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Jonathan G. C. Veinot
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Kanada
| |
Collapse
|