1
|
Man K, Liu J, Liang C, Corona C, Story MD, Meckes B, Yang Y. Biomimetic Human Lung Alveolar Interstitium Chip with Extended Longevity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36888-36898. [PMID: 37463843 DOI: 10.1021/acsami.3c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Determining the mechanistic causes of lung diseases, developing new treatments thereof, and assessing toxicity whether from chemical exposures or engineered nanomaterials would benefit significantly from a preclinical human lung alveolar interstitium model of physiological relevance. The existing preclinical models have limitations because they fail to replicate the key anatomical and physiological characteristics of human alveoli. Thus, a human lung alveolar interstitium chip was developed to imitate key alveolar microenvironmental factors including an electrospun nanofibrous membrane as the analogue of the basement membrane for co-culture of epithelial cells with fibroblasts embedded in 3D collagenous gels, physiologically relevant interstitial matrix stiffness, interstitial fluid flow, and 3D breathing-like mechanical stretch. The biomimetic chip substantially improved the epithelial barrier function compared to transwell models. Moreover, the chip having a gel made of a collagen I-fibrin blend as the interstitial matrix sustained the interstitium integrity and further enhanced the epithelial barrier, resulting in a longevity that extended beyond eight weeks. The assessment of multiwalled carbon nanotube toxicity on the chip was in line with the animal study.
Collapse
Affiliation(s)
- Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Cindy Liang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Christopher Corona
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Brian Meckes
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
2
|
Quarta E, Chiappi M, Adamiano A, Tampieri A, Wang W, Tetley TD, Buttini F, Sonvico F, Catalucci D, Colombo P, Iafisco M, Degli Esposti L. Inhalable Microparticles Embedding Biocompatible Magnetic Iron-Doped Hydroxyapatite Nanoparticles. J Funct Biomater 2023; 14:189. [PMID: 37103279 PMCID: PMC10145219 DOI: 10.3390/jfb14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications.
Collapse
Affiliation(s)
- Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Michele Chiappi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Weijie Wang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Teresa D. Tetley
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan and IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paolo Colombo
- PlumeStars srl, Parco Area Delle Scienze, 27/A, 43125 Parma, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
3
|
Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021; 16:1681-1706. [PMID: 33688185 PMCID: PMC7936533 DOI: 10.2147/ijn.s299448] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The unique properties of carbon nanotubes (CNTs) (such as their high surface to volume ratios, enhanced conductivity and strength, biocompatibility, ease of functionalization, optical properties, etc.) have led to their consideration to serve as novel drug and gene delivery carriers. CNTs are effectively taken up by many different cell types through several mechanisms. CNTs have acted as carriers of anticancer molecules (including docetaxel (DTX), doxorubicin (DOX), methotrexate (MTX), paclitaxel (PTX), and gemcitabine (GEM)), anti-inflammatory drugs, osteogenic dexamethasone (DEX) steroids, etc. In addition, the unique optical properties of CNTs have led to their use in a number of platforms for improved photo-therapy. Further, the easy surface functionalization of CNTs has prompted their use to deliver different genes, such as plasmid DNA (PDNA), micro-RNA (miRNA), and small interfering RNA (siRNA) as gene delivery vectors for various diseases such as cancers. However, despite all of these promises, the most important continuous concerns raised by scientists reside in CNT nanotoxicology and the environmental effects of CNTs, mostly because of their non-biodegradable state. Despite a lack of widespread FDA approval, CNTs have been studied for decades and plenty of in vivo and in vitro reports have been published, which are reviewed here. Lastly, this review covers the future research necessary for the field of CNT medicine to grow even further.
Collapse
Affiliation(s)
- Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mohammad Ghanbari
- School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, MA, Iran
| | - Thomas J Webster
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ebrahim Mostafavi
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Burgum MJ, Clift MJD, Evans SJ, Hondow N, Tarat A, Jenkins GJ, Doak SH. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J Nanobiotechnology 2021; 19:24. [PMID: 33468168 PMCID: PMC7816456 DOI: 10.1186/s12951-021-00769-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.
Collapse
Affiliation(s)
- Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Stephen J Evans
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Afshin Tarat
- Perpetuus Carbon Technologies, Unit B1, Olympus Court, Millstream Way, Llansamlet, Swansea Vale, SA70AQ, UK
| | - Gareth J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
5
|
Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, Soleimani-Rad J, Roshangar L, Samiei M, Ebrahimi-Kalan A. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci 2020; 30:857-868. [PMID: 31026226 DOI: 10.1515/revneuro-2018-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | | | - Jafar Soleimani-Rad
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Endodontics Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
6
|
Wang B, Yang M, Liu L, Yan G, Yan H, Feng J, Li Z, Li D, Sun H, Yang B. Osteogenic potential of Zn 2+-passivated carbon dots for bone regeneration in vivo. Biomater Sci 2020; 7:5414-5423. [PMID: 31633717 DOI: 10.1039/c9bm01181a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon dots are a new kind of nanomaterial which has great potential in biomedical applications. Previously, we have synthesized novel Zn2+-passivated carbon dots (Zn-CDs) which showed good osteogenic activity in vitro. In this study, we will further investigate the osteogenic effects of Zn-CDs in vivo which is essential before their clinical use. Herein, Zn2+-passivated carbon dots (Zn-CDs) are prepared and characterized as previously reported. Then, the optimum dose for inducing osteoblasts was evaluated by MTS assay, intracellular reactive oxygen species (ROS) detection, alkaline phosphatase (ALP) activity test and alizarin red staining in vitro. Finally, a 5 mm diameter calvarial bone defect model was created in rats and Zn-CDs were applied for repairing the critical bone defect. It was shown that zinc gluconate (Zn-G) and Zn-CDs promoted the survival of bone marrow stromal cells (BMSCs) when the zinc ion concentration was 10-4 mol L-1 (Zn-G: 45.6 μg mL-1) and 10-5 mol L-1 (Zn-CDs: 300 μg mL-1) or below respectively. With regard to the osteogenic capability, the ALP activity induced by Zn-CDs was significantly higher than that by Zn-G. Besides, the results of alizarin red staining showed that the area of calcified nodules was increased in a dose-dependent manner in the Zn-CD group. Moreover, there were more calcium nodules in the Zn-CD group than in the Zn-G group at the same concentration of Zn2+ (10-5 mol L-1). Taken together, Zn-CDs achieved the highest osteogenic effect at the concentration of 10-5 mol L-1 without affecting cell proliferation in long-term stimulation. Importantly, the volume of new bone formation in the Zn-CD group (6.66 ± 1.25 mm3) was twice higher than that in the control group (3.33 ± 0.94 mm3) in vivo. Further histological evaluation confirmed the markedly new bone formation at 8 weeks in the Zn-CD group. The in vitro and in vivo experiments revealed that Zn-CDs could be a new predictable nanomaterial with good biocompatibility and fluorescence properties for guiding bone regeneration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Holian A, Hamilton RF, Wu Z, Deb S, Trout KL, Wang Z, Bhargava R, Mitra S. Lung deposition patterns of MWCNT vary with degree of carboxylation. Nanotoxicology 2020; 13:143-159. [PMID: 31111787 DOI: 10.1080/17435390.2018.1530392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functionalization of multi-walled carbon nanotubes (MWCNT) is known to affect the biological response (e.g. toxicity, inflammation) in vitro and in vivo. However, the reasons for these changes in vivo are not well described. This study examined the degree of MWCNT functionalization with regard to in vivo mouse lung distribution, particle retention, and resulting pathology. A commercially available MWCNT (source MWCNT) was functionalized (f-MWCNT) by systematically varying the degree of carboxylation on the particle's surface. Following a pilot study using seven variants, two f-MWCNT variants were chosen and for lung pathology and particle distribution using oropharyngeal aspiration administration of MWCNT in Balb/c mice. Particle distribution in the lung was examined at 7 and 28 days post-instillation by bright-field microscopy, CytoViva hyperspectral dark-field imaging, and Stimulated Raman Scattering (SRS) microscopy. Examination of the lung tissue by bright-field microscopy showed some acute inflammation for all MWCNT that was highest with source MWCNT. Hyperspectral imaging and SRS were employed to assess the changes in particle deposition and retention. Highly functionalized MWCNT had a higher lung burden and were more disperse. They also appeared to be associated more with epithelial cells compared to the source and less functionalized MWCNT that were mostly interacting with alveolar macrophages (AM). These results showing a slightly reduced pathology despite the extended deposition have implications for the engineering of safer MWCNT and may establish a practical use as a targeted delivery system.
Collapse
Affiliation(s)
- Andrij Holian
- a Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences , University of Montana , Missoula , MT , USA
| | - Raymond F Hamilton
- a Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences , University of Montana , Missoula , MT , USA
| | - Zhequion Wu
- b Beckman Institute University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Sanghamitra Deb
- c Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ , USA
| | - Kevin L Trout
- a Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences , University of Montana , Missoula , MT , USA
| | - Zhiqian Wang
- b Beckman Institute University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Rohit Bhargava
- c Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ , USA
| | - Somenath Mitra
- b Beckman Institute University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
8
|
Gonzalez-Carter D, Goode AE, Kiryushko D, Masuda S, Hu S, Lopes-Rodrigues R, Dexter DT, Shaffer MSP, Porter AE. Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. NANOSCALE 2019; 11:22054-22069. [PMID: 31720664 DOI: 10.1039/c9nr02866h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles capable of penetrating the blood-brain barrier (BBB) will greatly advance the delivery of therapies against brain disorders. Carbon nanotubes hold great potential as delivery vehicles due to their high aspect-ratio and cell-penetrating ability. Studies have shown multiwalled carbon nanotubes (MWCNT) cross the BBB, however they have largely relied on labelling methods to track and quantify transport, or on individual electron microscopy images to qualitatively assess transcytosis. Therefore, new direct and quantitative methods, using well-defined and unlabelled MWCNT, are needed to compare BBB translocation of different MWCNT types. Using highly controlled anionic (-), cationic (+) and non-ionic (0) functionalized MWCNT (fMWCNT), we correlate UV-visible spectroscopy with quantitative transmission electron microscopy, quantified from c. 270 endothelial cells, to examine cellular uptake, BBB transport and neurotoxicity of unlabelled fMWCNT. Our results demonstrate that: (i) a large fraction of cationic and non-ionic, but not anionic fMWCNT become trapped at the luminal brain endothelial cell membrane; (ii) despite high cell association, fMWCNT uptake by brain endothelial cells is low (<1.5% ID) and does not correlate with BBB translocation, (iii) anionic fMWCNT have highest transport levels across an in vitro model of the human BBB compared to non-ionic or cationic nanotubes; and (iv) fMWCNT are not toxic to hippocampal neurons at relevant abluminal concentrations; however, fMWCNT charge has an effect on carbon nanotube neurotoxicity at higher fMWCNT concentrations. This quantitative combination of microscopy and spectroscopy, with cellular assays, provides a crucial strategy to predict brain penetration efficiency and neurotoxicity of unlabelled MWCNT and other nanoparticle technologies relevant to human health.
Collapse
|
9
|
Hiemstra PS, Tetley TD, Janes SM. Airway and alveolar epithelial cells in culture. Eur Respir J 2019; 54:13993003.00742-2019. [DOI: 10.1183/13993003.00742-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
|
10
|
Ruenraroengsak P, Kiryushko D, Theodorou IG, Klosowski MM, Taylor ER, Niriella T, Palmieri C, Yagüe E, Ryan MP, Coombes RC, Xie F, Porter AE. Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells. NANOSCALE 2019; 11:12858-12870. [PMID: 31157349 DOI: 10.1039/c9nr01277j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
There is a need for novel strategies to treat aggressive breast cancer subtypes and overcome drug resistance. ZnO nanoparticles (NPs) have potential in cancer therapy due to their ability to potently and selectively induce cancer cell apoptosis. Here, we tested the in vitro chemotherapeutic efficacy of ZnONPs loaded via a mesoporous silica nanolayer (MSN) towards drug-sensitive breast cancer cells (MCF-7: estrogen receptor-positive, CAL51: triple-negative) and their drug-resistant counterparts (MCF-7TX, CALDOX). ZnO-MSNs were coated on to gold nanostars (AuNSs) for future imaging capabilities in the NIR-II range. Electron and confocal microscopy showed that MSN-ZnO-AuNSs accumulated close to the plasma membrane and were internalized by cells. High-resolution electron microscopy showed that MSN coating degraded outside the cells, releasing ZnONPs that interacted with cell membranes. MSN-ZnO-AuNSs efficiently reduced the viability of all cell lines, and CAL51/CALDOX cells were more susceptible than MCF7/MCF-7-TX cells. MSN-ZnO-AuNSs were then conjugated with the antibody to Frizzled-7 (FZD-7), the receptor upregulated by several breast cancer cells. We used the disulphide (S-S) linker that could be cleaved with a high concentration of glutathione normally observed within cancer cells, releasing Zn2+ into the cytoplasm. FZD-7 targeting resulted in approximately three-fold amplified toxicity of MSN-ZnO-AuNSs towards the MCF-7TX drug-resistant cell line with the highest FZD-7 expression. This study shows that ZnO-MSs are promising tools to treat triple-negative and drug-resistant breast cancers and highlights the potential clinical utility of FZD-7 for delivery of nanomedicines and imaging probes specifically to these cancer types.
Collapse
Affiliation(s)
- Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK. and Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Darya Kiryushko
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Michał M Klosowski
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Erik R Taylor
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Thisa Niriella
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Carlo Palmieri
- Institute of Translational Medicine, University of Liverpool, L693BX, Liverpool, UK
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - R Charles Coombes
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Mendoza RP, Brown JM. Engineered nanomaterials and oxidative stress: current understanding and future challenges. CURRENT OPINION IN TOXICOLOGY 2018; 13:74-80. [PMID: 31263794 DOI: 10.1016/j.cotox.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered nanomaterials (ENMs) are being incorporated at an unprecedented rate into consumer and biomedical products. This increased usage will ultimately lead to increased human exposure; therefore, understanding ENM safety is an important concern to the public. Although ENMs may exert toxicity through multiple mechanisms, one common mechanism of toxicity recognized across a range of ENMs with varying physicochemical properties is oxidative stress. Further, it is recognized that several key physicochemical properties of ENMs including size, material composition, surface chemistry, band gap, and level of ionic dissolution for example contribute to ENM driven oxidative stress. While it has been shown that exposure of cells to ENMs at high acute doses produce reactive oxygen species at a toxic level often leading to cytotoxicity, there is little research looking at oxidative stress caused by ENM exposure at more relevant low or non-toxic doses. Although the former can lead to apoptosis, genotoxicity, and inflammation, the latter can potentially be damaging as chronic changes to the intracellular redox state leads to cellular reprogramming, resulting in disease initiation and progression among other systemic damage. This current opinions article will review the physicochemical properties and mechanisms associated with ENM-driven oxidative stress and will discuss the need for research investigating effects on the redox proteome that may lead to cellular dysfunction at low or chronic doses of ENMs.
Collapse
Affiliation(s)
- Ryan P Mendoza
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Hamilton RF, Wu Z, Mitra S, Holian A. The Effects of Varying Degree of MWCNT Carboxylation on Bioactivity in Various In Vivo and In Vitro Exposure Models. Int J Mol Sci 2018; 19:ijms19020354. [PMID: 29370073 PMCID: PMC5855576 DOI: 10.3390/ijms19020354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Functionalization has been shown to alter toxicity of multi-walled carbon nanotube (MWCNT) in several studies. This study varied the degree of functionalization (viz., amount of MWCNT surface carboxylation) to define the relationship between the extent of carboxylation and effects in a variety of in vitro cell models and short-term ex vivo/in vivo particle exposures. Studies with vitamin D3 plus phorbol ester transformed THP-1 macrophages demonstrated that functionalization, regardless of amount, corresponded with profoundly decreased NLRP3 inflammasome activation. However, all MWCNT variants were slightly toxic in this model. Alternatively, studies with A549 epithelial cells showed some varied effects. For example, IL-33 and TNF-α release were related to varying amounts of functionalization. For in vivo particle exposures, autophagy of alveolar macrophages, measured using green fluorescent protein (GFP)- fused-LC3 transgenic mice, increased for all MWCNT tested three days after exposure, but, by Day 7, autophagy was clearly dependent on the amount of carboxylation. The instilled source MWCNT continued to produce cellular injury in alveolar macrophages over seven days. In contrast, the more functionalized MWCNT initially showed similar effects, but reduced over time. Dark-field imaging showed the more functionalized MWCNTs were distributed more uniformly throughout the lung and not isolated to macrophages. Taken together, the results indicated that in vitro and in vivo bioactivity of MWCNT decreased with increased carboxylation. Functionalization by carboxylation eliminated the bioactive potential of the MWCNT in the exposure models tested. The observation that maximally functionalized MWCNT distribute more freely throughout the lung with the absence of cellular damage, and extended deposition, may establish a practical use for these particles as a safer alternative for unmodified MWCNT.
Collapse
Affiliation(s)
- Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Zheqiong Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
13
|
Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology 2017; 15:75. [PMID: 29065876 PMCID: PMC5655945 DOI: 10.1186/s12951-017-0310-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/14/2017] [Indexed: 01/23/2023] Open
Abstract
Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells’ fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.
| |
Collapse
|
14
|
Yue T, Xu Y, Li S, Luo Z, Zhang X, Huang F. Ultrashort Single-Walled Carbon Nanotubes Insert into a Pulmonary Surfactant Monolayer via Self-Rotation: Poration and Mechanical Inhibition. J Phys Chem B 2017; 121:2797-2807. [DOI: 10.1021/acs.jpcb.7b00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic
Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
15
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
16
|
Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ. Switching Apoptosis to Ferroptosis: Metal-Organic Network for High-Efficiency Anticancer Therapy. NANO LETTERS 2017; 17:284-291. [PMID: 28027643 DOI: 10.1021/acs.nanolett.6b04060] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Discovering advanced materials for regulating cell death is of great importance in the development of anticancer therapy. Herein, by harnessing the recently discovered oxidative stress regulation ability of p53 and the Fenton reaction inducing capability of metal-organic network (MON), MON encapsulated with p53 plasmid (MON-p53) was designed to eradicate cancer cells via ferroptosis/apoptosis hybrid pathway. After confirming the detailed mechanism of MON-p53 in evoking ferroptosis, we further discovered that MON-p53 mediated a "bystander effect" to further sensitize cancer cells toward the MON-p53 induced ferroptosis. A 75-day anticancer experiment indicated that MON-p53 treatment not only suppressed the tumor growth but also prolonged the life-span of tumor bearing mice. Owing to its ability to promote intracellular oxidative stress, MON-p53 decreased the blood metastasis, lung metastasis, and liver metastasis. As a consequence, discovering methods to induce cell ferroptosis would provide a new insight in designing anticancer materials.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P. R. China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Cao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P. R. China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| |
Collapse
|