1
|
Chatterjee S, Nemoto K, Sun HT, Shirahata N. Rational ligand design for enhanced carrier mobility in self-powered SWIR photodiodes based on colloidal InSb quantum dots. NANOSCALE HORIZONS 2024; 9:817-827. [PMID: 38501216 DOI: 10.1039/d4nh00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Solution-processed colloidal III-V semiconductor quantum dot photodiodes (QPDs) have potential applications in short-wavelength infrared (SWIR) imaging due to their tunable spectral response range, possible multiple-exciton generation, operation at 0-V bias voltage and low-cost fabrication and are also expected to replace lead- and mercury-based counterparts that are hampered by reliance on restricted elements (RoHS). However, the use of III-V CQDs as photoactive layers in SWIR optoelectronic applications is still a challenge because of underdeveloped ligand engineering for improving the in-plane conductivity of the QD assembled films. Here, we report on ligand engineering of InSb CQDs to enhance the optical response performance of self-powered SWIR QPDs. Specifically, by replacing the conventional ligand (i.e., oleylamine) with sulfide, the interparticle distance between the CQDs was shortened from 5.0 ± 0.5 nm to 1.5 ± 0.5 nm, leading to improved carrier mobility for high photoresponse speed to SWIR light. Furthermore, the use of sulfide ligands resulted in a low dark current density (∼nA cm-2) with an improved EQE of 18.5%, suggesting their potential use in toxic-based infrared image sensors.
Collapse
Affiliation(s)
- Subhashri Chatterjee
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Kazuhiro Nemoto
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Hong-Tao Sun
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
- CNRS-Saint-Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
He G, Yang D, Tao S, Yang L, Guo D, Zheng J, Li J, Chen J, Ma D. Synergistic nucleation regulation using 4,4',4''-tris(carbazol-9-yl)-triphenylamine and moisture for stably air-processed high-performance perovskite photodetectors. NANOSCALE 2024. [PMID: 38426276 DOI: 10.1039/d3nr06513h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Perovskite photodetectors (PPDs) offer a promising solution with low cost and high responsivity, addressing the limitations of traditional inorganic photodetectors. However, there is still room for improvement in terms of the dark current and stability of air-processed PPDs. In this study, 4,4',4''-tris(carbazol-9-yl)-triphenylamine (TCTA) was utilized as a nucleation agent to enhance the quality of perovskite films. The synergistic effect of TCTA and moisture promotes rapid nucleation of PbI2-PbCl2, resulting in an increased nucleation rate and the elimination of pinholes in the film. By employing additive engineering, we obtained a PbI2-PbCl2 layer with high coverage, leading to a low density of traps in the corresponding perovskite film. Consequently, the modified PPD exhibits a remarkable reduction in dark current density by over one order of magnitude, reaching 2.4 × 10-10 A cm-2 at -10 mV, along with a large linear dynamic range (LDR) of 183 dB. Furthermore, the resulting PPD demonstrates remarkable stability, retaining 90% of the initial external quantum efficiency (EQE) value even after continuous operation for over 3200 hours. Owing to a fast response time in the nanosecond range, the PPD could convert modulated light signals into electrical signals at a speed of 588 Kbit s-1, highlighting the great potential in the field of optical communication.
Collapse
Affiliation(s)
- Guo He
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- School of Physics and Optoelectronics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Sizhe Tao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Liqing Yang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Dechao Guo
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Jingbo Zheng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Ji Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Jiangshan Chen
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
3
|
Zhang L, Mei L, Wang K, Lv Y, Zhang S, Lian Y, Liu X, Ma Z, Xiao G, Liu Q, Zhai S, Zhang S, Liu G, Yuan L, Guo B, Chen Z, Wei K, Liu A, Yue S, Niu G, Pan X, Sun J, Hua Y, Wu WQ, Di D, Zhao B, Tian J, Wang Z, Yang Y, Chu L, Yuan M, Zeng H, Yip HL, Yan K, Xu W, Zhu L, Zhang W, Xing G, Gao F, Ding L. Advances in the Application of Perovskite Materials. NANO-MICRO LETTERS 2023; 15:177. [PMID: 37428261 PMCID: PMC10333173 DOI: 10.1007/s40820-023-01140-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
Collapse
Affiliation(s)
- Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Luyao Mei
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China
| | - Kaiyang Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, People's Republic of China
| | - Yinhua Lv
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shuai Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yaxiao Lian
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaoke Liu
- Department of Physics, Linköping University, 58183, Linköping, Sweden
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Shuaibo Zhai
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Shengli Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gengling Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ligang Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Bingbing Guo
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ziming Chen
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Keyu Wei
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Shizhong Yue
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Guangda Niu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiyan Pan
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Hua
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Wu-Qiang Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dawei Di
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Baodan Zhao
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Yang Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liang Chu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Mingjian Yuan
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haibo Zeng
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Wentao Xu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Lu Zhu
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China.
| | - Wenhua Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, People's Republic of China.
| | - Feng Gao
- Department of Physics, Linköping University, 58183, Linköping, Sweden.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| |
Collapse
|
4
|
Moseley OI, Roose B, Zelewski SJ, Kahmann S, Dey K, Stranks SD. Tunable Multiband Halide Perovskite Tandem Photodetectors with Switchable Response. ACS PHOTONICS 2022; 9:3958-3966. [PMID: 36573164 PMCID: PMC9782784 DOI: 10.1021/acsphotonics.2c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Photodetectors with multiple spectral response bands have shown promise to improve imaging and communications through the switchable detection of different photon energies. However, demonstrations to date have been limited to only two bands and lack capability for fast switching in situ. Here, we exploit the band gap tunability and capability of all-perovskite tandem solar cells to demonstrate a new device concept realizing four spectral bands of response from a single multijunction device, with fast, optically controlled switching between the bands. The response to monochromatic light is highly selective and narrowband without the need for additional filters and switches to broader response bands on applying bias light. Sensitive photodetection above 6 × 1011 Jones is demonstrated in all modes, with rapid switching response times of <250 ns. We demonstrate proof of principle on how the manipulation of the modular multiband detector response through light conditions enables diverse applications in optical communications with secure encryption.
Collapse
Affiliation(s)
- Oliver
D. I. Moseley
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart Roose
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Szymon J. Zelewski
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Simon Kahmann
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Krishanu Dey
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
5
|
Gong W, Yan J, Gao F, Ding S, He G, Li L. High-Performance UV-Vis Broad-Spectra Photodetector Based on a β-Ga 2O 3/Au/MAPbBr 3 Sandwich Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47853-47862. [PMID: 36251575 DOI: 10.1021/acsami.2c11681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The UV-vis photodetector (PD), a detector that can simultaneously detect light in the ultraviolet region and the visible region, has a wide range of applications in military and civilian fields. Currently, it is very difficult to obtain good detection performance in the UV region (especially in the solar-blind range) like in the visible region with most UV-vis PDs. This severely affects the practical application of UV-vis broad-spectra PDs. Here, a simple sandwich structure PD (SSPD) composed of β-Ga2O3, Au electrodes, and the MAPbBr3 perovskite is designed and fabricated to simultaneous enhance the detection performance in the UV and visible light regions. The β-Ga2O3/Au/MAPbBr3 SSPD exhibits enhanced optoelectronic performance with high responsivities of 0.47 and 1.43 A W-1 at 240 and 520 nm under a bias of 6 voltage (V), respectively, which are 8.5 and 23 times than that of the metal-semiconductor-metal (MSM) structure MAPbBr3 PD at 6 V, respectively. The enhanced performance was attributed to the effective suppression of carrier recombination due to the efficient interface charge separation in the device structure. In addition, the self-powered response characteristic is also realized by forming a type-II heterojunction between β-Ga2O3 and MAPbBr3, which gives the β-Ga2O3/Au/MAPbBr3 SSPD superior single-pixel photo-imaging ability without an external power supply. This work provides a simple and effective method for the preparation of high-performance self-powered imaging PDs in the UV-visible region.
Collapse
Affiliation(s)
- Weiqiang Gong
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| | - Jun Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| | - Feng Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| | - Sunan Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen518055, China
| | - Gaohang He
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| |
Collapse
|
6
|
Upadhyay SN, Sardar VB, Singh A, Kumar V, Pakhira S. Elucidating the oxygen reduction reaction mechanism on the surfaces of 2D monolayer CsPbBr 3 perovskite. Phys Chem Chem Phys 2022; 24:28283-28294. [DOI: 10.1039/d2cp03432h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The oxygen reduction reaction (ORR) is an indispensable reaction in electrochemical energy converting systems such as fuel cells.
Collapse
Affiliation(s)
- Shrish Nath Upadhyay
- Department of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Indore-453552, MP, India
| | - Verma Bunty Sardar
- Department of Physics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore-453552, MP, India
| | - Ashok Singh
- Department of Physics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore-453552, MP, India
| | - Vikash Kumar
- Department of Physics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore-453552, MP, India
| | - Srimanta Pakhira
- Department of Metallurgy Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Indore-453552, MP, India
- Department of Physics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore-453552, MP, India
- Centre of Advanced Electronics (CAE), Indian Institute of Technology Indore, Indore-453552, MP, India
| |
Collapse
|
7
|
Ollearo R, Wang J, Dyson MJ, Weijtens CHL, Fattori M, van Gorkom BT, van Breemen AJJM, Meskers SCJ, Janssen RAJ, Gelinck GH. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat Commun 2021; 12:7277. [PMID: 34907190 PMCID: PMC8671406 DOI: 10.1038/s41467-021-27565-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
Metal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (JD) and noise current (in). This is commonly accomplished using charge-blocking layers to reduce charge injection. By analyzing the temperature dependence of JD for lead-tin based PPDs with different bandgaps and electron-blocking layers (EBL), we demonstrate that while EBLs eliminate electron injection, they facilitate undesired thermal charge generation at the EBL-perovskite interface. The interfacial energy offset between the EBL and the perovskite determines the magnitude and activation energy of JD. By increasing this offset we realized a PPD with ultralow JD and in of 5 × 10-8 mA cm-2 and 2 × 10-14 A Hz-1/2, respectively, and wavelength sensitivity up to 1050 nm, establishing a new design principle to maximize detectivity in perovskite photodiodes.
Collapse
Affiliation(s)
- Riccardo Ollearo
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Junke Wang
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Matthew J. Dyson
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christ H. L. Weijtens
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marco Fattori
- grid.6852.90000 0004 0398 8763Integrated Circuits, Departments of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas T. van Gorkom
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert J. J. M. van Breemen
- grid.500333.60000 0004 0581 2681TNO at Holst Centre, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
| | - Stefan C. J. Meskers
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René A. J. Janssen
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ,grid.434188.20000 0000 8700 504XDutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Gerwin H. Gelinck
- grid.6852.90000 0004 0398 8763Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ,grid.500333.60000 0004 0581 2681TNO at Holst Centre, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
8
|
Huang X, Guo Y, Liu Y. Perovskite photodetectors and their application in artificial photonic synapses. Chem Commun (Camb) 2021; 57:11429-11442. [PMID: 34642713 DOI: 10.1039/d1cc04447h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic-inorganic hybrid perovskites exhibit superior optoelectrical properties and have been widely used in photodetectors. Perovskite photodetectors with excellent detectivity have great potential for developing artificial photonic synapses which can merge data transmission and storage. They are highly desired for next generation neuromorphic computing. The recent progress of perovskite photodetectors and their application in artificial photonic synapses are summarized in this review. Firstly, the key performance parameters of photodetectors are briefly introduced. Secondly, the recent research progress of photodetectors including photoconductors, photodiodes, and phototransistors is summarized. Finally, the applications of perovskite photodetectors in artificial photonic synapses in recent years are highlighted. All these demonstrate the great potential of perovskite photonic synapses for the development of artificial intelligence.
Collapse
Affiliation(s)
- Xin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
9
|
Wen W, Zhang W, Wang X, Feng Q, Liu Z, Yu T. Ultrasensitive Photodetectors Promoted by Interfacial Charge Transfer from Layered Perovskites to Chemical Vapor Deposition-Grown MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102461. [PMID: 34313386 DOI: 10.1002/smll.202102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Heterostructures for charge-carrier manipulation have laid the foundation of modern optoelectronic devices, such as photovoltaics and photodetectors. High-performance heterostructure devices usually impose stringent requirements on the material quality to sustain efficient carrier transport and charge transfer, thus leading to sophisticated fabrication processes. Here, a simple yet efficient strategy is proposed to develop ultrasensitive photodetectors based on heterostructures of chemical vapor deposition-grown MoS2 and polycrystalline-layered perovskites. The layered perovskites possess pure crystallographic orientation with conductive edges in contact with MoS2 , which gives rise to efficient light absorption, exciton diffusion, and interfacial charge transfer. In dark state, the mismatch of work functions of two materials facilitates low dark currents by the depletion of electrons in MoS2 . Under light irradiation, efficient exciton diffusion and interfacial charge transfer are realized in the heterostructures with type-II band alignment, which produces drifting electrons in MoS2 and leaves trapped holes in layered perovskites. The photodetectors present suppress noises and boost photocurrents, yielding a champion device with a responsivity of 2.5 × 104 A W-1 , and a specific detectivity of 4.1 × 1014 Jones. The results demonstrate a scalable approach for the integration of high-performance devices with high tolerance to defects.
Collapse
Affiliation(s)
- Wen Wen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaojian Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qingliang Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 637371, Singapore
| | - Ting Yu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
10
|
Li Y, Chen H, Zhang J. Carrier Blocking Layer Materials and Application in Organic Photodetectors. NANOMATERIALS 2021; 11:nano11061404. [PMID: 34073349 PMCID: PMC8228918 DOI: 10.3390/nano11061404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
As a promising candidate for next-generation photodetectors, organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors on lightweight flexible substrates. Carrier blocking layers engineering is very important to the high performance of OPDs that can select a certain charge carriers (holes or electrons) to be collected and suppress another carrier. Carrier blocking layers of OPDs play a critical role in reducing dark current, boosting their efficiency and long-time stability. This Review summarizes various materials for carrier blocking layers and some of the latest progress in OPDs. This provides the reader with guidelines to improve the OPD performance via carrier blocking layers engineering.
Collapse
|
11
|
K CSR, Willars-Rodríguez FJ, Ramirez Bon R. Self-powered broadband photodetector based on a solution-processed p-NiO/n-CdS:Al heterojunction. NANOTECHNOLOGY 2021; 32:095202. [PMID: 33126229 DOI: 10.1088/1361-6528/abc640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solution-processed photodetectors have emerged as the next generation of sensing technology owing to their ease of integration with electron devices and of tuning photodetector performance. Currently, novel self-powered photodetectors without an external power source, for use in sensing, imaging and communication, are in high demand. Herein, we successfully developed a self-powered photodetector based on a novel solution-processed p-NiO/n-CdS:Al heterojunction, which shows an excellent current rectification characteristic ratio of up to three orders in the dark and distinctive photovoltaic behavior under light illumination. The complete solution synthesis route followed the development of CdS:Al thin films on ITO substrates by chemical bath deposition and NiO thin films by the sol-gel route. Optical absorption data revealed that NiO is more active in the UV region and CdS:Al has a majority of absorption in the visible region; so, upon light illumination, the effective separation of photogenerated carriers produces fast photodetection in the UV-visible region. The photoresponsivity values of the fabricated device were calculated to be 55 mA W-1 and 30 mA W-1 for UV and visible illumination, respectively. Also, the device has a fast rise and decay photoresponse speed at zero bias voltage, due to the self-driven photovoltaic effect which makes this heterojunction a self-powered device. This complete solution and new method of fabrication make it possible to combine different materials and flexible substrates, enhancing its potential applications in photodetectors, optoelectronic devices and sensors.
Collapse
Affiliation(s)
- Chandra Sekhar Reddy K
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001, Querétaro, Mexico
| | - F J Willars-Rodríguez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001, Querétaro, Mexico
| | - Rafael Ramirez Bon
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001, Querétaro, Mexico
| |
Collapse
|
12
|
Feng X, Tan M, Li M, Wei H, Yang B. Polyhydroxy Ester Stabilized Perovskite for Low Noise and Large Linear Dynamic Range of Self-Powered Photodetectors. NANO LETTERS 2021; 21:1500-1507. [PMID: 33525865 DOI: 10.1021/acs.nanolett.0c04858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solution-processed perovskites as emerging semiconductors have achieved unprecedented milestones in sensor optoelectric devices. Stability along with the device noise issues are the major obstacle for photodetectors to compete with the traditional devices. Here, we demonstrated that l-ascorbic acid (l-AA) as a polyhydroxy ester can coordinate with the amino group of formamidine cations (FA+) through multiple hydrogen bond interactions to stabilize the perovskite, which protect the FA+ ions from nucleophile attack and effectively suppress the degradation of FA+ ions, improving the perovskite stability and suppressing the device noise to below 0.3 pA Hz-1/2 with a large linear dynamic range of 239 dB. The dual functions of l-AA enable the perovskite photodetector to have a high detectivity of 1012 Jones. The self-powered device works with no energy consumption and maintains an undegraded performance over 1200 h of inspection at ambient conditions, which is promising for infrastructure construction, signal sensing, and real-time information delivery.
Collapse
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingrui Tan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingbian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Afzal AM, Bae IG, Aggarwal Y, Park J, Jeong HR, Choi EH, Park B. Highly efficient self-powered perovskite photodiode with an electron-blocking hole-transport NiO x layer. Sci Rep 2021; 11:169. [PMID: 33420313 PMCID: PMC7794468 DOI: 10.1038/s41598-020-80640-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Hybrid organic-inorganic perovskite materials provide noteworthy compact systems that could offer ground-breaking architectures for dynamic operations and advanced engineering in high-performance energy-harvesting optoelectronic devices. Here, we demonstrate a highly effective self-powered perovskite-based photodiode with an electron-blocking hole-transport layer (NiOx). A high value of responsivity (R = 360 mA W-1) with good detectivity (D = 2.1 × 1011 Jones) and external quantum efficiency (EQE = 76.5%) is achieved due to the excellent interface quality and suppression of the dark current at zero bias voltage owing to the NiOx layer, providing outcomes one order of magnitude higher than values currently in the literature. Meanwhile, the value of R is progressively increased to 428 mA W-1 with D = 3.6 × 1011 Jones and EQE = 77% at a bias voltage of - 1.0 V. With a diode model, we also attained a high value of the built-in potential with the NiOx layer, which is a direct signature of the improvement of the charge-selecting characteristics of the NiOx layer. We also observed fast rise and decay times of approximately 0.9 and 1.8 ms, respectively, at zero bias voltage. Hence, these astonishing results based on the perovskite active layer together with the charge-selective NiOx layer provide a platform on which to realise high-performance self-powered photodiode as well as energy-harvesting devices in the field of optoelectronics.
Collapse
Affiliation(s)
- Amir Muhammad Afzal
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - In-Gon Bae
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - Yushika Aggarwal
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - Jaewoo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - Hye-Ryeon Jeong
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea
| | - Byoungchoo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul, 01897, South Korea.
| |
Collapse
|
14
|
Additive Modulated Perovskite Microstructures for High Performance Photodetectors. MICROMACHINES 2020; 11:mi11121090. [PMID: 33321695 PMCID: PMC7763584 DOI: 10.3390/mi11121090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Organic-inorganic hybrid perovskites have been widely used as light sensitive components for high-efficient photodetectors due to their superior optoelectronic properties. However, the unwanted crystallographic defects of perovskites typically result in high dark current, and thus limit the performance of the device. Herein, we introduce a simple route of microstructures control in MAPbI3 perovskites that associates with introducing an additive of 3,3,4,4-benzophenonetetracarboxylic dianhydridean (BPTCD) for crystallization adjustment of the perovskite film. The BPTCD additive can facilitate the formation of high-quality perovskite film with a compact and nearly pinhole-free morphology. Through characterizing the molecular interactions, it was found that the carbonyl groups in BPTCD is the key reason that promoted the nucleation and crystallization of MAPbI3. As a result, we obtained high-efficient and stable perovskite photodetectors with low dark current of 9.98 × 10-8 A at -0.5 V, an on/off ratio value of 103, and a high detectivity exceeding 1012 Jones over the visible region.
Collapse
|
15
|
Duan Z, Ning J, Chen M, Xiong Y, Yang W, Xiao F, Kershaw SV, Zhao N, Xiao S, Rogach AL. Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium Lead Iodide Perovskite Matrix. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35201-35210. [PMID: 32700521 DOI: 10.1021/acsami.0c06837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Low-temperature solution-processed methylammonium lead iodide (MAPbI3) crystalline films have shown outstanding performance in optoelectronic devices. However, their high dark current and high noise equivalent power prevent their application in broad-band photodetectors. Here, we applied a facile solution-based antisolvent strategy to fabricate a hybrid structure of CuInSe2 quantum dots (CISe QDs) embedded into a MAPbI3 matrix, which not only enhances the photodetector responsivity, showing a large on/off ratio of 104 at 2 V bias compared with the bare perovskite films, but also significantly (for over 7 days) improves the device stability, with hydrophobic ligands on the CuInSe2 QDs acting as a barrier against the uptake of environmental moisture. MAPbI3/CISe QD-based lateral photodetectors exhibit high responsivities of >0.5 A/W and 10.4 mA/W in the visible and near-infrared regions, respectively, partly because of the formation of a type II interface between the respective semiconductors but most significantly because of the efficient trap-state passivation of the perovskite grain surfaces, and the reduction in the twinning-induced trap density, which stems from both CISe QDs and their organic ligands. A large specific detectivity of 2.2 × 1012 Jones at 525 nm illumination (1 μW/cm2), a fast fall time of 236 μs, and an extremely low noise equivalent power of 45 fW/Hz1/2 have been achieved.
Collapse
Affiliation(s)
- Zonghui Duan
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jiajia Ning
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Mengyu Chen
- Department of Electronic Engineering, Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Yuan Xiong
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Wenhong Yang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fengping Xiao
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Ni Zhao
- Department of Electronic Engineering, Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Mescher H, Schackmar F, Eggers H, Abzieher T, Zuber M, Hamann E, Baumbach T, Richards BS, Hernandez-Sosa G, Paetzold UW, Lemmer U. Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15774-15784. [PMID: 32182029 DOI: 10.1021/acsami.9b14649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic-inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors. Inspired by the promising results recently reported on X-ray detectors that are based on either triple cation perovskites or inkjet-printed perovskite quantum dots, we here investigate flexible inkjet-printed triple cation perovskite X-ray detectors. The performance of the detectors is evaluated by the X-ray sensitivity, the dark current, and the X-ray stability. Exposed to 70 kVp X-ray radiation, reproducible and highly competitive X-ray sensitivities of up to 59.9 μC/(Gyaircm2) at low operating voltages of 0.1 V are achieved. Furthermore, a significant dark current reduction is demonstrated in our detectors by replacing spin-coated poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) with sputtered NiOx hole transport layers. Finally, stable operation of a flexible X-ray detector for a cumulative X-ray exposure of 4 Gyair is presented, and the applicability of our devices as X-ray imaging detectors is shown. The results of this study represent a proof of concept toward flexible direct conversion X-ray detectors realized by cost-effective and high-throughput digital inkjet printing.
Collapse
Affiliation(s)
- Henning Mescher
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Fabian Schackmar
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- InnovationLab (IL), Heidelberg 69115, Germany
| | - Helge Eggers
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- InnovationLab (IL), Heidelberg 69115, Germany
| | - Tobias Abzieher
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Bryce S Richards
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- InnovationLab (IL), Heidelberg 69115, Germany
| | - Ulrich W Paetzold
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Uli Lemmer
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- InnovationLab (IL), Heidelberg 69115, Germany
| |
Collapse
|
17
|
Li T, Chen Z, Wang Y, Tu J, Deng X, Li Q, Li Z. Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3301-3326. [PMID: 31845796 DOI: 10.1021/acsami.9b19830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interface engineering is very important to the high performance of organic optoelectronic devices that are commonly composed of multilayer thin solid films. Interfacial materials are particularly crucial for interface engineering, and a variety of materials have been employed at the interface to accomplish various different functions. This Review summarizes various materials for the interfaces and some of the latest progress in organic solar cells (OSCs) and organic photodetectors (OPDs).
Collapse
Affiliation(s)
- Tianhao Li
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Zixuan Chen
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Yangyang Wang
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Jin Tu
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Xianyu Deng
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Qianqian Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
- Institute of Molecular Aggregation Science , Tianjin University , Tianjin 30072 , China
| |
Collapse
|
18
|
Chakrabarti S, Carolan D, Alessi B, Maguire P, Svrcek V, Mariotti D. Microplasma-synthesized ultra-small NiO nanocrystals, a ubiquitous hole transport material. NANOSCALE ADVANCES 2019; 1:4915-4925. [PMID: 36133136 PMCID: PMC9417055 DOI: 10.1039/c9na00299e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
We report on a one-step hybrid atmospheric pressure plasma-liquid synthesis of ultra-small NiO nanocrystals (2 nm mean diameter), which exhibit strong quantum confinement. We show the versatility of the synthesis process and present the superior material characteristics of the nanocrystals (NCs). The band diagram of the NiO NCs, obtained experimentally, highlights ideal features for their implementation as a hole transport layer in a wide range of photovoltaic (PV) device architectures. As a proof of concept, we demonstrate the NiO NCs as a hole transport layer for three different PV device test architectures, which incorporate silicon quantum dots (Si-QDs), nitrogen-doped carbon quantum dots (N-CQDs) and perovskite as absorber layers. Our results clearly show ideal band alignment which could lead to improved carrier extraction into the metal contacts for all three solar cells. In addition, in the case of perovskite solar cells, the NiO NC hole transport layer acted as a protective layer preventing the degradation of halide perovskites from ambient moisture with a stable performance for >70 days. Our results also show unique characteristics that are highly suitable for future developments in all-inorganic 3rd generation solar cells (e.g. based on quantum dots) where quantum confinement can be used effectively to tune the band diagram to fit the energy level alignment requirements of different solar cell architectures.
Collapse
Affiliation(s)
- Supriya Chakrabarti
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK
- Centre for Carbon Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Balapur P.O. Hyderabad 500005 India
| | - Darragh Carolan
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK
| | - Bruno Alessi
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK
| | - Paul Maguire
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK
| | - Vladimir Svrcek
- National Institute of Advanced Industrial Science and Technology (AIST), Department of Energy and Environment, Research Center of Photovoltaics, Advanced Processing Team Central 2, Umezono 1-1-1 Tsukuba Ibaraki 305-8568 Japan
| | - Davide Mariotti
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University Jordanstown, Newtownabbey Co. Antrim BT37 0QB UK
| |
Collapse
|
19
|
Zhu HL, Lin H, Song Z, Wang Z, Ye F, Zhang H, Yin WJ, Yan Y, Choy WCH. Achieving High-Quality Sn-Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS NANO 2019; 13:11800-11808. [PMID: 31553178 DOI: 10.1021/acsnano.9b05774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although Sn-Pb perovskites sensing near-ultraviolet-visible-near-infrared light could be an attractive alternative to silicon in photodiodes and imaging, there have been no clear studies on such devices constructed on metal/silicon substrates, hindering their direct integration with complementary metal-oxide semiconductor (CMOS) and silicon electronics. Typically, high surface roughness and severe pinholes of Sn-rich binary perovskites make it difficult for them to fulfill the requirements of efficient photodiodes and imaging. These issues cause inherently high dark current and poor (dark and photo-) current uniformity. Herein, we propose and demonstrate the room-temperature crystallization in the Sn-rich binary perovskite system to effectively control film crystallization kinetics. With experimental and theoretical studies of the crystallization mechanism, we successfully tune the density and location of nanocrystals in precursor films to achieve compact nanocrystals, which coalesce into high-quality (smooth, dense, and pinhole-free) perovskites with intensified preferred orientation and decreased trap density. The high-quality perovskites reduce dark current and improve (dark and photo-) current uniformity of perovskite photodiodes on CMOS-compatible metal/silicon substrates. Meanwhile, self-powered devices achieve a high responsivity of 0.2 A/W at 940 nm, a large dynamic range of 100 dB, and a fast fall time of 2.27 μs, exceeding those of most silicon-based imaging sensors. Finally, a 6 × 6 pixel integrated photodiode array is successfully demonstrated to realize the imaging application. The work contributes to understanding the fundamentals of the crystallization of Sn-rich binary perovskites and advancing perovskite integration with Si-based electronics.
Collapse
Affiliation(s)
- Hugh Lu Zhu
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| | - Hong Lin
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| | - Zhilong Song
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215006 , China
| | - Zishuai Wang
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| | - Fei Ye
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| | - Hong Zhang
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| | - Wan-Jian Yin
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215006 , China
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , 2801 W. Bancroft Street , Toledo , Ohio 43606 , United States
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering , The University of Hong Kong , Hong Kong 999077 , Hong Kong SAR China
| |
Collapse
|
20
|
Tamarat P, Bodnarchuk MI, Trebbia JB, Erni R, Kovalenko MV, Even J, Lounis B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. NATURE MATERIALS 2019; 18:717-724. [PMID: 31086320 DOI: 10.1038/s41563-019-0364-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 05/20/2023]
Abstract
Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron-hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron-hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.
Collapse
Affiliation(s)
- Philippe Tamarat
- Université de Bordeaux, LP2N, Talence, France
- Institut d'Optique and CNRS, LP2N, Talence, France
| | - Maryna I Bodnarchuk
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
| | - Jean-Baptiste Trebbia
- Université de Bordeaux, LP2N, Talence, France
- Institut d'Optique and CNRS, LP2N, Talence, France
| | - Rolf Erni
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
| | - Maksym V Kovalenko
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
| | - Brahim Lounis
- Université de Bordeaux, LP2N, Talence, France.
- Institut d'Optique and CNRS, LP2N, Talence, France.
| |
Collapse
|
21
|
Xu J, Cheng X, Liu T, Yu Y, Song L, You Y, Wang T, Zhang J. Oxygen-incorporated and layer-by-layer stacked WS 2 nanosheets for broadband, self-driven and fast-response photodetection. NANOSCALE 2019; 11:6810-6816. [PMID: 30912545 DOI: 10.1039/c8nr10350j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) layered WS2 nanosheets have been regarded as exciting and emerging candidate materials in constructing high performance photodetectors. In this work, we develop a facile solvothermal method to synthesize oxygen-doped WS2 microrods composed of layer-by-layer stacked nanosheets. The WS2 microrods exhibit an obvious bandgap of 1.2 eV, together with a broad near-infrared (NIR) absorption after 1100 nm. The unique absorption can be ascribed to the oxygen-incorporation-induced localized surface plasmon resonance (LSPR) effect. A hybrid WS2/Si heterojunction, which allows the combination of the WS2 microrods with a mature silicon platform, is then constructed by a facile spin-coating fabrication process to investigate the photoresponse properties. Benefitting from the remarkable photovoltaic performance, the WS2/Si heterojunction acts as a self-driven photodetector with outstanding characteristics. The photodetector exhibits a decent responsivity (R) of 1.5 A W-1, a high specific detectivity (D*) of ∼2 × 1012 Jones, fast response speeds with rise/fall times of 2.0/7.2 μs, and good ambient stability (2 months) at zero bias. Notably, the photodetector is still sensitive at a broadband wavelength in the NIR region (1100-2000 nm). The broadband response is attributed to the LSPR effect of the oxygen-incorporated WS2. These results suggest great potential of the oxygen-incorporated WS2/Si heterojunctions in NIR light detection.
Collapse
Affiliation(s)
- Jun Xu
- School of Electronic Science & Applied Physics, and Micro Electromechanical System Research Center of Engineering and Technology of Anhui Province, Hefei University of Technology, Hefei 230009, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang H, Nazeeruddin MK, Choy WCH. Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805702. [PMID: 30600558 DOI: 10.1002/adma.201805702] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 06/09/2023]
Abstract
Due to their outstanding optoelectronic properties, metal halide perovskites have been intensively studied in recent years. The latest certificated efficiency of 23.3% recently achieved in perovskite solar cells (PVSCs) enables them to be used as a very promising candidate for next-generation photovoltaics. The morphology, defect density, and water resistance of perovskite films have an enormous impact on the performance and stability of PVSCs. Ligands, with coordinating capability, have been widely developed to improve the quality and stability of perovskite materials significantly. In the first section of this review, the role of ligands in fabricating perovskite films by different methods (one-step, two-step, and postdeposition treatment) is discussed. In the second section, the progress on ligand-passivated perovskites via post-treatment, in situ passivation during perovskite formation, and modifying the substrates before perovskite formation is reviewed. In the third section, a discussion of ligand-stabilized perovskite films from the perspectives of crystal crosslinking, dimensionality engineering, and interfacial modification is presented. Finally, a summary and an outlook are given.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951, Sion, Switzerland
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| |
Collapse
|
23
|
Zou T, Zhang J, Huang S, Liu C, Qiu R, Wang X, Wu W, Wang H, Wei Z, Dai Q, Liu C, Zhang S, Zhou H. Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors. RSC Adv 2019; 9:3800-3808. [PMID: 35518106 PMCID: PMC9060245 DOI: 10.1039/c8ra08864k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
TS-CuPc/rGO nanocomposite thin films were synthesized and applied as an interfacial layer for high-performance perovskite-based photodiodes.
Collapse
|
24
|
Peng B, Mei H, Zhang H, Shao H, Xu K, Ni G, Jin Q, Soukoulis CM, Zhu H. High thermoelectric efficiency in monolayer PbI2 from 300 K to 900 K. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01297k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By using a first-principles approach, monolayer PbI2 is found to have great potential in thermoelectric applications.
Collapse
Affiliation(s)
- Bo Peng
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| | - Haodong Mei
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| | - Hao Zhang
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
- Department of Physics and Astronomy and Ames Laboratory
| | - Hezhu Shao
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Ke Xu
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| | - Gang Ni
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| | - Qingyuan Jin
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| | - Costas M. Soukoulis
- Department of Physics and Astronomy and Ames Laboratory
- Iowa State University
- Ames
- USA
- Institute of Electronic Structure and Laser (IESL)
| | - Heyuan Zhu
- Key Laboratory for Information Science of Electromagnetic Waves (MOE) and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE)
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
25
|
Wu G, Fu R, Chen J, Yang W, Ren J, Guo X, Ni Z, Pi X, Li CZ, Li H, Chen H. Perovskite/Organic Bulk-Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Near-Infrared External Quantum Efficiency over 70. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802349. [PMID: 30168671 DOI: 10.1002/smll.201802349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Indexed: 05/14/2023]
Abstract
Ultraviolet-visible-near infrared (UV-Vis-NIR) broadband detection is important for image sensing, communication, and environmental monitoring, yet remains as a challenge in achieving high external quantum efficiency (EQE) in the broad spectrum range. Herein, sensitive broadband integrated photodetectors (PDs) with high EQE levels are reported. The organic bulk-heterojunction (OBHJ) layer, based on a NIR sensitive organic acceptor, is employed to extend the response spectrum of the perovskite PDs. A key strategy of introducing dual electron transport materials respectively for Vis and NIR regions into the active layer of integrated PDs is applied. Further combined with the proper energy level alignment and reasonable distribution of PC61 BM in the active layer, the extraction and transport of photo induced charges in between perovskite and OBHJ is promoted efficiently. The integrated PD with the optimized structure exhibits an EQE mostly beyond 70% in the Vis-NIR region, which is the highest value among the ever reported solution-processable broadband PDs. The highest responsivity is 0.444 and 0.518 A W-1 in the Vis and NIR region, respectively. The specific detectivity is beyond 1010 Jones in the range from 340 to 940 nm, enabling the device to detect weak signals in the UV to NIR broad region.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ruilin Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiehuan Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Weitao Yang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jie Ren
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xuankun Guo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhenyi Ni
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanying Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
26
|
High-Performance Photodiode-Type Photodetectors Based on Polycrystalline Formamidinium Lead Iodide Perovskite Thin Films. Sci Rep 2018; 8:11157. [PMID: 30042485 PMCID: PMC6057967 DOI: 10.1038/s41598-018-29147-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/22/2018] [Indexed: 01/30/2023] Open
Abstract
Photodetectors based on three dimensional organic–inorganic lead halide perovskites have recently received significant attention. As a new type of light-harvesting materials, formamidinium lead iodide (FAPbI3) is known to possess excellent optoelectronic properties even exceeding those of methylammonium lead iodide (MAPbI3). To date, only a few photoconductor-type photodetectors based on FAPbI3 single crystals and polycrystalline thin films in a lateral structure have been reported. Here, we demonstrate low-voltage, high-overall-performance photodiode-type photodetectors in a sandwiched geometry based on polycrystalline α-FAPbI3 thin films synthesized by a one-step solution processing method and post-annealing treatment. The photodetectors exhibit a broadband response from the near-ultraviolet to the near-infrared (330–800 nm), achieving a high on/off current ratio of 8.6 × 104 and fast response times of 7.2/19.5 μs. The devices yield a photoresponsivity of 0.95 AW−1 and a high specific detectivity of 2.8 × 1012 Jones with an external quantum efficiency (EQE) approaching 182% at −1.0 V under 650 nm illumination. The photodiode-type photodetectors based on polycrystalline α-FAPbI3 thin films with superior performance consequently show great promise for future optoelectronic device applications.
Collapse
|
27
|
Abstract
While the field of perovskite-based optoelectronics has mostly been dominated by photovoltaics, light-emitting diodes, and transistors, semiconducting properties peculiar to perovskites make them interesting candidates for innovative and disruptive applications in light signal detection. Perovskites combine effective light absorption in the broadband range with good photo-generation yield and high charge carrier mobility, a combination that provides promising potential for exploiting sensitive and fast photodetectors that are targeted for image sensing, optical communication, environmental monitoring or chemical/biological detection. Currently, organic-inorganic hybrid and all-inorganic halide perovskites with controlled morphologies of polycrystalline thin films, nano-particles/wires/sheets, and bulk single crystals have shown key figure-of-merit features in terms of their responsivity, detectivity, noise equivalent power, linear dynamic range, and response speed. The sensing region has been covered from ultraviolet-visible-near infrared (UV-Vis-NIR) to gamma photons based on two- or three-terminal device architectures. Diverse photoactive materials and devices with superior optoelectronic performances have stimulated attention from researchers in multidisciplinary areas. In this review, we provide a comprehensive overview of the recent progress of perovskite-based photodetectors focusing on versatile compositions, structures, and morphologies of constituent materials, and diverse device architectures toward the superior performance metrics. Combining the advantages of both organic semiconductors (facile solution processability) and inorganic semiconductors (high charge carrier mobility), perovskites are expected to replace commercial silicon for future photodetection applications.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | | |
Collapse
|
28
|
Pae SR, Byun S, Kim J, Kim M, Gereige I, Shin B. Improving Uniformity and Reproducibility of Hybrid Perovskite Solar Cells via a Low-Temperature Vacuum Deposition Process for NiO x Hole Transport Layers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:534-540. [PMID: 29235349 DOI: 10.1021/acsami.7b14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, the trend in inverted hybrid perovskite solar cells (PVSCs) has been to utilize NiOx as hole transport layers. However, the majority of reported solution-processed NiOx films require a high-temperature thermal annealing process, which is unfavorable for large-scale manufacturing and suffers from lack of uniformity. We report, for the first time, e-beam evaporation as a low-temperature vacuum process for the deposition of NiOx hole transport layers for PVSCs. Device characterization shows that efficiency is on par with solution-processed methods, the highest efficiency at 15.4% with no obvious hysteresis. Differences are found to be due to the presence of more Ni3+ in e-beam evaporated NiOx, which are responsible for a lower transmittance but higher conductivity. Most importantly, e-beam-evaporated NiOx-based PVSCs show greater uniformity and reproducibility compared to spin-coated NiOx-based PVSCs. Finally, e-beam-evaporated NiOx has the additional advantage of being produced by a low-temperature deposition process and applicable over large areas. This work, therefore, represents a significant step toward large-area PVSCs, where e-beam evaporation can be used for the low-temperature uniform deposition of charge-transport layers, such as NiOx.
Collapse
Affiliation(s)
- Seong Ryul Pae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| | - Segi Byun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| | - Jekyung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| | - Minkyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| | - Issam Gereige
- Saudi Aramco Research & Development Center , Dhahran 31311, Kingdom of Saudi Arabia
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Korea
| |
Collapse
|
29
|
Li J, Yuan S, Tang G, Li G, Liu D, Li J, Hu X, Liu Y, Li J, Yang Z, Liu SF, Liu Z, Gao F, Yan F. High-Performance, Self-Powered Photodetectors Based on Perovskite and Graphene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42779-42787. [PMID: 29139287 DOI: 10.1021/acsami.7b14110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An ideal photodetector must exhibit a fast and wide tunable spectral response, be highly responsive, have low power consumption, and have a facile fabrication process. In this work, a self-powered photodetector with a graphene electrode and a perovskite photoactive layer is assembled for the first time. The graphene electrode is prepared using a solution transfer process, and the perovskite layer is prepared using a solution coating process, which makes the device low cost. Graphene can form a Schottky junction with TiO2 to efficiently separate/transport photogenerated excitons at the graphene/perovskite interface. Unlike the conventional photovoltaic structure, in this photodetector, both photogenerated electrons and holes are transported along the same direction to graphene, and electrons tunneled into TiO2 are collected by the cathode and holes transported by graphene are collected by the anode; therefore, the photodetector is self-powered. The photodetector has a broad range of detection, from 260 to 900 nm, an ultrahigh on-off ratio of 4 × 106, rapid response to light on-off (<5 ms), and a high level of detection of ∼1011 Jones. The high performance is primarily due to the unique charge-transport property of graphene and strong light absorption properties of perovskite. This work suggests a new method for the production of self-powered photodetectors with high performance and low power consumption on a large scale.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Shihao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Guanqi Tang
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| | - Guijun Li
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| | - Dan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Jing Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Xihong Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Jianbo Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Fei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| |
Collapse
|
30
|
Li MH, Yang YS, Wang KC, Chiang YH, Shen PS, Lai WC, Guo TF, Chen P. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41845-41854. [PMID: 29134795 DOI: 10.1021/acsami.7b12367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiOx counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO2 and mp-Al2O3), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO2/mp-Al2O3/np-Au:NiOx as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.
Collapse
Affiliation(s)
- Ming-Hsien Li
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Yu-Syuan Yang
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Kuo-Chin Wang
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Yu-Hsien Chiang
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Po-Shen Shen
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Wei-Chih Lai
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Tzung-Fang Guo
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| | - Peter Chen
- Department of Photonics, ‡Center for Micro/Nano Science and Technology (CMNST), and §Advanced Optoelectronics Technology Center (AOCT), National Cheng Kung University , Tainan 701, Taiwan
| |
Collapse
|
31
|
Tian W, Zhou H, Li L. Hybrid Organic-Inorganic Perovskite Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28895306 DOI: 10.1002/smll.201702107] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Indexed: 05/15/2023]
Abstract
Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.
Collapse
Affiliation(s)
- Wei Tian
- College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Huanping Zhou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Liang Li
- College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
32
|
Wang Q, Chueh CC, Zhao T, Cheng J, Eslamian M, Choy WCH, Jen AKY. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. CHEMSUSCHEM 2017; 10:3794-3803. [PMID: 28881441 DOI: 10.1002/cssc.201701262] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/02/2017] [Indexed: 05/15/2023]
Abstract
Entirely low-temperature solution-processed (≤100 °C) planar p-i-n perovskite solar cells (PSCs) offer great potential for commercialization of roll-to-roll fabricated photovoltaic devices. However, the stable inorganic hole-transporting layer (HTL) in PSCs is usually processed at high temperature (200-500 °C), which is far beyond the tolerant temperature (≤150 °C) of roll-to-roll fabrication. In this context, inorganic NiOx nanoparticles (NPs) are an excellent candidate to serve as the HTL in PSCs, owing to their excellent solution processability at room temperature. However, the low-temperature processing condition is usually accompanied with defect formation, which deteriorates the film quality and device efficiency to a large extent. To suppress this setback, we used a series of benzoic acid selfassembled monolayers (SAMs) to passivate the surface defects of the NiOx NPs and found that 4-bromobenzoic acid could effectively play the role of the surface passivation. This SAM layer reduces the trap-assisted recombination, minimizes the energy offset between the NiOx NPs and perovskite, and changes the HTL surface wettability, thus enhancing the perovskite crystallization, resulting in more stable PSCs with enhanced power conversion efficiency (PCE) of 18.4 %, exceeding the control device PCE (15.5 %). Also, we incorporated the above-mentioned SAMs into flexible PSCs (F-PSCs) and achieved one of the highest PCE of 16.2 % on a polyethylene terephthalate (PET) substrate with a remarkable power-per-weight of 26.9 W g-1 . This facile interfacial engineering method offers great potential for the large-scale manufacturing and commercialization of PSCs.
Collapse
Affiliation(s)
- Qin Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, 200240, P. R. China
| | - Chu-Chen Chueh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Ting Zhao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Jiaqi Cheng
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| | - Morteza Eslamian
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, 200240, P. R. China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| |
Collapse
|
33
|
Shi Z, Zhang Y, Cui C, Li B, Zhou W, Ning Z, Mi Q. Symmetrization of the Crystal Lattice of MAPbI 3 Boosts the Performance and Stability of Metal-Perovskite Photodiodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701656. [PMID: 28605061 DOI: 10.1002/adma.201701656] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/29/2017] [Indexed: 06/07/2023]
Abstract
Semiconducting lead triiodide perovskites (APbI3 ) have shown remarkable performance in applications including photovoltaics and electroluminescence. Despite many theoretical possibilities for A+ in APbI3 , the current experimental knowledge is largely limited to two of these materials: methylammonium (MA+ ) and formamidinium (FA+ ) lead triiodides, neither of which adopts the ideal, cubic perovskite structure at room temperature. Here, a volume-based criterion is proposed for cubic APbI3 to be stable, and two perovskite materials MA1-x EAx PbI3 (MEPI, EA+ = ethylammonium) and MA1-y DMAy PbI3 (MDPI, DMA+ = dimethylammonium) are introduced. Powder and single-crystal X-ray diffraction (XRD) results reveal that MEPI and MDPI are solid solutions possessing the cubic perovskite structure, and the EA+ and DMA+ cations play similar roles in the symmetrization of the crystal lattice of MAPbI3 . Single crystals of MEPI and MDPI are grown and made into plates of a range of thicknesses, and then into metal-perovskite photodiodes. These devices exhibit tripled diffusion lengths and about tenfold enhancement in stability against moisture, both relative to the current benchmark MAPbI3 . In this study, the systematic approach to materials design and device fabrication greatly expands the candidate pool of perovskite semiconductors, and paves the way for high-performance, single-crystal perovskite devices including solar cells and light emitters.
Collapse
Affiliation(s)
- Zhifang Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chao Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Binghan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenjia Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
34
|
Chen S, Shi G. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605448. [PMID: 28256781 DOI: 10.1002/adma.201605448] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/26/2016] [Indexed: 05/21/2023]
Abstract
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non-radiative charge recombination. Thus, they are attractive photoactive materials for developing high-performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite-based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two-dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite-based photodetectors, solar cells and light-emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono- and few-layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden-Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.
Collapse
Affiliation(s)
- Shan Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Gaoquan Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Fu M, Tamarat P, Huang H, Even J, Rogach AL, Lounis B. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. NANO LETTERS 2017; 17:2895-2901. [PMID: 28240910 DOI: 10.1021/acs.nanolett.7b00064] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Revealing the crystal structure of lead halide perovskite nanocrystals is essential for the optimization of stability of these emerging materials in applications such as solar cells, photodetectors, and light-emitting devices. We use magneto-photoluminescence spectroscopy of individual perovskite CsPbBr3 nanocrystals as a unique tool to determine their crystal structure, which imprints distinct signatures in the excitonic sublevels of charge complexes at low temperatures. At zero magnetic field, the identification of two classes of photoluminescence spectra, displaying either two or three sublevels in their exciton fine structure, shows evidence for the existence of two crystalline structures, namely tetragonal D4h and orthorhombic D2h phases. Magnetic field shifts, splitting, and coupling of the sublevels provide a determination of the diamagnetic coefficient and valuable information on the exciton g-factor and its anisotropic character. Moreover, this spectroscopic study reveals the optical properties of charged excitons and allows the extraction of the electron and hole g-factors for perovskite systems.
Collapse
Affiliation(s)
- Ming Fu
- LP2N, Université de Bordeaux , Talence F-33405, France
- LP2N, Institut d'Optique and CNRS , Talence F-33405, France
| | - Philippe Tamarat
- LP2N, Université de Bordeaux , Talence F-33405, France
- LP2N, Institut d'Optique and CNRS , Talence F-33405, France
| | - He Huang
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong , 83 Tat Chee Avenue Kowloon, Hong Kong, SAR China
| | - Jacky Even
- Fonctions Optiques pour les Technologies de l'Information, FOTON UMR 6082, CNRS, INSA de Rennes , 35708 Rennes, France
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong , 83 Tat Chee Avenue Kowloon, Hong Kong, SAR China
| | - Brahim Lounis
- LP2N, Université de Bordeaux , Talence F-33405, France
- LP2N, Institut d'Optique and CNRS , Talence F-33405, France
| |
Collapse
|
36
|
Qiao K, Cao Y, Yang X, Khan J, Deng H, Zhang J, Farooq U, Yuan S, Song H. Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv 2017. [DOI: 10.1039/c7ra10422g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A simple passivation method based on PbI2 was developed, which can effectively suppress the heterojunction interface and PbS QD surface defects by interface and ligand passivation.
Collapse
Affiliation(s)
- Keke Qiao
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Yulin Cao
- Physics Laboratory
- Industrial Training Center
- Shenzhen Polytechnic
- Shenzhen
- People’s Republic of China
| | - Xiaokun Yang
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Jahangeer Khan
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Hui Deng
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Jian Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Umar Farooq
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Shengjie Yuan
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology (HUST)
- Wuhan
- China
| |
Collapse
|