1
|
Liu X, Zhao S, Yang W, Huang J. Hierarchical zeolite-encapsulated metal nanoparticles for heterogeneous catalysis. NANOSCALE 2024. [PMID: 39444217 DOI: 10.1039/d4nr02307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Zeolites, characterized by their highly porous structure, have become integral to modern industry and environmental science due to their broad applications in adsorption, separation, and catalysis. Recent advancements in zeolite synthesis, particularly through hydrothermal methods and the incorporation of metal nanoparticles, have significantly expanded their utility. This review delves into the innovative strategies for encapsulating metal nanoparticles within zeolite matrices, enhancing catalytic reactions' efficiency, selectivity, and durability. Challenges such as nanoparticle agglomeration and catalyst deactivation are addressed through hierarchical zeolite encapsulation, which provides a novel route for the development of multifunctional materials. By examining methods ranging from in situ encapsulation to post-synthetic recrystallization, this review highlights the versatility and potential of metal@zeolite catalysts in various applications, including organic synthesis, pollutant treatment, and energy conversion. The review underscores the importance of optimizing the interaction between metal nanoparticles and the zeolite framework to achieve superior catalytic performance, offering new directions for research in catalytic science and industrial process optimization.
Collapse
Affiliation(s)
- Xingxu Liu
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Shufang Zhao
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Pornsetmetakul P, Maineawklang N, Wattanakit C. Preparation of Metal-Supported Nanostructured Zeolite Catalysts and their Applications in the Upgrading of Biomass-Derived Furans: Advances and Prospects. Chempluschem 2024:e202400343. [PMID: 39231200 DOI: 10.1002/cplu.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Indexed: 09/06/2024]
Abstract
The development of platform chemicals derived from biomass, in particular, 5-hydroxymethylfurfural (5-HMF) and furfural (FUR), is of crucial importance in biorefinery. Over the past decades, metal-supported nanostructured zeolites, in particular, metal-supported hierarchically porous zeolites or metal-encapsulated zeolites, have been extensively elaborated because of their multiple functionalities and superior properties, for example, shape-selectivity, (hydro)thermal stability, tunable acidity and basicity, redox properties, improved diffusion, and intimacy of multiple active sites. In this review, the effects of such properties of metal-supported nanostructured zeolites on the enhanced catalytic performances in furanic compound upgrading are discussed. In addition, the recent rational design of metal-supported nanostructured zeolites is exemplified. Consequently, the ongoing challenges for further developing metal-supported nanostructured zeolites-based catalysts and their applications in HMF and FUR upgrading are identified.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
3
|
Yang J, Liu S, Liu Y, Zhou L, Wen H, Wei H, Shen R, Wu X, Jiang J, Li B. Review and perspectives on TS-1 catalyzed propylene epoxidation. iScience 2024; 27:109064. [PMID: 38375219 PMCID: PMC10875142 DOI: 10.1016/j.isci.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.
Collapse
Affiliation(s)
- Jimei Yang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Huijuan Wei
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|
4
|
Jiao F, Li H, Hu Q, Xu Y, Guo H, Du H. Amino-Acid-Assisted Synthesis of Hollow Hierarchical FER Zeolite with Improved Catalytic Performance. Chemistry 2023; 29:e202301608. [PMID: 37552578 DOI: 10.1002/chem.202301608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Hierarchical zeolites are highly-desired catalysts in the petrochemical industry due to their shorter diffusion length, faster diffusion rate, and better accessibility to active acid sites compared with conventional zeolites. Herein, we report a simple amino-acid-assisted method to synthesize urchin-like hollow hierarchical FER zeolites with abundant mesopores and macroporous inner cavities. An amino acid (i. e. L-lysine) is used to facilitate the agglomeration of primary gel nanoparticles. The preferential nucleation and crystal growth at the external surfaces together with the lagged crystallization of the inner core of the agglomerates results in the formation of hollow inner cavities after the exhaustion of interior materials. Thanks to the unique hierarchical structure and more accessible acid sites, the hollow hierarchical FER zeolite exhibits improved catalytic performance over the conventional one in the skeletal isomerization of 1-butene to isobutene.
Collapse
Affiliation(s)
- Feng Jiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qing Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing and Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Qu H, Ma Y, Li X, Duan Y, Li Y, Liu F, Yu B, Tian M, Li Z, Yu Y, Li B, Lv Z, Wang L. Ternary alloy (FeCoNi) nanoparticles supported on hollow porous carbon with defects for enhanced oxygen evolution reaction. J Colloid Interface Sci 2023; 645:107-114. [PMID: 37146374 DOI: 10.1016/j.jcis.2023.04.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Low-cost non-noble metal nanoparticles are promising electrocatalysts that can catalyze oxygen evolution reaction (OER). Various factors such as poor activity and stability hinder the practical applications of these materials. The electroactivity and durability of the electrocatalysts can be improved by optimizing the morphology and composition of the materials. Herein, we report the successful synthesis of hollow porous carbon (HPC) catalysts loaded with ternary alloy (FeCoNi) nanoparticles (HPC-FeCoNi) for efficient OER. HPC is firstly synthesized by a facile carbon deposition method using the hierarchical porous zeolite ZSM-5 as the hard template. Numerous defects are generated on the carbon shell during the removal of zeolite template. Subsequently, FeCoNi alloy nanoparticles are supported on HPC by a sequence of impregnation and H2 reduction processes. The synergistic effect between carbon defects and FeCoNi alloy nanoparticles endows the catalyst with an excellent OER performance (low overpotential of 219 mV; Tafel slope of 60.1 mV dec-1) in a solution of KOH (1 M). A stable potential is maintained during the continuous operation over 72 h. The designed HPC-FeCoNi presents a platform for the development of electrocatalysts that can be potentially applied for industrial OER.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Xiaolong Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuhao Duan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Yuan Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Feng Liu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Bin Yu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Minge Tian
- Scientific Green (Shandong) Environmental Technology Co. Ltd, Jining Economic Development Zone, Shandong Province 272499, PR China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
6
|
Qu H, Li B, Ma Y, Xiao Z, Lv Z, Li Z, Li W, Wang L. Defect-Enriched Hollow Porous Carbon Nanocages Enable Highly Efficient Chlorine Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301359. [PMID: 37029536 DOI: 10.1002/adma.202301359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Metal-free carbon-based catalysts are crucial for the electrocatalytic chlorine evolution reaction (CER) to reduce the usage of noble metals and industrial cost. However, the corresponding catalytic activity of high overpotential and low durability hinders their wide application. Here, a hollow porous carbon (HPC) nanocage with a controlled oxygen electronic state around designed carbon defects for CER activity is reported. Alkali etching can bring defects in zeolite with a hollow structure. In a hard template strategy, the type of carbon defects is directly related to etching degree of the zeolite template. More importantly, the oxygen atoms can be "borrowed" from the zeolite framework by the defective carbon. The electron density around unsaturated O atoms can be decreased on the minor defects in carbon compared with that on large defects which is favorable for the adsorption of Cl- . Consequently, the as-synthesized HPC nanocages with minor defects show excellent electrocatalytic performance for CER with a low overpotential of 94 mV at current density of 10 mA cm-2 with good stability, which is superior to the commercial precious metal catalyst of dimensionally stable anode (DSA), and the best in the reported carbon materials. The designed carbon materials provide an option for metal-free industrial catalysts with significant CER activities.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenyu Xiao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai, Shanghai, 200433, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Kozawa T, Li Y, Hirahara K. Formation mechanism of maze-like open macropores in Mn3O4 microspheres by heating in water vapor and their single-particle compressive behavior. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wang R, Xia C, Peng B. Fundamental Understanding and Catalytic Applications of Hollow MFI-type Zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Azhari NJ, Nurdini N, Mardiana S, Ilmi T, Fajar AT, Makertihartha I, Subagjo, Kadja GT. Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Shang S, Li W, Zhou A, Zhang J, Yang H, Zhang A, Guo X. Fe-Substituted Pt/HZSM-48 for Superior Selectivity of i-C12 in n-Dodecane Hydroisomerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shujie Shang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenhui Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ajuan Zhou
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
11
|
Tian J, Qi L, Zhang Q, Zhan G, Sun D, Li Q. Structure engineering of alveoli-like ZSM-5 with encapsulated Pt nanoparticles for the enhanced benzene oxidation. NANOSCALE 2022; 14:250-262. [PMID: 34931213 DOI: 10.1039/d1nr06222k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by the alveolar configuration, an alveoli-like ZSM-5 and the corresponding platinum encapsulated nanocomposite (Pt@PZ5) were fabricated via a dual-template method and a controlled selective desilication-recrystallization strategy. The dimensions of the central cavity, interconnected zeolitic vesicles, and mesoporous shell could be tuned by adjusting the synthesis parameters, as verified by scanning electron microscopy, transmission electron microscopy, nitrogen physisorption investigations, X-ray photoelectron spectroscopy, and X-ray diffraction techniques. Thanks to these properties and merits, the alveoli-like Pt@PZ5 showed the highest catalytic performance with excellent stability, obtaining 100% benzene conversion at 180 °C. Adsorption experiments combined with a finite-element simulation study uncovered that the alveolar architecture could expedite the accumulation of reactants and boost mass transfer; the conversion of intermediates in the voids could be further facilitated, giving optimal catalytic performance. Additionally, the alveolar architecture is resistant to metal sintering (5-20 nm) and leaching, even after calcination at 850 °C for 360 min. This work provides an alveolar concept into the rational design of efficient catalysts for fundamental catalytic action.
Collapse
Affiliation(s)
- Jian Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lixue Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Quan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| |
Collapse
|
12
|
Zhang S, Zhang X, Dong L, Zhu S, Yuan Y, Xu L. In situ synthesis of Pt nanoparticles encapsulated in Silicalite-1 zeolite via a steam-assisted dry-gel conversion method. CrystEngComm 2022. [DOI: 10.1039/d1ce01718g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, Pt nanoparticles (NPs) were directly encapsulated into MFI-type zeolite (Pt@S-1) via a steam-assisted dry-gel conversion method. The synthesis process included the disaggregation of Pt immobilized SiO2-SH spheres...
Collapse
|
13
|
Li S, Shi H, Wang S, Li Z, Wang P, Liu X, Quan Y, Dong M, Wang J, Fan W. Assembly of Silicalite-1 Crystals Like Toy Lego Bricks into One-, Two-, and Three-Dimensional Architectures for Enhancing Its Adsorptive Separation and Catalytic Performances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58085-58095. [PMID: 34826222 DOI: 10.1021/acsami.1c15226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many researchers have contributed to the assembly of zeolitic nanosheets and nanocrystallites into three-dimensional (3D) networks as it can remarkably improve the catalytic and/or adsorptive performances of zeolites. However, the applications of these synthesized materials are seriously limited because of low hydrothermal stability. A highly interesting strategy, but a great challenge, is the alignment of well-crystallized zeolite crystals into desirable architectures. Here, well-crystallized silicalite-1 crystals are assembled like toy Lego bricks into one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) architectures, and the assembly mechanism is investigated by combining elaborate experiments, in situ spectroscopy, and theoretical calculations. A 1D architecture was formed by stacking crystals along the b axis with the assistance of ethanol that is selectively adsorbed on (100) and (001) crystal facets. Such adsorption increases the condensation energy barriers along a and c axes, but facilitates the condensation between (010) facets. The assembly of the crystals into well-arrayed 2D architectures is achieved using both ethanol and benzaldehyde because of their preferable adsorption on the (001) facet. When an amphiphilic copolymer (P123) was further added in the gel along with the substitution of ethanol by 1-propanol, a 3D network was fabricated by the agglomeration and self-pillaring of the 2D Lego bricks possibly with P123 aggregates as the substrate matrix. Excitingly, upon alignment of crystals into 2D architectures, the adsorptive selectivity of 1-butanol (2 wt %) to water of silicalite-1 increases by 45.3 times, while into 3D networks, the catalytic activity for the Beckmann rearrangement of cyclohexanone oxime elevates by 79% along with a great enhancement of catalytic stability.
Collapse
Affiliation(s)
- Shiying Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Zhikai Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Yanhong Quan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| |
Collapse
|
14
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 396] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Li B, Kwok KM, Zeng HC. Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20524-20538. [PMID: 33881838 DOI: 10.1021/acsami.1c01916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zeolites are one of the most commonly used materials in the chemical industry, acting as catalysts or catalyst supports in different applications. Recently, the synthesis and functionalization of hollow zeolites have attracted many research interests, owing to the unique advantages of their hollow morphology. In the development of more sustainable processes, the hollow zeolites are often endowed with additional stability, selectivity, and activity. Herein, we present a stepwise synthetic protocol to prepare a range of complex hollow ZSM-5 catalysts with catalytic nanoparticles. Solid ZSM-5 crystals were first synthesized from Stöber silica spheres. This solid ZSM-5 sample was then loaded with transition metals via the impregnation method. A subsequent hollowing process was carried out in hydrothermal conditions in which hollow ZSM-5 crystals with confined transition metals inside were synthesized. More specifically, after the encapsulation of transition metals inside hollow ZSM-5, two different approaches have been further devised to allow the deposition of noble metals into the interior cavities or onto the exterior surfaces of the hollow ZSM-5. The deposition of Pt on the exterior surface was carried out by mixing the hollow ZSM-5 sample with presynthesized Pt nanoparticles. Loading of Pd in the interior was achieved by the galvanic replacement reaction between the Pd ions and embedded transition metals inside the hollow ZSM-5 sample. The catalytic performance of these reactor-like nanocatalysts has been evaluated with hydrogenation reactions in both liquid and gas phases, and their compositional and structural merits have been illustrated. For the hollow ZSM-5 sample with Pd loaded inside, liquid-phase selective hydrogenation of styrene over 4-vinylbiphenyl has been achieved with the ZSM-5 shell acting as a molecular sieve. The deposition of Pt on the exterior has improved the C2-C4 product yield when tested for the gas-phase CO2 hydrogenation reaction.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| | - Kelvin Mingyao Kwok
- Department of Process & Catalysis Research, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| |
Collapse
|
16
|
Liu B, Huang J, Liao Z, Zhu C, Chen Q, Sheng G, Zhu Y, Huang Y, Dong J. Integrating pore interconnectivity and adaptability in a single crystal hierarchical zeolite for liquid alkylation. AIChE J 2021. [DOI: 10.1002/aic.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry Guangdong University of Technology Guangzhou P.R. China
| | - Jiajin Huang
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry Guangdong University of Technology Guangzhou P.R. China
| | - Zhantu Liao
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry Guangdong University of Technology Guangzhou P.R. China
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering Zhejiang University of Technology Hangzhou P.R. China
| | - Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering Zhejiang University of Technology Hangzhou P.R. China
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering Zhejiang University of Technology Hangzhou P.R. China
| | - Yi Huang
- School of Engineering Institute for Materials & Processes (IMP), The University of Edinburgh Edinburgh UK
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry Guangdong University of Technology Guangzhou P.R. China
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan P.R. China
| |
Collapse
|
17
|
Bian K, Zhang A, Yang H, Fan B, Xu S, Guo X, Song C. Synthesis and Characterization of Fe-Substituted ZSM-5 Zeolite and Its Catalytic Performance for Alkylation of Benzene with Dilute Ethylene. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Bian
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hong Yang
- Department of Mechanical Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, P. R. China
| |
Collapse
|
18
|
Qin L, Gao M, Zhang M, Li X, Ru R, Luo H, Zhang G. Bioinspired Assembly of Double Honeycomb-Like Hierarchical Capsule Confined Encapsulation with Functional Micro/Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004692. [PMID: 33201585 DOI: 10.1002/smll.202004692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Inspired by "micro/nanoreactor" effect of cellular organelle on specific biochemical reactions, a double honeycomb-like hierarchical capsule confined encapsulation with functional micro/nanocrystals is designed. The bioinspired hierarchical capsules derived from polymeric composite microspheres are successfully fabricated through a combination of selective chemical etching and pyrolysis. In situ introduction of functional guests (including organometallic molecules, tetraethoxysilane, or metal-organic frameworks (MOFs)) into internal cellular structure of microspheres is first put forward by phase inversion method. The development of selective etching creates honeycomb-like structure on the outside surface of capsule and allows sulfur to homogeneously distribute into matrix. With the novel approach, the hierarchical channels (micro-meso-macropore) of composite capsule enhance transportation of reactants and dispersion of active sites, and thus exhibit superior photocatalytic oxidation and electromagnetic absorbing. The promising strategy will be applied more generally to encapsulate different species into hierarchical capsule with tailored properties and functionalities.
Collapse
Affiliation(s)
- Lei Qin
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Mingzhen Gao
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Mengyuan Zhang
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Xiong Li
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Rui Ru
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| | - Huili Luo
- College of Resources and Environment, Hunan Agricultural University, Nongda Road 1#, Changsha, 410128, P. R. China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R. China
| |
Collapse
|
19
|
Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1972-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Tao J, Li B, Lu Z, Liu J, Su L, Tang Z, Li M, Xu Y. Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiawei Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bingyu Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lina Su
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mei Li
- Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
21
|
Tao J, Li B, Lu Z, Liu J, Su L, Tang Z, Li M, Xu Y. Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angew Chem Int Ed Engl 2020; 59:19684-19690. [PMID: 32638505 DOI: 10.1002/anie.202007064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 11/09/2022]
Abstract
Advances in zeolites research emerging from interdisciplinary efforts have opened new opportunities beyond conventional applications. Colloids drive much current research owing to their distinct collective behaviors, but so far, using zeolites as a colloidal building block to construct ordered superstructures remains unexplored. Herein we show that self-assembly of colloidal zeolite LTA superball (ZAS) by tilted-angle sedimentation forms macroscopic films with micro-mesoporosity and 3D long-range periodicity featuring a photonic band gap (PBG) that is tunable through the superball geometry and responds reversibly to chemical vapors. Remarkably, self-assembly of ZAS at elevated temperature forms 3D chiral photonic crystals that enable negative circular dichroism, selective reflection of right-handed circularly polarized (CP) light and left-handed CP luminescence based on PBG. We present a novel class of functional colloids and zeolite-based photonic crystals with the ability to manipulate light in several ways.
Collapse
Affiliation(s)
- Jiawei Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bingyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Lina Su
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mei Li
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Chen LH, Sun MH, Wang Z, Yang W, Xie Z, Su BL. Hierarchically Structured Zeolites: From Design to Application. Chem Rev 2020; 120:11194-11294. [DOI: 10.1021/acs.chemrev.0c00016] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
| | - Ming-Hui Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Zhao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Zaiku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
- Clare Hall, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
An S, Zhang G, Liu J, Li K, Wan G, Liang Y, Ji D, Miller JT, Song C, Liu W, Liu Z, Guo X. A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63529-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Luo X, Guo J, Chang P, Qian H, Pei F, Wang W, Miao K, Guo S, Feng G. ZSM-5@MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116516] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Liu B, Zheng K, Liao Z, Chen P, Chen D, Wu Y, Xia Q, Xi H, Dong J. Fe-Encapsulated ZSM-5 Zeolite with Nanosheet-Assembled Structure for the Selective Catalytic Reduction of NOx with NH3. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ke Zheng
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Zhantu Liao
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Peirong Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Dongdong Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Ying Wu
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Hongxia Xi
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
26
|
Li H, Dong P, Ji D, Zhao X, Li C, Cheng C, Li G. Effect of the Post‐Treatment of HZSM‐5 on Catalytic Performance for Methanol to Aromatics. ChemistrySelect 2020. [DOI: 10.1002/slct.202000118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Li
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - Peng Dong
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - Dong Ji
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - XinHong Zhao
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - Chunqiang Li
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - Chunhui Cheng
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| | - Guixian Li
- College of Petrochemical TechnologyLanzhou University of Technology Lanzhou 730050 PR China
| |
Collapse
|
27
|
Limlamthong M, Yip ACK. Recent advances in zeolite-encapsulated metal catalysts: A suitable catalyst design for catalytic biomass conversion. BIORESOURCE TECHNOLOGY 2020; 297:122488. [PMID: 31796381 DOI: 10.1016/j.biortech.2019.122488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Metal clusters and nanoparticles, which have been used to tune the acidity of zeolite support, are beneficial for promoting the catalytic performance of various reaction processes, including biomass conversion. However, catalytic instabilities resulting from metal coalescence, sintering and leaching are major problems that need to be resolved. Therefore, metal encapsulation within the zeolite structure has been proposed as a feasible solution for this issue, particularly for biomass conversions that require high temperatures. In this current review, recent developments in metal confinement techniques are described along with experimental examples of biomass upgrading reactions. The present and future perspectives of zeolite-encapsulated metal catalysts in biomass conversions are also given.
Collapse
Affiliation(s)
- Mutjalin Limlamthong
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand
| | - Alex C K Yip
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
28
|
Dai C, Du K, Song C, Guo X. Recent progress in synthesis and application of zeolite-encapsulated metal catalysts. ADVANCES IN CATALYSIS 2020. [DOI: 10.1016/bs.acat.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Cai G, Ding M, Wu Q, Jiang HL. Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl Sci Rev 2020; 7:37-45. [PMID: 34692015 PMCID: PMC8288971 DOI: 10.1093/nsr/nwz147] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/13/2023] Open
Abstract
Homogeneous molecular catalysts and heterogeneous catalysts possess complementary strengths, and are of great importance in laboratory/commercial procedures. While various porous hosts, such as polymers, carbons, silica, metal oxides and zeolites, have been used in an attempt to heterogenize homogeneous catalysts, realizing the integration of both functions at the expense of discounting their respective advantages, it remains a significant challenge to truly combine their intrinsic strengths in a single catalyst without compromise. Here, we describe a general template-assisted approach to incorporating soluble molecular catalysts into the hollow porous capsule, which prevents their leaching due to the absence of large intergranular space. In the resultant yolk (soluble)-shell (crystalline) capsules, the soluble yolks can perform their intrinsic activity in a mimetic homogeneous environment, and the crystalline porous shells endow the former with selective permeability, substrate enrichment, size-selective and heterogeneous cascade catalysis, beyond the integration of the respective advantages of homogeneous and heterogeneous catalysts.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qianye Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020; 49:2937-3004. [DOI: 10.1039/c9cs00713j] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An in-depth assessment of properties of core–shell catalysts and their application in the thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2into synthesis gas and valuable hydrocarbons.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Javier Pérez-Ramírez
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Collaborative Innovation Center for Chemical Science & Engineering
- Tianjin University
- Tianjin
| | - Nikita Dewangan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Kus Hidajat
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Bruce C. Gates
- Department of Chemical Engineering
- University of California
- Davis
- USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
31
|
Abstract
A novel Ni@hollow silicate zirconia (Ni@HSZ) is prepared via a hydrothermal approach to re-use the SiO2 in Ni@SiO2@ZrO2 with TBAOH as an etchant and template.
Collapse
Affiliation(s)
- Zi-Yian Lim
- Guangdong Provincial Key Laboratory of Distributed Energy Systems
- School of Chemical Engineering and Energy Technology
- Dongguan University of Technology
- Dongguan 523808
- China
| | - Xiaoqian Ma
- School of Electric Power
- South China University of Technology
- Guangzhou 510640
- China
| | - Baiman Chen
- Guangdong Provincial Key Laboratory of Distributed Energy Systems
- School of Chemical Engineering and Energy Technology
- Dongguan University of Technology
- Dongguan 523808
- China
| |
Collapse
|
32
|
Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Wang D, Peng Q, Chen C, Li Y. Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800426. [PMID: 30125990 DOI: 10.1002/adma.201800426] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Hollow nanomaterials have attracted a broad interest in multidisciplinary research due to their unique structure and preeminent properties. Owing to the high specific surface area, well-defined active site, delimited void space, and tunable mass transfer rate, hollow nanostructures can serve as excellent catalysts, supports, and reactors for a variety of catalytic applications, including photocatalysis, electrocatalysis, heterogeneous catalysis, homogeneous catalysis, etc. Based on state-of-the-art synthetic methods and characterization techniques, researchers focus on the purposeful functionalization of hollow nanomaterials for catalytic mechanism studies and intricate catalytic reactions. Herein, an overview of current reports with respect to the catalysis of functionalized hollow nanomaterials is given, and they are classified into five types of versatile strategies with a top-down perspective, including textual and composition modification, encapsulation, multishelled construction, anchored single atomic site, and surface molecular engineering. In the detailed case studies, the design and construction of hierarchical hollow catalysts are discussed. Moreover, since hollow structure offers more than two types of spatial-delimited sites, complicated catalytic reactions are elaborated. In summary, functionalized hollow nanomaterials provide an ideal model for the rational design and development of efficient catalysts.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Pan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoyun Dai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Tian H, Lv J, Liao J, Yu L, Tang X, Zha F, Chang Y. Synthesis of Hierarchically Porous H[P, Al]-ZSM-5 and its Catalytic Performance in Coupling Transformation of Methanol with 1-Butene. ChemistrySelect 2019. [DOI: 10.1002/slct.201803969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haifeng Tian
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Jinlong Lv
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Jiankang Liao
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Lei Yu
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Xiaohua Tang
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Fei Zha
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| | - Yue Chang
- College of Chemistry & Chemical Engineering; Northwest Normal University; Lanzhou 730070, Gansu China
| |
Collapse
|
34
|
Liu B, Chen Z, Huang J, Xia Q, Wu Y, Chen H, Fang Y. Development of Iron Encapsulated Hollow Beta Zeolites for Ammonia Selective Catalytic Reduction. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Zhipeng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Jiajin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Qibin Xia
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P.R. China
| | - Ying Wu
- School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou, Guangdong 510640, P.R. China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, P.R. China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
35
|
Das S, Jangam A, Du Y, Hidajat K, Kawi S. Highly dispersed nickel catalysts via a facile pyrolysis generated protective carbon layer. Chem Commun (Camb) 2019; 55:6074-6077. [PMID: 31066377 DOI: 10.1039/c9cc00783k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Highly dispersed nickel catalysts were synthesized by simple Ni(acac)2 impregnation followed by pyrolysis of organic ligands, which produces a protective carbon coating on the Ni nanoparticles, reducing the metal mobility and sintering. The synthesized catalyst shows high thermal stability and enhanced CO methanation activity compared to the catalyst prepared by the traditional impregnation/calcination method.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Republic of Singapore.
| | | | | | | | | |
Collapse
|
36
|
Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Li S, Li J, Dong M, Fan S, Zhao T, Wang J, Fan W. Strategies to control zeolite particle morphology. Chem Soc Rev 2019; 48:885-907. [DOI: 10.1039/c8cs00774h] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methods to synthesize zeolites with different crystal habits and assemble zeolite crystals into specific structures are reviewed for the rational design of zeolite particle morphologies.
Collapse
Affiliation(s)
- Shiying Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- P. R. China
| | - Junfen Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- P. R. China
| | - Mei Dong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- P. R. China
| | - Subing Fan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan City
- P. R. China
| | - Tiansheng Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan City
- P. R. China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- P. R. China
| |
Collapse
|
38
|
Wang N, Sun Q, Yu J. Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803966. [PMID: 30276888 DOI: 10.1002/adma.201803966] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/20/2018] [Indexed: 05/27/2023]
Abstract
Crystalline nanoporous materials with uniform porous structures, such as zeolites and metal-organic frameworks (MOFs), have proven to be ideal supports to encapsulate ultrasmall metal nanoparticles (MNPs) inside their void nanospaces to generate high-efficiency nanocatalysts. The nanopore-encaged metal catalysts exhibit superior catalytic performance as well as high stability and catalytic shape selectivity endowed by the nanoporous matrix. In addition, the synergistic effect of confined MNPs and nanoporous frameworks with active sites can further promote the catalytic activities of the composite catalysts. Herein, recent progress in nanopore-encaged metal nanocatalysts is reviewed, with a special focus on advances in synthetic strategies for ultrasmall MNPs (<5 nm), clusters, and even single atoms confined within zeolites and MOFs for various heterogeneous catalytic reactions. In addition, some advanced characterization methods to elucidate the atomic-scale structures of the nanocatalysts are presented, and the current limitations of and future opportunities for these fantastic nanocatalysts are also highlighted and discussed. The aim is to provide some guidance for the rational synthesis of nanopore-encaged metal catalysts and to inspire their further applications to meet the emerging demands in catalytic fields.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
39
|
Guo H, Ge T, Lv J, Du C, Zhou J, Liu Z, Hua Z. Mesoporogen-Free Synthesis of High-Silica Hierarchically Structured ZSM-5 Zeolites and their Superior Performance for the Methanol-to-Propylene Reaction. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hangle Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road 200050 Shanghai P.R. China
- University of Chinese Academy of Sciences; No.19(A) Yuquan Road 100049 Shijingshan District, Beijing P.R. China
| | - Tongguang Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road 200050 Shanghai P.R. China
- University of Chinese Academy of Sciences; No.19(A) Yuquan Road 100049 Shijingshan District, Beijing P.R. China
| | - Jian Lv
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road 200050 Shanghai P.R. China
- University of Chinese Academy of Sciences; No.19(A) Yuquan Road 100049 Shijingshan District, Beijing P.R. China
| | - Changlin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road 200050 Shanghai P.R. China
- University of Chinese Academy of Sciences; No.19(A) Yuquan Road 100049 Shijingshan District, Beijing P.R. China
| | - Jian Zhou
- Sinopec Shanghai Research Institute of Petrochemical Technology; 1658 Pudong North Road 201208 Shanghai P.R. China
| | - Zhicheng Liu
- Sinopec Shanghai Research Institute of Petrochemical Technology; 1658 Pudong North Road 201208 Shanghai P.R. China
| | - Zile Hua
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road 200050 Shanghai P.R. China
| |
Collapse
|
40
|
Xu D, Lv H, Liu B. Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Front Chem 2018; 6:550. [PMID: 30474024 PMCID: PMC6238153 DOI: 10.3389/fchem.2018.00550] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 11/24/2022] Open
Abstract
Metal nanoparticles (NPs) exhibit desired activities in various catalytic reactions. However, the aggregation and sintering of metal NPs usually cause the loss of catalytic performance in practical reaction processes. Encapsulation of catalytically active metal NPs on/within a high-surface-area inorganic support partially resolve such concerns. Microporous zeolites, owing to their rigid frameworks and porous structural features, have been considered as one of ideal inorganic supports. Metal NPs can be easily encapsulated and stabilized within zeolitic frameworks to prevent unwished aggregation during the catalysis. Unfortunately, sole microporous nanochannels (generally <1 nm) in conventional zeolites are not easy to be accessed. The introduction of another set of nanochannel (e.g., mesopore), known as mesoporous zeolites, can greatly improve the mass-transfer efficiency, which is structurally beneficial for most catalytic reactions. The coexistence of micropores and mesopores in inorganic supports provides the synergetic advantages of both fine confinement effect for metal NPs and easy diffusion for organic reactants/intermediates/products. This review focuses on the recent advances in the design and synthesis of mesoporous zeolites-encapsulated metal NP catalysts as well as their desired catalytic performances (activity and stability) in organic reactions. We first discuss the advantages of mesoporous zeolites as the supports and present general strategies for the construction of mesoporous zeolites. Then, the preparation methods on how to encapsulate NP catalysts within both microporous and mesoporous zeolites are clearly demonstrated. Third, some recent important cases on catalytic applications are presented to verify structural advantages of mesoporous zeolite supports. Within the conclusion, the perspectives on future developments in metal NP catalysts encapsulated within mesoporous zeolites are lastly discussed.
Collapse
Affiliation(s)
| | | | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
41
|
Liu C, Long Y, Wang Z. Optimization of conditions for preparation of ZSM-5@silicalite-1 core–shell catalysts via hydrothermal synthesis. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
An S, Zhang G, Wang T, Zhang W, Li K, Song C, Miller JT, Miao S, Wang J, Guo X. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C 3N 4) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS NANO 2018; 12:9441-9450. [PMID: 30183258 DOI: 10.1021/acsnano.8b04693] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ultra-small metal clusters have attracted great attention owing to their superior catalytic performance and extensive application in heterogeneous catalysis. However, the synthesis of high-density metal clusters is very challenging due to their facile aggregation. Herein, one-step pyrolysis was used to synthesize ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride with high density (iron loading up to 18.2 wt %), evidenced by high-angle annular dark field-scanning transmission electron microscopy, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe Mössbauer spectroscopy. The catalysts exhibit enhanced activity and stability in degrading various organic samples in advanced oxidation processes. The drastically increased metal site density and stability provide useful insights into the design and synthesis of cluster catalysts for practical application in catalytic oxidation reactions.
Collapse
Affiliation(s)
- Sufeng An
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Guanghui Zhang
- Davidson School of Chemical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Tingwen Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Wenna Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Keyan Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Shu Miao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Junhu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , 116023 , PR China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , PR China
| |
Collapse
|
43
|
Li A, Wang X, Wang T, Liu H, Gao T, Fan M, Huo Q, Qiao ZA. A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures. Chemistry 2018; 24:12600-12606. [PMID: 29888461 DOI: 10.1002/chem.201801185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Much effort has been invested in the designed synthesis of zeolites with nanosized and hierarchical structures in recent decades, on account of increasing demands in practical applications, especially catalysis. Herein, a new topotactic synthetic strategy is demonstrated to synthesize nanosized and hierarchical zeolites in a one-step procedure. By using silica spheres as the adjustable amorphous precursors and tetrapropylammonium hydroxide as a structure-directing agent, effortless control of both size and porosity can be achieved in this system with no extra templates. With a simple hydrothermal process, hierarchical zeolite spheres can be modified with acid cites (Al species incorporated in the framework). Benefitting from its mesoporosity, palladium nanoparticles are incorporated into the nanosized hierarchical zeolite, which makes the materials suitable for use in a cascade catalysis reaction of benzimidazole derivatives, including independent acid catalysis and hydrogenation sites. The nanocomposites show exceptional activity and stability in catalysis and recycling reaction. This strategy can be developed into other versatile and practicable scaffolds for advanced zeolite catalytic nanoreactor systems.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xue Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Huali Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Tunan Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Meihong Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Qisheng Huo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
44
|
Zhang K, Fernandez S, Ostraat ML. Understanding Commonalities and Interplay Between Organotemplate‐Free Zeolite Synthesis, Hierarchical Structure Creation, and Interzeolite Transformation. ChemCatChem 2018. [DOI: 10.1002/cctc.201800612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ke Zhang
- Aramco Research Center - BostonAramco Services Company 400 Technology Square Cambridge MA 02139 United States
| | - Sergio Fernandez
- Aramco Research Center - BostonAramco Services Company 400 Technology Square Cambridge MA 02139 United States
| | - Michele L. Ostraat
- Aramco Research Center - BostonAramco Services Company 400 Technology Square Cambridge MA 02139 United States
| |
Collapse
|
45
|
Yi T, Li J, Zhang Y, Yang X. A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7333-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Liu C, Lin L, Cao Y, Liu H, Guo Y, Zhang X. Amino-functionalized seeds-induced synthesis of encapsulated Pd@Silicalite-1 core-shell catalysts for size-selective hydrogenation. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
47
|
Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704439. [PMID: 29479756 DOI: 10.1002/adma.201704439] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Indexed: 06/08/2023]
Abstract
The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications.
Collapse
Affiliation(s)
- Nima Masoumifard
- Department of Chemistry, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Rémy Guillet-Nicolas
- Department of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria
| | - Freddy Kleitz
- Department of Chemistry, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
- Department of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria
| |
Collapse
|
48
|
Chen H, Shen K, Mao Q, Chen J, Li Y. Nanoreactor of MOF-Derived Yolk–Shell Co@C–N: Precisely Controllable Structure and Enhanced Catalytic Activity. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03270] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huirong Chen
- State Key Laboratory of Pulp
and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kui Shen
- State Key Laboratory of Pulp
and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qing Mao
- State Key Laboratory of Pulp
and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junying Chen
- State Key Laboratory of Pulp
and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingwei Li
- State Key Laboratory of Pulp
and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
49
|
Dai C, Zhang A, Song C, Guo X. Advances in the synthesis and catalysis of solid and hollow zeolite-encapsulated metal catalysts. ADVANCES IN CATALYSIS 2018. [DOI: 10.1016/bs.acat.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
50
|
Subnanometric Hybrid Pd-M(OH)2, M = Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. Chem 2017. [DOI: 10.1016/j.chempr.2017.07.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|