1
|
Zhang L, Kowalik M, Mao Q, Damirchi B, Zhang Y, Bradford PD, Li Q, van Duin ACT, Zhu YT. Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384459 DOI: 10.1021/acsami.3c03209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Stress graphitization is a unique phenomenon at the carbon nanotube (CNT)-matrix interfaces in CNT/carbon matrix (CNT/C) composites. A lack of fundamental atomistic understanding of its evolution mechanisms and a gap between the theoretical and experimental research have hindered the pursuit of utilizing this phenomenon for producing ultrahigh-performance CNT/C composites. Here, we performed reactive molecular dynamics simulations along with an experimental study to explore stress graphitization mechanisms of a CNT/polyacrylonitrile (PAN)-based carbon matrix composite. Different CNT contents in the composite were considered, while the nanotube alignment was controlled in one direction in the simulations. We observe that the system with a higher CNT content exhibits higher localized stress concentration in the periphery of CNTs, causing alignment of the nitrile groups in the PAN matrix along the CNTs, which subsequently results in preferential dehydrogenation and clustering of carbon rings and eventually graphitization of the PAN matrix when carbonized at 1500 K. These simulation results have been validated by experimentally produced CNT/PAN-based carbon matrix composite films, with transmission electron microscopy images showing the formation of additional graphitic layers converted by the PAN matrix around CNTs, where 82 and 144% improvements of the tensile strength and Young's modulus are achieved, respectively. The presented atomistic details of stress graphitization can provide guidance for further optimizing CNT-matrix interfaces in a more predictive and controllable way for the development of novel CNT/C composites with high performance.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, People's Republic of China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Małgorzata Kowalik
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qian Mao
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Behzad Damirchi
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, People's Republic of China
| | - Philip D Bradford
- Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, People's Republic of China
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuntian T Zhu
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| |
Collapse
|
2
|
Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to upgrade existing electronic technology, we need simultaneously to advance power supply devices to match emerging requirements. Owing to the rapidly growing wearable and portable electronics markets, the demand to develop flexible energy storage devices is among the top priorities for humankind. Flexible supercapacitors (FSCs) have attracted tremendous attention, owing to their unrivaled electrochemical performances, long cyclability and mechanical flexibility. Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. In this review, we have summarized various assemblies of CNT structures, and their involvement in various device configurations of FSCs. Furthermore, to present a clear scenario of recent developments, we discuss the electrochemical performance of fabricated flexible devices of different CNT structures and their composites, including additional properties such as compressibility and stretchability. Additionally, the drawbacks and benefits of the study and further potential scopes are distinctly emphasized for future researchers.
Collapse
|
3
|
Wang Y, Cui Z, Zhang X, Zhang X, Zhu Y, Chen S, Hu H. Excitation of Surface Plasmon Resonance on Multiwalled Carbon Nanotube Metasurfaces for Pesticide Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52082-52088. [PMID: 33151054 DOI: 10.1021/acsami.0c10943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With the rapid advances in functional optoelectronics, the research on carbon-based materials and devices has become increasingly important at the terahertz frequency range owing to their advantages in terms of weight, cost, and freely bendable flexibility. Here, we report an effective material and device design for a terahertz plasmonic metasurface sensor (PMS) based on carbon nanotubes (CNTs). CNT metasurfaces based on silicon wafers have been prepared and obvious resonant transmission peaks are observed experimentally. The enhanced resonant peaks of transmission spectra are attributed to the surface plasmon polariton resonance, and the transmission peaks are further well explained by the Fano model. Furthermore, the different concentration gradients of pesticides (2,4-dichlorophenoxyacetic and chlorpyrifos solutions) have been detected by the designed PMSs, showing the lowest detection mass of 10 ng and the sensitivities of 1.38 × 10-2/ppm and 2.0 × 10-3/ppm, respectively. Good linear relationships between transmission amplitude and pesticide concentration and acceptable reliability and stability have been obtained. These materials and device strategies provide opportunities for novel terahertz functional devices such as sensors, detectors, and wearable terahertz imagers.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
- Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Zijian Cui
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoju Zhang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
- Foundation Department, Engineering University of PAP, Xi'an 710086, China
| | - Xiang Zhang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Yongqiang Zhu
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Suguo Chen
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Hui Hu
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
4
|
Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS NANO 2020; 14:9282-9319. [PMID: 32790347 DOI: 10.1021/acsnano.0c03268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As an excellent candidate for lightweight structural materials and nonmetal electrical conductors, carbon nanotube reinforced carbon matrix (CNT/C) composites have potential use in technologies employed in aerospace, military, and defense endeavors, where the combinations of light weight, high strength, and excellent conductivity are required. Both polymer infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) methods have been widely studied for CNT/C composite fabrications with diverse focuses and various modifications. Progress has been reported to optimize the performance of CNT/C composites from broad aspects, including matrix densification, CNT alignment, microstructure control, and interface engineering, etc. Recent approaches, such as using resistance heating for PIP or CVI, contribute to the development of CNT/C composites. To deliver a timely and up-to-date overview of CNT/C composites, we have reviewed the most recent trends in fabrication processes, summarized the mechanical reinforcement mechanism, and discussed the electrical and thermal properties, as well as relevant case studies for high-temperature applications. Conclusions and perspectives addressing future routes for performance optimization are also presented. Hence, this review serves as a rundown of recent advances in CNT/C composites and will be a valuable resource to aid future developments in this field.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yan Ma
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textiles and Clothing, Nantong University, Nantong 226019, P.R. China
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Ayou Hao
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Song Y, Di J, Zhang C, Zhao J, Zhang Y, Hu D, Li M, Zhang Z, Wei H, Li Q. Millisecond tension-annealing for enhancing carbon nanotube fibers. NANOSCALE 2019; 11:13909-13916. [PMID: 31304941 DOI: 10.1039/c9nr03400e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanically strong carbon nanotube (CNT) fibers have increasingly become the focus of the present research in the fiber industry. However, the weak or even a lack of interconnections between adjacent CNTs induces much inter-tube slippages during fiber failure, and thus results in their low mechanical strength. Moreover, achieving fast cross-linking between neighbouring CNTs on a large scale to prevent the failure by slip is still a big challenge. Herein we report an ultrafast and continuous tension-annealing process to achieve the considerably improved tube alignment and strong covalent cross-linking of neighbouring CNTs in milliseconds, resulting in great improvement of the fiber performance. The CNT fibers were heated to high temperature (∼2450 °C) by Joule heating under the applied tension and subsequently annealed for just 12 ms. Due to the rapid electromechanical response of the fibers, instant nanotube rearrangements coupled by the formation of cross-links robustly bonding the adjacent CNTs occurred at power-on, which could be attributed to the considerable increases of strength and modulus by factors of 2.9 (up to 3.2 GPa) and 4.8 (up to 123 GPa), respectively. The resultant fibers showed high specific strength (2.2 N per tex), comparable with that of PAN-based carbon fibers, and high specific electrical conductivity higher than that of PAN-based carbon fibers. Moreover, the obtained strongly crosslinked and highly dense structures also endowed the fibers with the significantly improved thermal stability under a high-temperature oxidation atmosphere. Moreover, a continuous tension-annealing process was designed to achieve the large scale production of high performance fibers with the average strength of 2.2 GPa. The high-toughness, lightweight and continuous features together with their outstanding mechanical and electrical properties would certainly boost the large-scale applications of CNT fibers.
Collapse
Affiliation(s)
- Yanhui Song
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, China. and Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiangtao Di
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
| | - Chao Zhang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jingna Zhao
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yongyi Zhang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
| | - Dongmei Hu
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Min Li
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, China.
| | - Zuoguang Zhang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, China.
| | - Huazhen Wei
- Shandong Institute of Non-metallic Materials, Jinan 250031s, China
| | - Qingwen Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
| |
Collapse
|
6
|
Yao Y, Jiang F, Yang C, Fu KK, Hayden J, Lin CF, Xie H, Jiao M, Yang C, Wang Y, He S, Xu F, Hitz E, Gao T, Dai J, Luo W, Rubloff G, Wang C, Hu L. Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS NANO 2018; 12:5266-5273. [PMID: 29757623 DOI: 10.1021/acsnano.7b08584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an "epitaxial welding" strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures. Solution-based polyacrylonitrile was conformally coated on CNTs as "nanoglue" to physically join CNTs into a network, followed by a rapid high-temperature annealing (>2800 K, overall ∼30 min) to graphitize the polymer coating into crystalline layers that also bridge the adjacent CNTs to form an interconnected structure. The contact-welded CNTs (W-CNTs) exhibit both a high conductivity (∼1500 S/cm) and a high tensile strength (∼120 MPa), which are 5 and 20 times higher than the unwelded CNTs, respectively. In addition, the W-CNTs display chemical and electrochemical stabilities in strong acidic/alkaline electrolytes (>6 mol/L) when potentiostatically stressing at both cathodic and anodic potentials. With these exceptional properties, the W-CNT films are optimal as high-performance current collectors and were demonstrated in the state-of-the-art aqueous battery using a "water-in-salt" electrolyte.
Collapse
Affiliation(s)
- Yonggang Yao
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Feng Jiang
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Chongyin Yang
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Kun Kelvin Fu
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - John Hayden
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Chuan-Fu Lin
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Hua Xie
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Miaolun Jiao
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Chunpeng Yang
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Yilin Wang
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Shuaiming He
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Fujun Xu
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Emily Hitz
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Tingting Gao
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Jiaqi Dai
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Wei Luo
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Gary Rubloff
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Liangbing Hu
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|