1
|
Bag SS, Banerjee A, Sinha S, Jana S. Facets of click-mediated triazoles in decorating amino acids and peptides. Chem Commun (Camb) 2025; 61:639-657. [PMID: 39552572 DOI: 10.1039/d4cc03887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decorating biomolecular building blocks, such as amino acids, to afford desired and tuneable photophysical/biophysical properties would allow chemical biologists to use them for several biotechnological and biosensing applications. While many synthetic methodologies have been explored in this direction, advantages provided by click-derived triazole moieties are second to none. However, since their discovery, click-mediated triazoles have been majorly utilised as linkers for conjugating biomolecules, creating materials with novel properties, such as polymers or drug conjugates. Despite exploring their profound role as linkers, click-mediated triazoles as an integral part of biomolecular building blocks have not been addressed. 1,2,3-Triazole, a transamide mimic, exhibits high aromatic stacking propensity, high associability with biomolecules through H-bonding, and high stability against enzymatic hydrolysis. Furthermore, triazoles can be considered donors useable for installation/modulation of the photophysics of a fluorophore. Therefore, triazole with a chromophoric unit may rightly be utilised as an integral part of biomolecular building blocks to install microenvironment-sensitive solvofluorochromic properties suitable for biological sensing, studying inter-biomolecular interactions and introducing novel physicochemical properties in a biomolecule. This review mainly focuses on the facets of click-derived triazole in designing novel fluorescent amino acids and peptides with a particular emphasis on those wherein triazole acts as an integral part of amino acids, i.e. the side chain, generating a new class of fluorescent unnatural triazolyl amino acids. Thus, fluorescent triazolyl unnatural amino acids, peptidomimetics with such amino acids and aliphatic/aromatic triazolyl amino acids as scaffolds for peptidomimetics are the central part. However, to start with, a brief history, followed by a discussion on various other relevant facets of triazoles as linkers in various fields ranging from therapeutics, materials science, diagnostics, and bioconjugation to peptidomimetics, is cited. Additionally, the possible roles of CuAAC-mediated triazoles in shaping the future of bioorganic chemistry, medicinal chemistry, diagnostics, nucleoside chemistry and protein engineering are briefly discussed.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Aniket Banerjee
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Sayantan Sinha
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Subhashis Jana
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
2
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
5
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
6
|
Li Y, Wang J. Site-specifically radiolabeled nanobodies for imaging blood-brain barrier penetration and targeting in the brain. J Labelled Comp Radiopharm 2023; 66:444-451. [PMID: 37873934 PMCID: PMC10842159 DOI: 10.1002/jlcr.4069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Nanobodies (Nbs) hold significant potential in molecular imaging due to their unique characteristics. However, there are challenges to overcome when it comes to brain imaging. To address these obstacles, collaborative efforts and interdisciplinary research are needed. This article aims to raise awareness and encourage collaboration among researchers from various fields to find solutions for effective brain imaging using Nbs. By fostering cooperation and knowledge sharing, we can make progress in overcoming the existing limitations and pave the way for improved molecular imaging techniques in the future.
Collapse
Affiliation(s)
- Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114 (USA)
| |
Collapse
|
7
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Gavins GC, Gröger K, Reimann M, Bartoschek MD, Bultmann S, Seitz O. Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes. RSC Chem Biol 2021; 2:1291-1295. [PMID: 34458843 PMCID: PMC8341593 DOI: 10.1039/d1cb00126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Templated chemistry offers the prospect of addressing specificity challenges occurring in bioconjugation reactions. Here, we show two peptide-templated amide-bond forming reactions that enable the concurrent labelling of two different membrane proteins with two different peptide nucleic acid (PNA) barcodes. The reaction system is based on the mutually selective coiled coil interaction between two thioester-linked PNA–peptide conjugates and two cysteine peptides serving as genetically encoded peptide tags. Orthogonal coiled coil templated covalent labelling is highly specific, quantitative and proceeds within a minute. To demonstrate the usefulness, we evaluated receptor internalisation of two membranous receptors EGFR (epidermal growth factor) and ErbB2 (epidermal growth factor receptor 2) by first staining PNA-tagged proteins with fluorophore–DNA conjugates and then erasing signals from non-internalized receptors via toehold-mediated strand displacement. A pair of orthogonal coiled coils templates highly specific live cell bioconjugation of two different proteins. PNA tagging and hybridisation with fluorophore–DNA reporters enables rapid dual receptor internalisation analysis of EGFR and ErbB2.![]()
Collapse
Affiliation(s)
- Georgina C Gavins
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Marc Reimann
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Michael D Bartoschek
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Sebastian Bultmann
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| |
Collapse
|
9
|
Laxman P, Ansari S, Gaus K, Goyette J. The Benefits of Unnatural Amino Acid Incorporation as Protein Labels for Single Molecule Localization Microscopy. Front Chem 2021; 9:641355. [PMID: 33842432 PMCID: PMC8027105 DOI: 10.3389/fchem.2021.641355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
Single Molecule Localization Microscopy (SMLM) is an imaging method that allows for the visualization of structures smaller than the diffraction limit of light (~200 nm). This is achieved through techniques such as stochastic optical reconstruction microscopy (STORM) and photoactivated localization microscopy (PALM). A large part of obtaining ideal imaging of single molecules is the choice of the right fluorescent label. An upcoming field of protein labeling is incorporating unnatural amino acids (UAAs) with an attached fluorescent dye for precise localization and visualization of individual molecules. For this technique, fluorescent probes are conjugated to UAAs and are introduced into the protein of interest (POI) as a label. Here we contrast this labeling method with other commonly used protein-based labeling methods such as fluorescent proteins (FPs) or self-labeling tags such as Halotag, SNAP-tags, and CLIP-tags, and highlight the benefits and shortcomings of the site-specific incorporation of UAAs coupled with fluorescent dyes in SMLM.
Collapse
Affiliation(s)
| | | | | | - Jesse Goyette
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Sciences, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Pushing the super-resolution limit: recent improvements in microscopy below the diffraction limit. Biochem Soc Trans 2021; 49:431-439. [PMID: 33599719 DOI: 10.1042/bst20200746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy has revolutionised the way we observe biological systems. These methods are now a staple of fluorescence microscopy. Researchers have used super-resolution methods in myriad systems to extract nanoscale spatial information on multiple interacting parts. These methods are continually being extended and reimagined to further push their resolving power and achieve truly single protein resolution. Here, we explore the most recent advances at the frontier of the 'super-resolution' limit and what opportunities remain for further improvements in the near future.
Collapse
|
11
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
12
|
Reshetniak S, Ußling J, Perego E, Rammner B, Schikorski T, Fornasiero EF, Truckenbrodt S, Köster S, Rizzoli SO. A comparative analysis of the mobility of 45 proteins in the synaptic bouton. EMBO J 2020; 39:e104596. [PMID: 32627850 PMCID: PMC7429486 DOI: 10.15252/embj.2020104596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/01/2023] Open
Abstract
Many proteins involved in synaptic transmission are well known, and their features, as their abundance or spatial distribution, have been analyzed in systematic studies. This has not been the case, however, for their mobility. To solve this, we analyzed the motion of 45 GFP-tagged synaptic proteins expressed in cultured hippocampal neurons, using fluorescence recovery after photobleaching, particle tracking, and modeling. We compared synaptic vesicle proteins, endo- and exocytosis cofactors, cytoskeleton components, and trafficking proteins. We found that movement was influenced by the protein association with synaptic vesicles, especially for membrane proteins. Surprisingly, protein mobility also correlated significantly with parameters as the protein lifetimes, or the nucleotide composition of their mRNAs. We then analyzed protein movement thoroughly, taking into account the spatial characteristics of the system. This resulted in a first visualization of overall protein motion in the synapse, which should enable future modeling studies of synaptic physiology.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
- International Max Planck Research School for Molecular BiologyGöttingenGermany
| | - Jan‐Eike Ußling
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
| | - Eleonora Perego
- Institute for X‐Ray PhysicsUniversity of GöttingenGöttingenGermany
| | - Burkhard Rammner
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
| | - Thomas Schikorski
- Department of NeuroscienceUniversidad Central del CaribeBayamonPRUSA
| | - Eugenio F Fornasiero
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
| | - Sven Truckenbrodt
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
- International Max Planck Research School for Molecular BiologyGöttingenGermany
| | - Sarah Köster
- Institute for X‐Ray PhysicsUniversity of GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Silvio O Rizzoli
- Institute for Neuro‐ and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) CenterUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| |
Collapse
|
13
|
Elia N. Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint. FEBS J 2020; 288:1107-1117. [PMID: 32640070 PMCID: PMC7983921 DOI: 10.1111/febs.15477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Twenty-five years ago, GFP revolutionized the field of cell biology by enabling scientists to visualize, for the first time, proteins in living cells. However, when it comes to current, state-of-the-art imaging technologies, fluorescent proteins (such as GFP) have several limitations that result from their size and photophysics. Over the past decade, an elegant, alternative approach, which is based on the direct labeling of proteins with fluorescent dyes and is compatible with live-cell and super-resolution imaging applications, has been introduced. In this approach, an unnatural amino acid that can covalently bind a fluorescent dye is incorporated into the coding sequence of a protein. The protein of interest is thereby site-specifically fluorescently labeled inside the cell, eliminating the need for protein- or peptide-labeling tags. Whether this labeling approach will change cell biology research is currently unclear, but it clearly has the potential to do so. In this short review, a general overview of this approach is provided, focusing on the imaging of site-specifically labeled proteins in mammalian tissue culture cells, and highlighting its advantages and limitations for cellular imaging.
Collapse
Affiliation(s)
- Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
14
|
König AI, Sorkin R, Alon A, Nachmias D, Dhara K, Brand G, Yifrach O, Arbely E, Roichman Y, Elia N. Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins. NANOSCALE 2020; 12:3236-3248. [PMID: 31970355 DOI: 10.1039/c9nr08594g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tracking the localization and mobility of individual proteins in live cells is key for understanding how they mediate their function. Such information can be obtained from single molecule imaging techniques including as Single Particle Tracking (SPT) and Single Molecule Localization Microscopy (SMLM). Genetic code expansion (GCE) combined with bioorthogonal chemistry offers an elegant approach for direct labeling of proteins with fluorescent dyes, holding great potential for improving protein labeling in single molecule applications. Here we calibrated conditions for performing SPT and live-SMLM of bioorthogonally labeled plasma membrane proteins in live mammalian cells. Using SPT, the diffusion of bioorthogonally labeled EGF receptor and the prototypical Shaker voltage-activated potassium channel (Kv) was measured and characterized. Applying live-SMLM to bioorthogonally labeled Shaker Kv channels enabled visualizing the plasma membrane distribution of the channel over time with ∼30 nm accuracy. Finally, by competitive labeling with two Fl-dyes, SPT and live-SMLM were performed in a single cell and both the density and dynamics of the EGF receptor were measured at single molecule resolution in subregions of the cell. We conclude that GCE and bioorthogonal chemistry is a highly suitable, flexible approach for protein labeling in quantitative single molecule applications that outperforms current protein live-cell labeling approaches.
Collapse
Affiliation(s)
- Andres I König
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Segal I, Nachmias D, Konig A, Alon A, Arbely E, Elia N. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag. BMC Biol 2020; 18:5. [PMID: 31937312 PMCID: PMC6961407 DOI: 10.1186/s12915-019-0708-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background In the high-resolution microscopy era, genetic code expansion (GCE)-based bioorthogonal labeling offers an elegant way for direct labeling of proteins in live cells with fluorescent dyes. This labeling approach is currently not broadly used in live-cell applications, partly because it needs to be adjusted to the specific protein under study. Results We present a generic, 14-residue long, N-terminal tag for GCE-based labeling of proteins in live mammalian cells. Using this tag, we generated a library of GCE-based organelle markers, demonstrating the applicability of the tag for labeling a plethora of proteins and organelles. Finally, we show that the HA epitope, used as a backbone in our tag, may be substituted with other epitopes and, in some cases, can be completely removed, reducing the tag length to 5 residues. Conclusions The GCE-tag presented here offers a powerful, easy-to-implement tool for live-cell labeling of cellular proteins with small and bright probes.
Collapse
Affiliation(s)
- Inbar Segal
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Andres Konig
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Ariel Alon
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Eyal Arbely
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,Department of Chemistry, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. .,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
16
|
Lee KJ, Kang D, Park HS. Site-Specific Labeling of Proteins Using Unnatural Amino Acids. Mol Cells 2019; 42:386-396. [PMID: 31122001 PMCID: PMC6537655 DOI: 10.14348/molcells.2019.0078] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Deokhee Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
17
|
Seitz KJ, Rizzoli SO. GFP nanobodies reveal recently-exocytosed pHluorin molecules. Sci Rep 2019; 9:7773. [PMID: 31123313 PMCID: PMC6533288 DOI: 10.1038/s41598-019-44262-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter release requires vesicle recycling, which consists of exocytosis, endocytosis and the reformation of new fusion-competent vesicles. One poorly understood aspect in this cycle is the fate of the vesicle proteins after exocytosis, when they are left on the plasma membrane. Such proteins are often visualized by coupling to pH-sensitive GFP moieties (pHluorins). However, pHluorin imaging is typically limited by diffraction to spots several-fold larger than the vesicles. Here we show that pHuorin-tagged vesicle proteins can be easily detected using single-domain antibodies (nanobodies) raised against GFP. By coupling the nanobodies to chemical fluorophores that were optimal for super-resolution imaging, we could analyze the size and intensity of the groups of pHluorin-tagged proteins under a variety of conditions, in a fashion that would have been impossible based solely on the pHluorin fluorescence. We conclude that nanobody-based pHluorin detection is a promising tool for investigating post-exocytosis events in neurons.
Collapse
Affiliation(s)
- Katharina J Seitz
- Institute for Neuro- and Sensory Physiology, University Medical Center, Göttingen, Germany. .,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center, Göttingen, Germany. .,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Saal KA, Richter F, Rehling P, Rizzoli SO. Combined Use of Unnatural Amino Acids Enables Dual-Color Super-Resolution Imaging of Proteins via Click Chemistry. ACS NANO 2018; 12:12247-12254. [PMID: 30525434 DOI: 10.1021/acsnano.8b06047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in optical nanoscopy have brought the imaging resolution to the size of the individual macromolecules, thereby setting stringent requirements for the fluorescent labels. Such requirements are optimally fulfilled by the incorporation of unnatural amino acids (UAAs) in the proteins of interest (POIs), followed by fluorophore conjugation via click chemistry. However, this approach has been limited to single POIs in mammalian cells. Here we solve this problem by incorporating different UAAs in different POIs, which are expressed in independent cell sets. The cells are then fused, thereby combining the different proteins and organelles, and are easily imaged by dual-color super-resolution microscopy. This procedure, which we termed Fuse2Click, is simple, requires only the well-established Amber codon, and allows the use of all previously optimized UAAs and tRNA/RS pairs. This should render it a tool of choice for multicolor click-based imaging.
Collapse
Affiliation(s)
- Kim-A Saal
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration , University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain , Göttingen , Germany
| | - Frank Richter
- Institute for Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Peter Rehling
- Institute for Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration , University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain , Göttingen , Germany
| |
Collapse
|
19
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
20
|
Richter KN, Revelo NH, Seitz KJ, Helm MS, Sarkar D, Saleeb RS, D'Este E, Eberle J, Wagner E, Vogl C, Lazaro DF, Richter F, Coy-Vergara J, Coceano G, Boyden ES, Duncan RR, Hell SW, Lauterbach MA, Lehnart SE, Moser T, Outeiro TF, Rehling P, Schwappach B, Testa I, Zapiec B, Rizzoli SO. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J 2018; 37:139-159. [PMID: 29146773 PMCID: PMC5753035 DOI: 10.15252/embj.201695709] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/25/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.
Collapse
Affiliation(s)
- Katharina N Richter
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Natalia H Revelo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
| | - Katharina J Seitz
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- International Max Planck Research School Molecular Biology, Göttingen, Germany
| | - Martin S Helm
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- International Max Planck Research School Molecular Biology, Göttingen, Germany
| | | | - Rebecca S Saleeb
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - Elisa D'Este
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jessica Eberle
- Department of Neural Systems, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Eva Wagner
- Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Site Göttingen
| | - Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Auditory Neuroscience Group, Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Frank Richter
- International Max Planck Research School Molecular Biology, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Giovanna Coceano
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Edward S Boyden
- Departments of Brain and Cognitive Science and Biological Engineering, MIT Media Lab and McGovern Institute, Cambridge, MA, USA
| | - Rory R Duncan
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - Stefan W Hell
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel A Lauterbach
- Department of Neural Systems, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) Site Göttingen
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Auditory Neuroscience Group, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bolek Zapiec
- Max Planck Research Unit for Neurogenetics, Frankfurt am Main, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
21
|
Angelov B, Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. NANOSCALE 2017; 9:9797-9804. [PMID: 28682396 DOI: 10.1039/c7nr03454g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale organization of the tropomyosin-related kinase receptor type B (TrkB), a promising therapeutic target for severe neurodegenerative and psychiatric disorders, is examined by stimulated emission depletion (STED) microscopy using the deconvoluted gated STED option. The performed immunofluorescence nanoscopic subdiffraction imaging of the membrane receptor localization reveals that clusters of oligomeric TrkB states and randomly organized nanodomains are formed in the membranes of differentiated human neuroblastoma SH-SY5Y cells, which are studied as an in vitro model of neurodegeneration. Despite that the monomeric (isolated) states of the receptor cannot be distinguished from its dimeric forms in such images, TrkB receptor dimers (or couple of individual monomers) are visualized at super-resolution as single pixels in the magnified Huygens-deconvoluted gated STED images. The clusters of higher-order TrkB oligomers are of dynamic nature rather than of a fixed stoichiometry. The propensity for membrane protein clustering as well as the dissociation of the TrkB receptors nanodomains can be modulated by neurotherapeutic formulations containing ω-3 polyunsaturated docosahexaenoic acid (DHA). Nanomolar concentrations of DHA change the receptor topology and lead to disruption of the cluster phases. This result is of therapeutic importance for TrkB receptor availability upon ligand binding as DHA favours the mobility and the dynamic distribution of the protein populations in the cell membranes.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | | |
Collapse
|
22
|
Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0048] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Chamma I, Rossier O, Giannone G, Thoumine O, Sainlos M. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nat Protoc 2017; 12:748-763. [DOI: 10.1038/nprot.2017.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem 2016; 408:6885-911. [PMID: 27613013 PMCID: PMC5566169 DOI: 10.1007/s00216-016-9781-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). ![]()
Collapse
|
25
|
Kozma E, Nikić I, Varga BR, Aramburu IV, Kang JH, Fackler OT, Lemke EA, Kele P. Hydrophilic trans-Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling. Chembiochem 2016; 17:1518-24. [PMID: 27223658 DOI: 10.1002/cbic.201600284] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Indexed: 01/02/2023]
Abstract
Introduction of bioorthogonal functionalities (e.g., trans-cyclooctene-TCO) into a protein of interest by site-specific genetic encoding of non-canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine-functionalized dyes. However, fluorescent labeling of an intracellular protein is usually compromised by high background, arising from the hydrophobicity of ncAAs; this is typically compensated for by hours-long washout to remove excess ncAAs from the cellular interior. To overcome these problems, we designed, synthesized, and tested new, hydrophilic TCO-ncAAs. One derivative, DOTCO-lysine was genetically incorporated into proteins with good yield. The increased hydrophilicity shortened the excess ncAA washout time from hours to minutes, thus permitting rapid labeling and subsequent fluorescence microscopy.
Collapse
Affiliation(s)
- Eszter Kozma
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Balázs R Varga
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Iker Valle Aramburu
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Jun Hee Kang
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Oliver T Fackler
- Center of Infectious Diseases, Integrative Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Péter Kele
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
26
|
Neumann-Staubitz P, Neumann H. The use of unnatural amino acids to study and engineer protein function. Curr Opin Struct Biol 2016; 38:119-28. [DOI: 10.1016/j.sbi.2016.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
|