1
|
Mani M, Mariandry K, Ghorpade UV, Saha S, Kokate R, Mishra R, Nielsen MP, Tilley R, Xie B, Suryawanshi MP, Kumar PV. Plasmonic Hot-Carrier Engineering at Bimetallic Nanoparticle/Semiconductor Interfaces: A Computational Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410173. [PMID: 39955760 DOI: 10.1002/smll.202410173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Plasmonic catalysis employs plasmonic metals such as Ag, Au, Cu, and Al, typically in combination with semiconductors, to drive diverse redox chemical reactions. These metals are good at harnessing sunlight, owing to their strong absorption cross-sections and tunable absorption peaks within the visible range of the solar spectrum. Unfortunately, facilitating plasmon-induced hot-carrier separation and subsequently harvesting them to improve catalytic efficiencies has been a problem at monometallic particle-semiconductor interfaces. To overcome this issue, this perspective focuses on recent computational methods and studies to discuss the advantages of designing bimetallic particles (core-shell or core-satellite), with a plasmonic-metal core and a less-plasmonic-metal shell on top, and coupling them with semiconductors. The aim of this approach is to favorably modify the interface between the plasmonic-metal particle and the semiconductor by introducing a thin section of a non-plasmonic metal in between. This approach is expected to enhance hot-carrier separation at the interface, preventing fast electron-hole recombination within the plasmonic-metal particle. Through a careful design of such bimetal/semiconductor configurations, by varying the size and composition of the non-plasmonic metal for example, and through appropriate utilization of quantum-mechanical modeling and experimental techniques, it is anticipated that plasmonic hot-carrier generation and separation processes can be studied and controlled in such systems, thereby enabling more-efficient plasmonic devices.
Collapse
Affiliation(s)
- Mani Mani
- School of Chemical Engineering, UNSW, Kensington, NSW, 2052, Australia
| | | | - Uma V Ghorpade
- School of Chemical Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Sankhadip Saha
- School of Chemical Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Ravindra Kokate
- School of Chemical Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Rishabh Mishra
- School of Photovoltaic and Renewable Energy Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Michael P Nielsen
- School of Photovoltaic and Renewable Energy Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Richard Tilley
- School of Chemistry, UNSW, Kensington, NSW, 2052, Australia
| | - Bingqiao Xie
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mahesh P Suryawanshi
- School of Photovoltaic and Renewable Energy Engineering, UNSW, Kensington, NSW, 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, UNSW, Kensington, NSW, 2052, Australia
| |
Collapse
|
2
|
Kravets VG, Grigorenko AN. Water and seawater splitting with MgB 2 plasmonic metal-based photocatalyst. Sci Rep 2025; 15:1224. [PMID: 39773999 PMCID: PMC11707196 DOI: 10.1038/s41598-024-82494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Plasmonic nanostructures can help to drive chemical photocatalytic reactions powered by sunlight. These reactions involve excitation of plasmon resonances and subsequent charge transfer to molecular orbitals under study. Here we engineered photoactive plasmonic nanostructures with enhanced photocatalytic performance using non-noble metallic MgB2 high-temperature superconductor which represents a new family of photocatalysts. Ellipsometric study of fabricated MgB2 nanostructures demonstrates that this covalent binary metal with layered graphite-like structure could effectively absorb visible and infrared light by excitation of multi-wavelengths surface plasmon resonances. We show that a MgB2 plasmonic metal-based photocatalyst exhibit fundamentally different behaviour compared to that of a semiconductor photocatalyst and provides several advantages in photovoltaics applications. Excitation of localised surface plasmon resonances in MgB2 nanostructures allows one to overcome the limiting factors of photocatalytic efficiency observed in semiconductors with a wide energy bandgap due to the usage of a broader spectrum range of solar radiation for water splitting catalytic reactions conditioned by enhanced local electromagnetic fields of localised plasmons. Excitation of localised surface plasmon resonances induced by absorption of light in MgB2 nanosheets could help to achieve near full-solar spectrum harvesting in this photocatalytic system. We demonstrate a conversion efficiency of ~ 5% at bias voltage of V bias = 0.3 V for magnesium diboride working as a catalyst for the case of plasmon-photoinduced seawater splitting. Our work could result in inexpensive and stable photocatalysts that can be produced in large quantities using a mechanical rolling mill procedure.
Collapse
Affiliation(s)
- Vasyl G Kravets
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK.
| | - Alexander N Grigorenko
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Ramachandran S, João SM, Jin H, Lischner J. Hot carriers from intra- and interband transitions in gold-silver alloy nanoparticles. Commun Chem 2024; 7:169. [PMID: 39090404 PMCID: PMC11294548 DOI: 10.1038/s42004-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Hot electrons and holes generated from the decay of localised surface plasmons in metallic nanoparticles can be harnessed for applications in solar energy conversion and sensing. In this paper, we study the generation of hot carriers in large spherical gold-silver alloy nanoparticles using a recently developed atomistic modelling approach that combines a solution of Maxwell's equations with large-scale tight-binding simulations. We find that hot-carrier properties depend sensitively on the alloy composition. Specifically, nanoparticles with a large gold fraction produce hot carriers under visible light illumination while nanoparticles with a large silver fraction require higher photon energies to produce hot carriers. Moreover, most hot carriers in nanoparticles with a large gold fraction originate from interband transitions which give rise to energetic holes and 'cold' electrons near the Fermi level. Increasing the silver fraction enhances the generation rate of hot carriers from intraband transitions which produce energetic electrons and 'cold' holes. These findings demonstrate that alloy composition is a powerful tuning parameter for the design of nanoparticles for applications in solar energy conversion and sensing that require precise control of hot-carrier properties.
Collapse
Affiliation(s)
| | - Simão M João
- Department of Materials, Imperial College London, London, UK
| | - Hanwen Jin
- Department of Materials, Imperial College London, London, UK
| | - Johannes Lischner
- Department of Materials, Imperial College London, London, UK.
- The Thomas Young Centre for Theory and Simulation of Materials, London, UK.
| |
Collapse
|
4
|
Moazen Dehkordi S, Mohammadi H. Improvement of directivity in plasmonic nanoantennas based on structured cubic gold nanoparticles. Sci Rep 2024; 14:17153. [PMID: 39060408 PMCID: PMC11282185 DOI: 10.1038/s41598-024-68320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
An array of metallic nanoparticles can diffract or concentrate the incident electromagnetic wave and behave as an antenna. In this paper, the effects of the inner sub-wavelength structure of nanoparticles are studied on the directivity of the plasmonic nanoantenna, which is coated on the output of a waveguide. Three 5*5 element configurations are analyzed: nanocubes, nanoshells, and nanoframes array. Numerical results are obtained using the 3D FDTD technique. The results show that structured nanoantennas can improve the antenna's directivity due to the plasmonic properties and hybridization mechanism. Between the three configurations investigated in the 250-800 nm wavelength range, the nanoshell array exhibits maximum and minimum amounts of its directivity at 321.5 nm and 591 nm, respectively. At 558 nm, nanoframes and nanoshells' arrays show the same amount of directivity, and from the wavelength greater than 558 nm, the nanoframe array has the best performance. The results may help design and fabricate directive optical fiber endcaps.
Collapse
Affiliation(s)
| | - Hamidreza Mohammadi
- Faculty of Physics, University of Isfahan, Isfahan, P.O. Box 81746-7344, Iran.
- Quantum Optics Group, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
5
|
Mandal I, Gangareddy J, Sethurajaperumal A, Nk M, Majji M, Bera S, Rudra P, Ravichandran V, Bysakh S, Jacob N, Rao KDM, Singh RK, Krishnan NMA, Chirumamilla M, Palanisamy T, Motapothula M, Varrla E, Ghosh S, Allu AR. H-Glass Supported Hybrid Gold Nano-Islands for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401131. [PMID: 38563587 DOI: 10.1002/smll.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.
Collapse
Affiliation(s)
- Indrajeet Mandal
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Jagannath Gangareddy
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Abimannan Sethurajaperumal
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Murugasenapathi Nk
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manikanta Majji
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Susmita Bera
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST), Sector V, Salt Lake, Kolkata, 700091, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Noah Jacob
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - K D M Rao
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rajiv K Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Photovoltaic Metrology Section, Advanced Material and Devices Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073, Hamburg, Germany
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Motapothula
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Srabanti Ghosh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Chen D, Zhang Y, Meng S. Molecular Orbital Insights into Plasmon-Induced Methane Photolysis. NANO LETTERS 2023; 23:11638-11644. [PMID: 37917131 DOI: 10.1021/acs.nanolett.3c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As a promising way to reduce the temperature for conventional thermolysis, plasmon-induced photocatalysis has been utilized for the dehydrogenation of methane. Here we probe the microscopic dynamic mechanism for plasmon-induced methane dissociation over a tetrahedral Ag20 nanoparticle with molecular orbital insights using time-dependent density functional theory. We ingeniously built the relationship between the chemical bonds and molecular orbitals via Hellmann-Feynman forces. The time- and energy-resolved photocarrier analysis shows that the indirect hot hole transfer from the Ag nanoparticle to methane dominates the photoreaction at low laser intensity, due to the strong hybridization of the Ag nanoparticle and CH4 orbitals, while indirect and direct charge transfer coexist to facilitate methane dissociation in intense laser fields. Our findings can be used to design novel methane photocatalysts and highlight the broad prospects of the molecular orbital approach for adsorbate-substrate systems.
Collapse
Affiliation(s)
- Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yimin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
7
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
8
|
Murphey CGE, Park JS, Kim S, Cahoon JF. Epitaxially Grown Silicon Nanowires with a Gold Molecular Adhesion Layer for Core/Shell Structures with Compact Mie and Plasmon Resonances. ACS NANO 2023; 17:21739-21748. [PMID: 37890020 DOI: 10.1021/acsnano.3c07157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Noble-metal plasmonic nanostructures have attracted much attention because they can support deep-subwavelength optical resonances, yet their performance tends to be limited by high Ohmic absorption losses. In comparison, high-index dielectric materials can support low-loss optical resonances but do not tend to yield the same subwavelength optical confinement. Here, we combine these two approaches and examine the dielectric-plasmonic resonances in dielectric/metal core/shell nanowires. Si nanowires were grown epitaxially from (111) substrates, and direct deposition of Au on these structures by physical vapor deposition yielded nonconformal Au islands. However, by introduction of a molecular adhesion layer prior to deposition, cylindrical Si/Au core/shell nanostructures with conformal metal shells were successfully fabricated. Examining these structures as optical cavities using both optical simulations and experimental extinction measurements, we found that the structures support Mie resonances with quality factors enhanced up to ∼30 times compared with pure dielectric structures and plasmon resonances with optical confinement enhanced up to ∼5 times compared with pure metallic structures. Interestingly, extinction spectra of both Mie and plasmon resonances yield Fano line shapes, whose manifestation can be attributed to the combination of high quality factor resonances, Mie-plasmon coupling, and phase delay of the background optical field. This work demonstrates a bottom-up synthetic method for the production of freestanding, cylindrically symmetric semiconductor/metal core/shell nanowires that enables the efficient trapping of light on deep-subwavelength length scales for varied applications in photonics and optoelectronics.
Collapse
Affiliation(s)
- Corban G E Murphey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jin-Sung Park
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Seokhyoung Kim
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
9
|
Wang Y, Dou W. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping. J Chem Phys 2023; 159:094103. [PMID: 37655774 DOI: 10.1063/5.0161292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to solve the FCME. In this study, we map the FCME into a Floquet Fokker-Planck equation in the limit of fast Floquet driving and fast electron motion as compared to nuclear motion. The Fokker-Planck equation is then being solved using Langevin dynamics with explicit friction and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the second fluctuation-dissipation theorem, which further gives rise to heating effects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
10
|
Lyu P, Espinoza R, Nguyen SC. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15685-15698. [PMID: 37609384 PMCID: PMC10440817 DOI: 10.1021/acs.jpcc.3c04436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Photocatalysis induced by localized surface plasmon resonance of metallic nanoparticles has been studied for more than a decade, but photocatalysis originating from direct interband excitations is still under-explored. The spectral overlap and the coupling of these two optical regimes also complicate the determination of hot carriers' energy states and eventually hinder the accurate assignment of their catalytic role in studied reactions. In this Featured Article, after reviewing previous studies, we suggest classifying the photoexcitation via intra- and interband transitions where the physical states of hot carriers are well-defined. Intraband transitions are featured by creating hot electrons above the Fermi level and suitable for reductive catalytic pathways, whereas interband transitions are featured by generating hot d-band holes below the Fermi level and better for oxidative catalytic pathways. Since the contribution of intra- and interband transitions are different in the spectral regions of localized surface plasmon resonance and direct interband excitations, the wavelength dependence of the photocatalytic activities is very helpful in assigning which transitions and carriers contribute to the observed catalysis.
Collapse
Affiliation(s)
- Pin Lyu
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
11
|
Guo A, Lu Y, Song Y, Cao Y, Du R, Li J, Fu Z, Yan L, Zhang Z. Plasmon-Mediated Hydrogen Dissociation with Symmetry Tunability. J Phys Chem Lett 2023:5748-5753. [PMID: 37319379 DOI: 10.1021/acs.jpclett.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The atomic-scale mechanism of plasmon-mediated H2 dissociation on gold nanoclusters is investigated using time-dependent density functional theory. The position relationship between the nanocluster and H2 has a strong influence on the reaction rate. When the hydrogen molecule is located in the interstitial center of the plasmonic dimer, the hot spot here has a great field enhancement, which can promote dissociation effectively. The change in the molecular position results in symmetry breaking, and the molecular dissociation is inhibited. For the asymmetric structure, direct charge transfer from the gold cluster to the antibonding state of the hydrogen molecule by plasmon decay makes a prominent contribution to the reaction. The results provide deep insights into the influence of structural symmetry on plasmon-assisted photocatalysis in the quantum regime.
Collapse
Affiliation(s)
- Axin Guo
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yirui Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuhui Song
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifei Cao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ruhai Du
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jinping Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhengkun Fu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Yan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
12
|
Xu Z, Zhang Y, Wang Z, Chen D, You P, Li S, Guo H, Meng S. Why Does Single-Atom Photocatalysis Work Better Than Conventional Photocatalysis? A Study on Ultrafast Excited Carrier and Structure Dynamics. NANO LETTERS 2023; 23:4023-4031. [PMID: 37104145 DOI: 10.1021/acs.nanolett.3c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the introduction of single atoms in photocatalysis, a small change in the electronic and geometric structure of the substrate can result in higher energy conversion efficiency, whereas the underlying microscopic dynamics are rarely illustrated. Here, employing real-time time-dependent density functional theory, we explore the ultrafast electronic and structural dynamics of single-atom photocatalysts (SAPCs) in water splitting at the microscopic scale. The results demonstrate that a single-atom Pt loaded on graphitic carbon nitride greatly promotes photogenerated carriers compared to traditional photocatalysts, and effectively separates the excited electrons from holes, prolonging the lifetime of the excited carriers. The flexible oxidation state (Pt2+, Pt0, or Pt3+) renders the single atom as an active site to adsorb the reactant and to catalyze the reactions as a charge transfer bridge at different stages during the photoreaction process. Our results offer deep insights into the single-atom photocatalytic reactions and benefit the design of high-efficiency SAPCs.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yimin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
13
|
Vanzan M, Gil G, Castaldo D, Nordlander P, Corni S. Energy Transfer to Molecular Adsorbates by Transient Hot Electron Spillover. NANO LETTERS 2023; 23:2719-2725. [PMID: 37010208 PMCID: PMC10103299 DOI: 10.1021/acs.nanolett.3c00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Hot electron (HE) photocatalysis is one of the most intriguing fields of nanoscience, with a clear potential for technological impact. Despite much effort, the mechanisms of HE photocatalysis are not fully understood. Here we investigate a mechanism based on transient electron spillover on a molecule and subsequent energy release into vibrational modes. We use state-of-the-art real-time Time Dependent Density Functional Theory (rt-TDDFT), simulating the dynamics of a HE moving within linear chains of Ag or Au atoms, on which CO, N2, or H2O are adsorbed. We estimate the energy a HE can release into adsorbate vibrational modes and show that certain modes are selectively activated. The energy transfer strongly depends on the adsorbate, the metal, and the HE energy. Considering a cumulative effect from multiple HEs, we estimate this mechanism can transfer tenths of an eV to molecular vibrations and could play an important role in HE photocatalysis.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Department
of Physics, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Gabriel Gil
- Instituto
de Cibernetica, Matematica y Física, Calle E esq 15 Vedado, 10400 La Habana, Cuba
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Peter Nordlander
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stefano Corni
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- CNR
Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
14
|
Meng Y, Liu Q. New Insights into Adsorption Properties of the Tubular Au 26 from AIMD Simulations and Electronic Interactions. Molecules 2023; 28:molecules28072916. [PMID: 37049681 PMCID: PMC10096096 DOI: 10.3390/molecules28072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, we revealed the electronic nature of the tubular Au26 based on spherical aromaticity. The peculiar structure of the Au26 could be an ideal catalyst model for studying the adsorptions of the Au nanotubes. However, through Google Scholar, we found that no one has reported connections between the structure and reactivity properties of Au26. Here, three kinds of molecules are selected to study the fundamental adsorption behaviors that occur on the surface of Au26. When one CO molecule is adsorbed on the Au26, the σ-hole adsorption structure is quickly identified as belonging to a ground state energy, and it still maintains integrity at a temperature of 500 K, where σ donations and π-back donations take place; however, two CO molecules make the structure of Au26 appear with distortions or collapse. When one H2 is adsorbed on the Au26, the H-H bond length is slightly elongated due to charge transfers to the anti-bonding σ* orbital of H2. The Au26-H2 can maintain integrity within 100 fs at 300 K and the H2 molecule starts moving away from the Au26 after 200 fs. Moreover, the Au26 can act as a Lewis base to stabilize the electron-deficient BH3 molecule, and frontier molecular orbitals overlap between the Au26 and BH3.
Collapse
Affiliation(s)
- Ying Meng
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232000, China
| | - Qiman Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232000, China
- Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan 232000, China
| |
Collapse
|
15
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
16
|
Lin S, Habib MA, Burse S, Mandavkar R, Khalid T, Joni MH, Li MY, Kunwar S, Lee J. Hybrid UV Photodetector Design Incorporating AuPt Alloy Hybrid Nanoparticles, ZnO Quantum Dots, and Graphene Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2204-2215. [PMID: 36563284 DOI: 10.1021/acsami.2c19006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A hybrid device scheme is an attractive strategy in the construction of advanced UV photodetectors due to the flexibility in selecting the components and correspondingly improved optoelectronic properties by the cooperation of various components, which cannot be achieved by a single component device. In this work, a novel hybrid UV photodetector (PD) is demonstrated by adapting AuPt alloy hybrid nanoparticles (AHNPs), ZnO quantum dots (QDs), and graphene quantum dots (GQDs), namely, GQD/ZnO/AHNP PD. The optimized device achieves high-end figure-of-merit performance with a responsivity of 2299 mA/W, detectivity of 7.04 × 1010 jones, and external quantum efficiency of 741%. Enhanced photocurrent can be associated with the hot electron generation around the AuPt AHNPs and swift transfer to the conduction band of ZnO QDs. At the same time, the added carrier injection is achieved by a thin layer of GQDs. High density of hotspots and electromagnetic fields are generated by the strong localized surface plasmon resonance (LSPR) by the uniquely designed AuPt AHNPs with the fully alloyed AuPt NPs and adjacent small background Au NPs. The e-field distribution of various NP configurations is systematically investigated with finite-difference time-domain (FDTD) simulations.
Collapse
Affiliation(s)
- Shusen Lin
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Md Ahasan Habib
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Shalmali Burse
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Rutuja Mandavkar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Tasmia Khalid
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Mehedi Hasan Joni
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| | - Ming-Yu Li
- School of Science, Wuhan University of Technology, Wuhan, Hubei430070, China
| | - Sundar Kunwar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul01897, South Korea
| |
Collapse
|
17
|
Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 2022; 6:259-274. [PMID: 37117871 DOI: 10.1038/s41570-022-00368-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.
Collapse
|
18
|
Gao S, Zhen H, Wen B, Ma J, Zhang X. Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst via machine learning accelerated DFT study. NANOSCALE 2022; 14:2660-2667. [PMID: 35106528 DOI: 10.1039/d1nr07661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The amorphous alloy Pd40Ni10Cu30P20 is a rising star as an HER catalyst since it possesses an excellent electrocatalytic activity and a high durability in practical experiments. However, the physical origin of the electrocatalytic performance of the amorphous alloy catalyst is still unclear due to the difficulty of amorphous modelling and the huge cost of DFT calculations. Here, we built a Smooth Overlap of Atomic Positions-Machine Learning (SOAP-ML) model to accelerate the DFT study on the effect of the local atomic environment of the Pd40Ni10Cu30P20 catalyst. Compared to pure DFT-calculated results and experiment, our model makes a good prediction (MSE = 0.018) of the local atomic environment with the best catalysis. We calculated 40 000 active sites on the amorphous alloy surface and obtained the optimal atomic ratio of the alloy catalyst (Pd : Cu : P : Ni = 0.51 : 0.33 : 0.09 : 0.07), indicating that the Pd d electrons mainly enhance the catalytic performance. We employed the SOAP-ML model to reveal the physical origin of the long durability as the dealloying of Ni, which is highly consistent with the experimental results. The above results all prove the high accuracy and reliability of the established SOAP-ML model and provide an appealing idea for the future application of the amorphous alloy.
Collapse
Affiliation(s)
- Siyan Gao
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano, Shenzhen University, Shenzhen 518060, China.
| | - Huijie Zhen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano, Shenzhen University, Shenzhen 518060, China.
| | - Bo Wen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano, Shenzhen University, Shenzhen 518060, China.
| | - Jiang Ma
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano, Shenzhen University, Shenzhen 518060, China.
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Berdakin M, Soldano G, Bonafé FP, Liubov V, Aradi B, Frauenheim T, Sánchez CG. Dynamical evolution of the Schottky barrier as a determinant contribution to electron-hole pair stabilization and photocatalysis of plasmon-induced hot carriers. NANOSCALE 2022; 14:2816-2825. [PMID: 35133376 DOI: 10.1039/d1nr04699c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The harnessing of plasmon-induced hot carriers promises to open new avenues for the development of clean energies and chemical catalysis. The extraction of carriers before thermalization and recombination is of fundamental importance to obtain appealing conversion yields. Here, hot carrier injection in the paradigmatic Au-TiO2 system is studied by means of electronic and electron-ion dynamics. Our results show that pure electronic features (without considering many-body interactions or dissipation to the environment) contribute to the electron-hole separation stability. These results reveal the existence of a dynamic contribution to the interfacial potential barrier (Schottky barrier) that arises at the charge injection pace, impeding electronic back transfer. Furthermore, we show that this charge separation stabilization provides the time needed for the charge to leak to capping molecules placed over the TiO2 surface triggering a coherent bond oscillation that will lead to a photocatalytic dissociation. We expect that our results will add new perspectives to the interpretation of the already detected long-lived hot carrier lifetimes and their catalytical effect, and concomitantly to their technological applications.
Collapse
Affiliation(s)
- Matias Berdakin
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina.
- Departamento de Química Teórica y Computacional, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - German Soldano
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina.
- Departamento de Química Teórica y Computacional, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Franco P Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg, Germany
| | - Varlamova Liubov
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
- Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, China
| | - Cristián G Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, CONICET, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| |
Collapse
|
20
|
Zhang Y, Yan L, Guan M, Chen D, Xu Z, Guo H, Hu S, Zhang S, Liu X, Guo Z, Li S, Meng S. Indirect to Direct Charge Transfer Transition in Plasmon-Enabled CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102978. [PMID: 34766740 PMCID: PMC8805563 DOI: 10.1002/advs.202102978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/11/2021] [Indexed: 05/25/2023]
Abstract
Understanding hot carrier dynamics between plasmonic nanomaterials and its adsorbate is of great importance for plasmon-enhanced photoelectronic processes such as photocatalysis, optical sensing and spectroscopic analysis. However, it is often challenging to identify specific dominant mechanisms for a given process because of the complex pathways and ultrafast interactive dynamics of the photoelectrons. Here, using CO2 reduction as an example, the underlying mechanisms of plasmon-driven catalysis at the single-molecule level using time-dependent density functional theory calculations is clearly probed. The CO2 molecule adsorbed on two typical nanoclusters, Ag20 and Ag147 , is photoreduced by optically excited plasmon, accompanied by the excitation of asymmetric stretching and bending modes of CO2 . A nonlinear relationship has been identified between laser intensity and reaction rate, demonstrating a synergic interplay and transition from indirect hot-electron transfer to direct charge transfer, enacted by strong localized surface plasmons. These findings offer new insights for CO2 photoreduction and for the design of effective pathways toward highly efficient plasmon-mediated photocatalysis.
Collapse
Affiliation(s)
- Yimin Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Lei Yan
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710119P. R. China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Zhe Xu
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Haizhong Guo
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Shiqi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Shengjie Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| | - Zhengxiao Guo
- Departments of Chemistry and Mechanical EngineeringThe University of Hong KongHong Kong999077P. R. China
- HKU Zhejiang Institute of Research and InnovationThe University of Hong KongHangzhou311305P. R. China
| | - Shunfang Li
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
21
|
Huang J, Zhao X, Huang X, Liang W. Understanding the mechanism of plasmon-driven water splitting: hot electron injection and a near field enhancement effect. Phys Chem Chem Phys 2021; 23:25629-25636. [PMID: 34757361 DOI: 10.1039/d1cp03509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has currently become an active area of research in solar photocatalysis at the nanoscale. However, the mechanism underlying exact transfer and the generation dynamics of hot carriers, and the strategies used to further improve the quantum efficiency of the photocatalytic reaction still deserve further investigation. In this work, we perform a nonadiabatic excited-state dynamics study to depict the correlation between the reaction rate of plasmon-driven water splitting (PDWS) and the sizes of gold particles, the incident light frequency and intensity, and the near-field spatial distribution. Four model systems, H2O and Au20@H2O separately interacting with the laser field and the near field generated by the Au nanoparticle (NP) with a few nanometers in size, have been investigated. Our simulated results clearly unveil the mechanism of PDWS and hot-electron injection in a Schottky-free junction: the electrons populated on the antibonding orbitals of H2O are mandatory to drive the OH bond breaking and the strong orbital hybridization between Au20 and H2O creates the conditions for direct electron injection. We further find that the linear dependence of the reaction rate and the field amplitude only holds at a relatively weak field and it breaks down when the second OH bond begins to dissociate and field-induced water fragmentation occurs at a very intensive field, and that with the guarantee of electron injection, the water splitting rate increases with an increase in the NP size. This study will be helpful for further improving the efficiency of photochemical reactions involving plasmon-generated hot carriers and expanding the applications of hot carriers in a variety of chemical reactions.
Collapse
Affiliation(s)
- Jiaquan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| | - Xinyi Zhao
- Xiamen Huaxia University, Ximen 361005, Fujian Province, China
| | - Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| |
Collapse
|
22
|
Zhang Y, Chen D, Meng W, Li S, Meng S. Plasmon-Induced Water Splitting on Ag-Alloyed Pt Single-Atom Catalysts. Front Chem 2021; 9:742794. [PMID: 34760868 PMCID: PMC8573343 DOI: 10.3389/fchem.2021.742794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
A promising route to realize solar-to-chemical energy conversion resorts to water splitting using plasmon photocatalysis. However, the ultrafast carrier dynamics and underlying mechanism in such processes has seldom been investigated, especially when the single-atom catalyst is introduced. Here, from the perspective of quantum dynamics at the atomic length scale and femtosecond time scale, we probe the carrier and structural dynamics of plasmon-assisted water splitting on an Ag-alloyed Pt single-atom catalyst, represented by the Ag19Pt nanocluster. The substitution of an Ag atom by the Pt atom at the tip of the tetrahedron Ag20 enhances the interaction between water and the nanoparticle. The excitation of localized surface plasmons in the Ag19Pt cluster strengthens the charge separation and electron transfer upon illumination. These facts cooperatively turn on more than one charge transfer channels and give rise to enhanced charge transfer from the metal nanoparticle to the water molecule, resulting in rapid plasmon-induced water splitting. These results provide atomistic insights and guidelines for the design of efficient single-atom photocatalysts for plasmon-assisted water splitting.
Collapse
Affiliation(s)
- Yimin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China.,Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Weite Meng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China.,School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Kuda-Singappulige GU, Aikens CM. Theoretical Insights into Excitation-Induced Oxygen Activation on a Tetrahedral Ag 8 Cluster. J Phys Chem A 2021; 125:9450-9458. [PMID: 34669419 DOI: 10.1021/acs.jpca.1c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research on small-molecule dissociation on plasmonic silver nanoparticles is on the rise. Herein, we investigate the effect of various parameters of light, i.e., field strength, polarization direction, and energy of oscillation, on the dynamics of oxygen upon photoexcitation of the O2@Ag8 composite using real-time time-dependent density functional theory calculations with Ehrenfest dynamics. From our excited-state dynamics calculations, we found that increasing the strength of the external electric field brings a significant contribution to the O-O dissociation. In addition, the polarization direction of the incident light becomes important, especially at weaker field strengths. The light that is polarized along the direction of charge transfer from the metal to adsorbate and the light that is polarized along the long axis of molecular oxygen were found to enhance the bond breaking of O2 significantly. We also found that at the weakest electric field strength, the oxygen molecule stays adsorbed to the silver cluster when the incident light resonates with low-energy excited states and desorbs away from the metal cluster with high-energy excitations. With strong electric fields, oxygen either desorbs or dissociates.
Collapse
Affiliation(s)
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
24
|
The importance of the shape of Cu2O nanocrystals on plasmon-enhanced oxygen evolution reaction in alkaline media. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
You P, Lian C, Chen D, Xu J, Zhang C, Meng S, Wang E. Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor. NANO LETTERS 2021; 21:6449-6455. [PMID: 34279962 DOI: 10.1021/acs.nanolett.1c01187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To elucidate the nature of light-driven photocatalytic water splitting, a polymeric semiconductor-graphitic carbon nitride (g-C3N4)-has been chosen as a prototype substrate for studying atomistic water spitting processes in realistic environments. Our nonadiabatic quantum dynamics simulations based on real-time time-dependent density functional theory reveal explicitly the transport channel of photogenerated charge carriers at the g-C3N4/water interface, which shows a strong correlation to bond re-forming. A three-step photoreaction mechanism is proposed, whereas the key roles of hole-driven hydrogen transfer and interfacial water configurations were identified. Immediately following photocatalytic water splitting, atomic pathways for the two dissociated hydrogen atoms approaching each other and forming the H2 gas molecule are demonstrated, while the remanent OH radicals may form intermediate products (e.g., H2O2). These results provide critical new insights for the characterization and further development of efficient water-splitting photocatalysts from a dynamic perspective.
Collapse
Affiliation(s)
- Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Lian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Enge Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, People's Republic of China
- School of Physics, Liaoning University, Shenyang 110136, People's Republic of China
| |
Collapse
|
26
|
Pandeya P, Aikens CM. Real-Time Electron Dynamics Study of Plasmon-Mediated Photocatalysis on an Icosahedral Al 13-1 Nanocluster. J Phys Chem A 2021; 125:4847-4860. [PMID: 34048246 DOI: 10.1021/acs.jpca.1c02924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitrogen bond dissociation is one of the important steps in the Haber-Bosch process, where N2 is catalytically converted to NH3; however, the dissociation of the nitrogen triple bond is difficult to achieve. In this study, we investigate the possibility of nitrogen activation using plasmonic excitation of an icosahedral aluminum nanocluster. Real-time time-dependent density functional theory is employed to study the electron dynamics of the Al13-1 and [Al13N2]-1 systems. Step and trapezoidal electric fields with field strengths of 0.001 and 0.01 au and different polarization directions are applied to the systems, and the electron dynamics are analyzed. Because the occupation of nitrogen antibonding orbitals could potentially activate the N-N bond, we investigated the single-particle electronic transitions corresponding to an excitation from an occupied (O) to virtual (V) molecular orbitals (POV) of [Al13N2]-1. We found that N2 antibonding orbitals are more likely to become populated with stronger fields and also by using off-resonance fields.
Collapse
Affiliation(s)
- Pratima Pandeya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
27
|
Li X, Cheng X, Zhang H. Ab initio dynamics simulation of laser-induced photodissociation of phenol. Phys Chem Chem Phys 2021; 23:12718-12730. [PMID: 34037002 DOI: 10.1039/d1cp00290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically investigated the photodissociation dynamics of phenol molecules steered by a sequence of temporally shaped femtosecond laser pulses with high intensity and ultrashort duration, via the real-time Time-Dependent Density Functional Theory (rt-TDDFT) combined with a Molecular Dynamics (MD) simulation. The principal findings of this research are that the phenol photodissociation can take place in 50 fs; the bonds broke sequentially; the degree of phenol molecular dissociation has a strong linear correlation with the intensity. For an incident laser being 800 nm-40 fs (wavelength-pulse duration), the threshold intensity is 7 × 1014 W cm-2 and the products are hydrogen from OH1 (phenolic hydroxyl group) and C6H5O-fragments. More fragments will be found at stronger intensity, shorter wavelengths, and longer pulse duration. More accurately, we estimated the critical values of bond cleavage of an isolated phenol molecule are 1.779 Å for O-H1 and 2.184 Å for C-Hs via Electron localization function (ELF) analysis. The photodissociation of the phenol molecule was triggered via the excitation of electrons and the dissociation process of phenol here is in good agreement with the characteristics of field-assisted dissociation (FAD) theory. Orthogonal tests with an L9 (34) matrix and threshold intensity decrease tests were conducted to confirm the mechanism. Our research gives an insight into the photodissociation experiment of phenol and provides a simple yet effective way to understand the photochemical experiments of more complex organic pollutants with toxicity.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Physical, Sichuan University, Chengdu 610065, China.
| | | | | |
Collapse
|
28
|
Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem Asian J 2021; 16:720-742. [PMID: 33440045 DOI: 10.1002/asia.202001202] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Inducing plasmonic characteristics, primarily localized surface plasmon resonance (LSPR), in conventional AuNPs through particle size and shape control could lead to a significant enhancement in electrical, electrochemical, and optical properties. Synthetic protocols and versatile fabrication methods play pivotal roles to produced plasmonic gold nanoparticles (AuNPs), which can be employed in multipurpose energy, environmental and biomedical applications. The main focus of this review is to provide a comprehensive and tutorial overview of various synthetic methods to design highly plasmonic AuNPs, along with a brief essay to understand the experimental procedure for each technique. The latter part of the review is dedicated to the most advanced and recent solar-induced energy, environmental and biomedical applications. The synthesis methods are compared to identify the best possible synthetic route, which can be adopted while employing plasmonic AuNPs for a specific application. The tutorial nature of the review would be helpful not only for expert researchers but also for novices in the field of nanomaterial synthesis and utilization of plasmonic nanomaterials in various industries and technologies.
Collapse
Affiliation(s)
- Nafeesa Sarfraz
- Department of Chemistry, Govt. Post Graduate College (For Women), University of Harīpur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Ibrahim Khan
- Centre for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
29
|
Agrawal S, Mysko RA, Nigra MM, Mohanty SK, Hoepfner MP. Plasmonic Photocatalytic Enhancement of L-Cysteine Self-Assembled Gold Nanoparticle Clusters for Fenton Reaction Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3281-3287. [PMID: 33719459 DOI: 10.1021/acs.langmuir.0c03254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmon-enhanced photocatalysis has the potential to reduce activation energies and decrease temperature requirements, which increases catalyst stability and lowers process operating costs. The near-field enhancement that occurs at junctions between plasmonic nanoparticle clusters (i.e., hot spots) has been well-studied for sensing applications (e.g., Raman scattering). However, experimental insight into the effect of nanoparticle cluster hot spots on plasmon-enhanced photocatalysis is lacking. We demonstrate that catalytic activity is increased when clusters of gold nanoparticles (AuNPs) are formed relative to isolated particles using the same catalyst loading. Through experimental controls, we conclude that this catalytic enhancement is most likely due to the formation of plasmonic hot spots. Clusters of AuNPs were formed by adding L-cysteine to an AuNP dispersion, and a 20 ± 12% enhancement in the photocatalytic dye degradation rate was observed using a Fenton process. While this report may be a modest enhancement relative to the spectacular near-field electromagnetic field enhancements predicted by simulation at the nanoparticle junction, this finding supports the recent work of Srimanta et al. that plasmonic hot spots contribute to catalytic rate enchantments. It is anticipated that further self-assembly strategies to optimize interparticle orientations and cluster size distributions will improve the enhancement due to the formation of hot spots, and careful control will be required. For example, excess L-cysteine addition revealed extensive aggregation and subsequent rate reductions.
Collapse
Affiliation(s)
- Siddharth Agrawal
- Department of Chemical Engineering, University of Utah, 50 Central Campus Dr., Salt Lake City, Utah 84112, United States
| | - Ryan A Mysko
- Department of Chemical Engineering, University of Utah, 50 Central Campus Dr., Salt Lake City, Utah 84112, United States
| | - Michael M Nigra
- Department of Chemical Engineering, University of Utah, 50 Central Campus Dr., Salt Lake City, Utah 84112, United States
| | - Swomitra K Mohanty
- Department of Chemical Engineering, University of Utah, 50 Central Campus Dr., Salt Lake City, Utah 84112, United States
| | - Michael P Hoepfner
- Department of Chemical Engineering, University of Utah, 50 Central Campus Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Luo S, Ren X, Lin H, Song H, Ye J. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem Sci 2021; 12:5701-5719. [PMID: 34168800 PMCID: PMC8179669 DOI: 10.1039/d1sc00064k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 01/20/2023] Open
Abstract
Solar-to-fuel conversion through photocatalytic processes is regarded as promising technology with the potential to reduce reliance on dwindling reserves of fossil fuels and to support the sustainable development of our society. However, conventional semiconductor-based photocatalytic systems suffer from unsatisfactory reaction efficiencies due to limited light harvesting abilities. Recent pioneering work from several groups, including ours, has demonstrated that visible and infrared light can be utilized by plasmonic catalysts not only to induce local heating but also to generate energetic hot carriers for initiating surface catalytic reactions and/or modulating the reaction pathways, resulting in synergistically promoted solar-to-fuel conversion efficiencies. In this perspective, we focus primarily on plasmon-mediated catalysis for thermodynamically uphill reactions converting CO2 and/or H2O into value-added products. We first introduce two types of mechanism and their applications by which reactions on plasmonic nanostructures can be initiated: either by photo-induced hot carriers (plasmonic photocatalysis) or by light-excited phonons (photothermal catalysis). Then, we emphasize examples where the hot carriers and phonon modes act in concert to contribute to the reaction (plasmonic photothermal catalysis), with special attention given to the design concepts and reaction mechanisms of the catalysts. We discuss challenges and future opportunities relating to plasmonic photothermal processes, aiming to promote an understanding of underlying mechanisms and provide guidelines for the rational design and construction of plasmonic catalysts for highly efficient solar-to-fuel conversion.
Collapse
Affiliation(s)
- Shunqin Luo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo 060-0814 Japan
| | - Xiaohui Ren
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo 060-0814 Japan
| | - Huiwen Lin
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo 060-0814 Japan
- TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
31
|
Bustamante CM, Gadea ED, Horsfield A, Todorov TN, González Lebrero MC, Scherlis DA. Dissipative Equation of Motion for Electromagnetic Radiation in Quantum Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:087401. [PMID: 33709735 DOI: 10.1103/physrevlett.126.087401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for C^{2+}, B^{+}, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of 0.57±0.02, 0.86±0.07, and 1.77-2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Andrew Horsfield
- Department of Materials, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tchavdar N Todorov
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
32
|
Brooks JL, Warkentin CL, Chulhai DV, Goodpaster JD, Frontiera RR. Plasmon-Mediated Intramolecular Methyl Migration with Nanoscale Spatial Control. ACS NANO 2020; 14:17194-17202. [PMID: 33296172 DOI: 10.1021/acsnano.0c07123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic materials interact strongly with light to focus and enhance electromagnetic radiation down to nanoscale volumes. Due to this localized confinement, materials that support localized surface plasmon resonances are capable of driving energetically unfavorable chemical reactions. In certain cases, the plasmonic nanostructures are able to preferentially catalyze the formation of specific photoproducts, which offers an opportunity for the development of solar-driven chemical synthesis. Here, using plasmonic environments, we report inducing an intramolecular methyl migration reaction, forming 4-methylpyridine from N-methylpyridinium. Using both experimental and computational methods, we were able to confirm the identity of the N-methylpyridinium by making spectral comparisons against possible photoproducts. This reaction involves breaking a C-N bond and forming a new C-C bond, highlighting the ability of plasmonic materials to drive complex and selective reactions. Additionally, we observe that the product yield depends strongly on optical illumination conditions. This is likely due to steric hindrance in specific regions on the nanostructured plasmonic substrate, providing an optical handle for driving plasmonic catalysis with spatial specificity. This work adds yet another class of reactions accessible by surface plasmon excitation to the ever-growing library of plasmon-mediated chemical reactions.
Collapse
Affiliation(s)
- James L Brooks
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher L Warkentin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dhabih V Chulhai
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Yang CP, Yu SH, Mai FD, Kuo TC, Liu YC. New solar energy-storage resource of plasmon-activated water solution with higher chemical potential. Sci Rep 2020; 10:20868. [PMID: 33257784 PMCID: PMC7705734 DOI: 10.1038/s41598-020-77815-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/05/2022] Open
Abstract
Nowadays, solar energy is the most environmentally friendly energy source to drive many chemical reactions and physical processes. However, the corresponding fabrication procedures for obtaining excellent energy-storage devices are relatively complicated and expensive. In this work, we report an innovative strategy on plasmon-activated water (PAW) serving as energy-storage medium from solar energy. The lifetime of the created energetic PAW solution from hot electron transfer (HET) on Au nanoparticles (AuNPs) illuminated with sunshine can last for 2 days, making the energy-storage system is practically available. Encouragingly, the energy-conversion efficiency from the solar energy in the PAW solution is ca. 6.7%. Compared to conventional deionized (DI) water solution, the prepared metastable PAW solution exhibited distinctly higher chemical potential at room temperature. It demonstrates abilities in faster evaporation and enhancing chemical reactions, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Our proposed strategy on the simple and cheap energy-storage system based on prepared PAW utilizing solar energy is the first time shown in the literature.
Collapse
Affiliation(s)
- Chih-Ping Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Shih-Hao Yu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Tai-Chih Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan.
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Rossi TP, Erhart P, Kuisma M. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure. ACS NANO 2020; 14:9963-9971. [PMID: 32687311 PMCID: PMC7458472 DOI: 10.1021/acsnano.0c03004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/20/2020] [Indexed: 05/28/2023]
Abstract
Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. Although the details of the distribution depend on particle size and shape, as a general trend, lower-coordinated surface sites such as corners, edges, and {100} facets exhibit a higher proportion of hot electrons than higher-coordinated surface sites such as {111} facets or the core sites. The present results thereby demonstrate how hot carriers could be tailored by careful design of atomic-scale structures in nanoscale systems.
Collapse
Affiliation(s)
- Tuomas P. Rossi
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mikael Kuisma
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
35
|
You P, Chen D, Lian C, Zhang C, Meng S. First‐principles dynamics of photoexcited molecules and materials towards a quantum description. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chao Lian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| |
Collapse
|
36
|
Wu Q, Zhou L, Schatz GC, Zhang Y, Guo H. Mechanistic Insights into Photocatalyzed H2 Dissociation on Au Clusters. J Am Chem Soc 2020; 142:13090-13101. [DOI: 10.1021/jacs.0c04491] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qisheng Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Linsen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
37
|
Mao Z, Espinoza R, Garcia A, Enwright A, Vang H, Nguyen SC. Tuning Redox Potential of Gold Nanoparticle Photocatalysts by Light. ACS NANO 2020; 14:7038-7045. [PMID: 32441918 DOI: 10.1021/acsnano.0c01704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metallic nanoparticle-based photocatalysts have gained a lot of interest in catalyzing oxidation-reduction reactions. In previous studies, the poor performance of these catalysts is partly due to their operation that relies on picosecond-lifetime hot carriers. In this work, electrons that accumulate at a photostationary state, generated by photocharging the catalysts, have a much longer lifetime for catalysis. This approach makes it possible to determine and tune the photoredox potentials of the catalysts. As demonstrated in a model reaction, the photostationary state of the photocatalyzed oxidative etching of colloidal gold nanoparticles using FeCl3 was established under continuous irradiation of different wavelengths. The photoredox potentials of the nanoparticles were then calculated using the Nernst equation. The potentials can be tuned to a range of 1.28 to 1.40 V (vs SHE) under irradiation of different wavelengths in the range of 450 to 517 nm. The effects of particle size or optical power on the photoredox potentials are small compared to the wavelength effect. Control over the photoredox potential of the particles using different excitation wavelengths can potentially be used to tune the activities and selectivities of metallic nanoparticle photocatalysts.
Collapse
Affiliation(s)
- Ziliang Mao
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Anthony Garcia
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Adrian Enwright
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Hnubci Vang
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C Nguyen
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
38
|
Synthesis, plasmonic properties, and CWA simulant decontamination activity of first row early transition metal nitride powders and nanomaterials. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2648-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Abstract
As a new class of photocatalysts, plasmonic noble metal nanoparticles with the unique ability to harvest solar energy across the entire visible spectrum and produce effective energy conversion have been explored as a promising pathway for the energy crisis. The resonant excitation of surface plasmon resonance allows the nanoparticles to collect the energy of photons to form a highly enhanced electromagnetic field, and the energy stored in the plasmonic field can induce hot carriers in the metal. The hot electron-hole pairs ultimately dissipate by coupling to phonon modes of the metal nanoparticles, resulting in a higher lattice temperature. The plasmonic electromagnetic field, hot electrons, and heat can catalyze chemical reactions of reactants near the surface of the plasmonic metal nanoparticles. This Account summarizes recent theoretical and experimental advances on the excitation mechanisms and energy transfer pathways in the plasmonic catalysis on molecules. Especially, current advances on plasmon-driven crystal growth and transformation of nanomaterials are introduced. The efficiency of the chemical reaction can be dramatically increased by the plasmonic electromagnetic field because of its higher density of photons. Similar to traditional photocatalysis, energy overlap between the plasmonic field and the HOMO-LUMO gap of the reactant is needed to realize resonant energy transfer. For hot-carrier-driven catalysis, hot electrons generated by plasmon decay can be transferred to the reactant through the indirect electron transfer or direct electron excitation process. For this mechanism, the energy of hot electrons needs to overlap with the unoccupied orbitals of the reactant, and the particular chemical channel can be selectively enhanced by controlling the energy distribution of hot electrons. In addition, the local thermal effect following plasmon decay offers an opportunity to facilitate chemical reactions at room temperature. Importantly, surface plasmons can not only catalyze chemical reactions of molecules but also induce crystal growth and transformation of nanomaterials. As a new development in plasmonic catalysis, plasmon-driven crystal transformation reveals a more powerful aspect of the catalysis effect, which opens the new field of plasmonic catalysis. We believe that this Account will promote clear understanding of plasmonic catalysis on both molecules and materials and contribute to the design of highly tunable catalytic systems to realize crystal transformations that are essential to achieve efficient solar-to-chemical energy conversion.
Collapse
|
40
|
Wang L, Zhu W, Lu W, Shi L, Wang R, Pang R, Cao Y, Wang F, Xu X. One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection. Biosens Bioelectron 2019; 142:111577. [PMID: 31430613 DOI: 10.1016/j.bios.2019.111577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Abstract
A novel nonsemiconductor photoelectrochemical biosensor was first constructed using the unique plasmonic AuNi nanodendrite arrays. The AuNi nanodendrite arrays were rapidly prepared by a one-step electrodeposition method using the porous anodic aluminum templates. Owing to its hierarchical structure with abundant active sites, the synergistic catalytic of Au and Ni can be better exploited. These plasmonic AuNi nanodendrite arrays display exceptional photoelectrocatalytic activities for glucose oxidation and hydrogen peroxide reduction reaction under visible light illumination. Specifically, the detection sensitivity for glucose (3.7277 mA mM-1 cm-2) under illumination is about 3.3 folds improvement than in the dark (1.1287 mA mM-1 cm-2), together with high accuracy and low detection limit of 3 μM. The markedly enhanced performance of AuNi nanodendrite arrays can be attributed to its hierarchical structure with abundant active sites and plasmonic effect of Au with strong absorption band in visible region. Such a newly developed method via the facile and low-cost route is of great significance in designing the plasmon-aided photoelectrochemical biosensors.
Collapse
Affiliation(s)
- Lanfang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
| | - Weiqi Zhu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China
| | - Lina Shi
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China
| | - Rui Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China
| | - Ruixue Pang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
| | - YueYue Cao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
| | - Fang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Linfen, 041004, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China.
| |
Collapse
|
41
|
Kumar PV, Rossi TP, Marti-Dafcik D, Reichmuth D, Kuisma M, Erhart P, Puska MJ, Norris DJ. Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces. ACS NANO 2019; 13:3188-3195. [PMID: 30768238 DOI: 10.1021/acsnano.8b08703] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes occur simultaneously at femtosecond time scales. Here, we employ time-dependent density-functional theory simulations to isolate and study the direct-transfer process at a model metal-acceptor (Ag147-Cd33Se33) interface. Our simulations show that, for a 10 fs Gaussian laser pulse tuned to the plasmon frequency, the plasmon formed in the Ag147-Cd33Se33 system decays within 10 fs and induces the direct transfer with a probability of about 40%. We decompose the direct-transfer process further and demonstrate that the direct injection of both electrons and holes into the acceptor, termed direct hot-electron transfer (DHET) and direct hot-hole transfer (DHHT), takes place with similar probabilities of about 20% each. Finally, effective strategies to control and tune the probabilities of DHET and DHHT processes are proposed. We envision our work to provide guidelines toward the design of metal-acceptor interfaces that enable more efficient plasmonic hot-carrier devices.
Collapse
Affiliation(s)
- Priyank V Kumar
- Optical Materials Engineering Laboratory , ETH Zurich , 8092 Zurich , Switzerland
| | - Tuomas P Rossi
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
- Department of Applied Physics , Aalto University , 00076 Aalto , Finland
| | - Daniel Marti-Dafcik
- Optical Materials Engineering Laboratory , ETH Zurich , 8092 Zurich , Switzerland
| | - Daniel Reichmuth
- Optical Materials Engineering Laboratory , ETH Zurich , 8092 Zurich , Switzerland
| | - Mikael Kuisma
- Department of Chemistry, Nanoscience Center , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Paul Erhart
- Department of Physics , Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Martti J Puska
- Department of Applied Physics , Aalto University , 00076 Aalto , Finland
| | - David J Norris
- Optical Materials Engineering Laboratory , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
42
|
Kumar PV, Rossi TP, Kuisma M, Erhart P, Norris DJ. Direct hot-carrier transfer in plasmonic catalysis. Faraday Discuss 2019; 214:189-197. [DOI: 10.1039/c8fd00154e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ab initio computational study of direct hot-carrier transfer at metal–molecule interfaces with relevance to plasmonic catalysis.
Collapse
Affiliation(s)
- Priyank V. Kumar
- Optical Materials Engineering Laboratory
- ETH Zurich
- 8092 Zurich
- Switzerland
| | - Tuomas P. Rossi
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Mikael Kuisma
- Department of Chemistry
- Nanoscience Center
- University of Jyväskylä
- 40014 Jyväskylä
- Finland
| | - Paul Erhart
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - David J. Norris
- Optical Materials Engineering Laboratory
- ETH Zurich
- 8092 Zurich
- Switzerland
| |
Collapse
|
43
|
Comparison and convergence of optical absorption spectra of noble metal nanoparticles computed using linear-response and real-time time-dependent density functional theories. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Quiroz J, Barbosa ECM, Araujo TP, Fiorio JL, Wang YC, Zou YC, Mou T, Alves TV, de Oliveira DC, Wang B, Haigh SJ, Rossi LM, Camargo PHC. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts. NANO LETTERS 2018; 18:7289-7297. [PMID: 30352162 PMCID: PMC6348440 DOI: 10.1021/acs.nanolett.8b03499] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Indexed: 05/21/2023]
Abstract
The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles has been used to accelerate several catalytic transformations under visible-light irradiation. In order to fully harness the potential of plasmonic catalysis, multimetallic nanoparticles containing a plasmonic and a catalytic component, where LSPR-excited energetic charge carriers and the intrinsic catalytic active sites work synergistically, have raised increased attention. Despite several exciting studies observing rate enhancements, controlling reaction selectivity remains very challenging. Here, by employing multimetallic nanoparticles combining Au, Ag, and Pt in an Au@Ag@Pt core-shell and an Au@AgPt nanorattle architectures, we demonstrate that reaction selectivity of a sequential reaction can be controlled under visible light illumination. The control of the reaction selectivity in plasmonic catalysis was demonstrated for the hydrogenation of phenylacetylene as a model transformation. We have found that the localized interaction between the triple bond in phenylacetylene and the Pt nanoparticle surface enables selective hydrogenation of the triple bond (relative to the double bond in styrene) under visible light illumination. Atomistic calculations show that the enhanced selectivity toward the partial hydrogenation product is driven by distinct adsorption configurations and charge delocalization of the reactant and the reaction intermediate at the catalyst surface. We believe these results will contribute to the use of plasmonic catalysis to drive and control a wealth of selective molecular transformations under ecofriendly conditions and visible light illumination.
Collapse
Affiliation(s)
- Jhon Quiroz
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Eduardo C. M. Barbosa
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Thaylan P. Araujo
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Jhonatan L. Fiorio
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Yi-Chi Wang
- School
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yi-Chao Zou
- School
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tong Mou
- Center
for Interfacial Reaction Engineering and School of Chemical, Biological,
and Materials Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tiago V. Alves
- Departamento
de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, 40170-115, Salvador, BA, Brazil
| | - Daniela C. de Oliveira
- Centro
Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional
de Luz Síncrotron, 13083-970, Campinas, SP, Brazil
| | - Bin Wang
- Center
for Interfacial Reaction Engineering and School of Chemical, Biological,
and Materials Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sarah J. Haigh
- School
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Liane M. Rossi
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Pedro H. C. Camargo
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenido Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
- E-mail:
| |
Collapse
|
45
|
Wei Q, Wu S, Sun Y. Quantum-Sized Metal Catalysts for Hot-Electron-Driven Chemical Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802082. [PMID: 30118547 DOI: 10.1002/adma.201802082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Hot-electron-driven chemical transformation (HEDCT) represents an emerging research area in utilizing photoresponsive nanoparticles to enable efficient solar-to-chemical conversion. The unique properties of quantum-sized metal nanoparticles (QSMNPs) make them a class of photocatalysts that can generate hot electrons to drive surface chemical reactions with high quantum efficiency. Compared to the conventional thermal-driven chemical reactions, HEDCT offers the advantages of accelerating reaction rate, improving reaction selectivity, and possibly enabling the occurrence of thermodynamically endergonic reactions. Despite its embryonic stage of development, using QSMNPs for HEDCT shows great promise. Herein, a timely overview on the research progress is provided with a focus on the fundamental quantum processes involved in the photoexcitation of hot electrons and the following HEDCT on the surface of QSMNPs. The last section discusses the challenges, which also represent the opportunities for the materials research community, in designing robust QSMNP photocatalysts and understanding the fundamental quantum phenomena in HEDCT.
Collapse
Affiliation(s)
- Qilin Wei
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Siyu Wu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
46
|
Liu Z, Lu Z, Bosman M, Li N, Frankcombe TJ, Jia G, Tricoli A, Liu Y, Du Y, Yin Z. Photoactivity and Stability Co-Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803233. [PMID: 30334350 DOI: 10.1002/smll.201803233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Durability is still one of the key obstacles for the further development of photocatalytic energy-conversion systems, especially low-dimensional ones. Encouragingly, recent studies show that nanoinsulators such as SiO2 and MgO exhibit substantially enhanced photocatalytic durability than the typical semiconductor p25 TiO2 . Extending this knowledge, MgO-Au plasmonic defect nanosystems are developed that combine the stable photoactivity from MgO surface defects with energy-focusing plasmonics from Au nanoparticles (NPs), where Au NPs are anchored onto monodispersed MgO nanotemplates. Theoretical calculations reveal that the midgap defect (MGD) states in MgO are generated by oxygen vacancies, which provide the main avenues for upward electron transitions under photoexcitation. These electrons drive stable proton photoreduction to H2 gas via water splitting. A synergistic interaction between Au's localized plasmons and MgO's oxygen vacancies is observed here, which enhances MgO's photoactivity and stability simultaneously. Such co-enhancement is attributed to the stable longitudinal-plasmon-free Au NPs, which provide robust hot electrons capable of overcoming the interband transition barrier (≈1.8 eV) to reach proton reduction potential for H2 generation. The demonstrated plasmonic defect nanosystems are expected to open a new avenue for developing highly endurable photoredox systems for the integration of multifunctionalities in energy conversion, environmental decontamination, and climate change mitigation.
Collapse
Affiliation(s)
- Zhengqing Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Ziyang Lu
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Michel Bosman
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Na Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Terry J Frankcombe
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Guohua Jia
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth, Western Australia, 6102, Australia
| | - Antonio Tricoli
- Research School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yaping Du
- School of Materials Science and Engineering, National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
47
|
Lian C, Hu SQ, Guan MX, Meng S. Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation. J Chem Phys 2018; 149:154104. [PMID: 30342439 DOI: 10.1063/1.5036543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast electronic dynamics in solids lies at the core of modern condensed matter and materials physics. To build up a practical ab initio method for studying solids under photoexcitation, we develop a momentum-resolved real-time time dependent density functional theory (rt-TDDFT) algorithm using numerical atomic basis, together with the implementation of both the length and vector gauge of the electromagnetic field. When applied to simulate elementary excitations in two-dimensional materials such as graphene, different excitation modes, only distinguishable in momentum space, are observed. The momentum-resolved rt-TDDFT is important and computationally efficient for the study of ultrafast dynamics in extended systems.
Collapse
Affiliation(s)
- Chao Lian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shi-Qi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Meng-Xue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
48
|
Yan L, Guan M, Meng S. Plasmon-induced nonlinear response of silver atomic chains. NANOSCALE 2018; 10:8600-8605. [PMID: 29696266 DOI: 10.1039/c8nr02086h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonlinear response of a linear silver atomic chain upon ultrafast laser excitation has been studied in real time using the time-dependent density functional theory. We observe the presence of nonlinear responses up to the fifth order in tunneling current, which is ascribed to the excitation of high-energy electrons generated by Landau damping of plasmons. The nonlinear effect is enhanced after adsorption of polar molecules such as water due to the enhanced damping rates during plasmon decay. Increasing the length of atomic chains also increases the nonlinear response, favoring higher-order plasmon excitation. These findings offer new insights towards a complete understanding and ultimate control of plasmon-induced nonlinear phenomena to atomic precision.
Collapse
Affiliation(s)
- Lei Yan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
49
|
Mo Z, Xu H, Chen Z, She X, Song Y, Yan P, Xu Y, Lei Y, Yuan S, Li H. Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62978-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Stolarczyk JK, Bhattacharyya S, Polavarapu L, Feldmann J. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00791] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacek K. Stolarczyk
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Santanu Bhattacharyya
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Lakshminarayana Polavarapu
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| | - Jochen Feldmann
- Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|