1
|
He Y, Tian J, Li F, Peng W, He Y. Evolution of Tribotronics: From Fundamental Concepts to Potential Uses. MICROMACHINES 2024; 15:1259. [PMID: 39459133 PMCID: PMC11509801 DOI: 10.3390/mi15101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The intelligent sensing network is one of the key components in the construction of the Internet of Things, and the power supply technology of sensor communication nodes needs to be solved urgently. As a new field combining tribo-potential with semiconductor devices, tribotronics, based on the contact electrification (CE) effect, realizes direct interaction between the external environment and semiconductor devices by combining triboelectric nanogenerator (TENG) and field-effect transistor (FET), further expanding the application prospects of micro/nano energy. In this paper, the research progress of tribotronics is systematically reviewed. Firstly, the mechanism of the CE effect and the working principles of TENG are introduced. Secondly, the regulation theory of tribo-potential on carrier transportation in semiconductor devices and the research status of tribotronic transistors are summarized. Subsequently, the applications of tribotronics in logic circuits and memory devices, smart sensors, and artificial synapses in recent years are demonstrated. Finally, the challenges and development prospects of tribotronics in the future are projected.
Collapse
Affiliation(s)
- Yue He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Jia Tian
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
2
|
Zhou W, Zeng J, Dong Z, Xiao C, Gong L, Fan B, Li Y, Chen Y, Zhao J, Zhang C. A Degradable Tribotronic Transistor for Self-Destructing Intelligent Package e-Labels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30255-30263. [PMID: 38813772 DOI: 10.1021/acsami.4c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Recently, discarded electronic products have caused serious environmental pollution and information security issues, which have attracted widespread attention. Here, a degradable tribotronic transistor (DTT) for self-destructing intelligent package e-labels has been developed, integrated by a triboelectric nanogenerator and a protonic field-effect transistor with sodium alginate as a dielectric layer. The triboelectric potential generated by external contact electrification is used as the gate voltage of the organic field-effect transistor, which regulates carrier transport through proton migration/accumulation. The DTT has successfully demonstrated its output characteristics with a high sensitivity of 0.336 mm-1 and a resolution of over 100 μm. Moreover, the DTT can be dissolved in water within 3 min and completely degraded in soil within 12 days, demonstrating its excellent degradation characteristics, which may contribute to environmental protection. Finally, an intelligent package e-label based on the modulation of the DTT is demonstrated, which can display information about the package by a human touch. The e-label will automatically fail due to the degradation of the DTT over time, achieving the purpose of information confidentiality. This work has not only presented a degradable tribotronic transistor for package e-labels but also exhibited bright prospects in military security, information hiding, logistics privacy, and personal affairs.
Collapse
Affiliation(s)
- Weilin Zhou
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jianhua Zeng
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Zefang Dong
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyong Xiao
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Likun Gong
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Fan
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Yongbo Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanfen Chen
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Junqing Zhao
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Zhang
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Chen Q, Wang A, Yang D, Wei X, Zhang L, Wu Z, Wang L, Qin Y. Largely Improving the Output Performance of Stretchable Triboelectric Nanogenerators via Thermo-Compressive Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307070. [PMID: 37940630 DOI: 10.1002/smll.202307070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Stretchable triboelectric nanogenerators (TENGs) are widely applied in wearable and implantable electronics, smart medical devices, and soft robots. However, it is still a challenge to produce stretchable TENGs with both exceptional elasticity and output performance, which limits their application scope. In this work, high-performance stretchable TENGs are developed through a thermo-compression (TC) fabrication process. In particular, a poly(vinylidene fluoride) film is compactly bound to the elastic thermoplastic polyurethane substrate, which inherits excellent stretchability with a strain of up to 815%. Furthermore, owing to the large surface area, tight contact, and effective vertical transport of tribo-induced charges between the coupled fibrous tribo-layer and soft substrate, the TC composite film-based TENGs exhibit a greater output (2-4 times) than unlaminated film-based TENGs. Additionally, the broad universality of this method is proven using various tribo- and substrate materials. The proposed technology provides a novel and effective approach to conjointly boost the output and stretchability of TENGs, showing encouraging application prospects in self-powered wearable and flexible electronics.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Aochen Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Li'ang Zhang
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Li F, Yin A, Zhou Y, Liu T, Liu Q, Ruan W, Bu L. Stiffness Modulation in Flexible Rotational Triboelectric Nanogenerators for Dual Enhancement of Power and Reliability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:380. [PMID: 38392753 PMCID: PMC10892494 DOI: 10.3390/nano14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Rotational nanogenerators with flexible triboelectric layers have wide applications and high reliability. However, flexible materials cause a severe reduction in contact force and thus triboelectric output power. Unlike previous works devising complex auxiliary structures to solve this issue, this paper focuses on improving the contact material mechanics and proposes a stiffness modulation method. By introducing fine patterns to the contacting rotor-stator pairs, the effective elastic modulus was regulated from approximately 103 to 105 MPa, and the output voltage was modulated from approximately 24.39% to 375.87% compared to the non-patterned rotor-stator pairs, corresponding to a maximal a 14 times increase in output power. A maximal power density of 18.75 W/m2 was achieved on 10 MΩ resistance at 9.6 Hz, which is even beyond the power density of most rigid triboelectric interfaces. Moreover, high reliability could be maintained when the volume ratio of the horizontal patterns exceeded a threshold value of 33.5% as the stator and 63.6% as the rotor for a 0.5 mm linewidth. These results prove the efficacy of the stiffness modulation method for jointly achieving high output power and high reliability in flexible rotational triboelectric nanogenerators.
Collapse
Affiliation(s)
- Feng Li
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| | - Ao Yin
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| | - Yaao Zhou
- Power Transmission and Substation Department, China Electric Power Research Institute, Beijing 100055, China;
| | - Tao Liu
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| | - Qingqing Liu
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| | - Weijie Ruan
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| | - Ling Bu
- School of Information Engineering, China University of Geosciences, Beijing 100083, China; (F.L.); (A.Y.); (T.L.); (Q.L.); (W.R.)
| |
Collapse
|
5
|
Wei Y, Liu W, Yu J, Li Y, Wang Y, Huo Z, Cheng L, Feng Z, Sun J, Sun Q, Wang ZL. Triboelectric Potential Powered High-Performance Organic Transistor Array. ACS NANO 2022; 16:19199-19209. [PMID: 36354955 DOI: 10.1021/acsnano.2c08420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triboelectric potential gated transistors have inspired various applications toward mechanical behavior controlled logic circuits, multifunctional sensors, artificial sensory neurons, etc. Their rapid development urgently calls for high-performance devices and corresponding figure of merits to standardize the tribotronic gating properties. Organic semiconductors paired with solution processability promise low-cost manufacture of high-performance tribotronic transistor devices/arrays. Here, we demonstrate a record high-performance tribotronic transistor array composed of an integrated triboelectric nanogenerator (TENG) and a large-area device array of C8-BTBT-PS transistors. The working mechanism of effective triboelectric potential gating is elaborately explained from the aspect of conjugated energy bands of the contact-electrification mediums and organic semiconductors. Driven by the triboelectric potential, the tribotronic transistor shows superior properties of record high current on/off ratios (>108), a steep subthreshold swing (29.89 μm/dec), high stability, and excellent reproducibility. Moreover, tribotronic logic devices modulated by mechanical displacement have also been demonstrated with good stability and a high gain of 1260 V/mm. The demonstrated large-area tribotronic transistor array of organic semiconductor exhibits record high performance and offers an effective R&D platform for mechano-driven electronic terminals, interactive intelligent system, artificial robotic skin, etc.
Collapse
Affiliation(s)
- Yichen Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wanrong Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yonghai Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liuqi Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Zhenyu Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 257061, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| |
Collapse
|
6
|
Geng Y, Xu J, Bin Che Mahzan MA, Lomax P, Saleem MM, Mastropaolo E, Cheung R. Mixed Dimensional ZnO/WSe 2 Piezo-gated Transistor with Active Millinewton Force Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49026-49034. [PMID: 36259783 PMCID: PMC9634694 DOI: 10.1021/acsami.2c15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
This work demonstrates a mixed-dimensional piezoelectric-gated transistor in the microscale that could be used as a millinewton force sensor. The force-sensing transistor consists of 1D piezoelectric zinc oxide (ZnO) nanorods (NRs) as the gate control and multilayer tungsten diselenide (WSe2) as the transistor channel. The applied mechanical force on piezoelectric NRs can induce a drain-source current change (ΔIds) on the WSe2 channel. The different doping types of the WSe2 channel have been found to lead to different directions of ΔIds. The pressure from the calibration weight of 5 g has been observed to result in an ∼30% Ids change for ZnO NRs on the p-type doped WSe2 device and an ∼-10% Ids change for the device with an n-type doped WSe2. The outcome of this work would be useful for applications in future human-machine interfaces and smart biomedical tools.
Collapse
Affiliation(s)
- Yulin Geng
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Jing Xu
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Muhammad Ammar Bin Che Mahzan
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Peter Lomax
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Muhammad Mubasher Saleem
- Department
of Mechatronics Engineering, National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Enrico Mastropaolo
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Rebecca Cheung
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| |
Collapse
|
7
|
Song Y, Xu W, Liu Y, Zheng H, Cui M, Zhou Y, Zhang B, Yan X, Wang L, Li P, Xu X, Yang Z, Wang Z. Achieving ultra-stable and superior electricity generation by integrating transistor-like design with lubricant armor. Innovation (N Y) 2022; 3:100301. [PMID: 36051817 PMCID: PMC9425077 DOI: 10.1016/j.xinn.2022.100301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Extensive work have been done to harvest untapped water energy in formats of raindrops, flows, waves, and others. However, attaining stable and efficient electricity generation from these low-frequency water kinetic energies at both individual device and large-scale system level remains challenging, partially owing to the difficulty in designing a unit that possesses stable liquid and charge transfer properties, and also can be seamlessly integrated to achieve preferential collective performances without the introduction of tortuous wiring and redundant node connection with external circuit. Here, we report the design of water electricity generators featuring the combination of lubricant layer and transistor-like electrode architecture that endows enhanced electrical performances in different working environments. Such a design is scalable in manufacturing and suitable for facile integration, characterized by significant reduction in the numbers of wiring and nodes and elimination of complex interfacing problems, and represents a significant step toward large-scale, real-life applications. A lubricant-armored transistor-like electricity generator is proposed The transistor-like electrode architecture causes high electrical output The lubricant armor ensures stable performance in extreme environments The design is scalable in manufacturing and suitable for facile integration
Collapse
Affiliation(s)
- Yuxin Song
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Wanghuai Xu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuan Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Huanxi Zheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Miaomiao Cui
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Baoping Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiantong Yan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Lili Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Pengyu Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaote Xu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Research Center for Nature-Inspired Engineering, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Corresponding author
| |
Collapse
|
8
|
Recent Progress in Flexible Pressure Sensor Arrays. NANOMATERIALS 2022; 12:nano12142495. [PMID: 35889718 PMCID: PMC9319019 DOI: 10.3390/nano12142495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/11/2022]
Abstract
Flexible pressure sensors that can maintain their pressure sensing ability with arbitrary deformation play an essential role in a wide range of applications, such as aerospace, prosthetics, robotics, healthcare, human–machine interfaces, and electronic skin. Flexible pressure sensors with diverse conversion principles and structural designs have been extensively studied. At present, with the development of 5G and the Internet of Things, there is a huge demand for flexible pressure sensor arrays with high resolution and sensitivity. Herein, we present a brief description of the present flexible pressure sensor arrays with different transduction mechanisms from design to fabrication. Next, we discuss the latest progress of flexible pressure sensor arrays for applications in human–machine interfaces, healthcare, and aerospace. These arrays can monitor the spatial pressure and map the trajectory with high resolution and rapid response beyond human perception. Finally, the outlook of the future and the existing problems of pressure sensor arrays are presented.
Collapse
|
9
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
10
|
Fastier-Wooller JW, Vu TH, Nguyen H, Nguyen HQ, Rybachuk M, Zhu Y, Dao DV, Dau VT. Multimodal Fibrous Static and Dynamic Tactile Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27317-27327. [PMID: 35656814 DOI: 10.1021/acsami.2c08195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A highly versatile, low-cost, and robust tactile sensor capable of acquiring load measurements under static and dynamic modes employing a poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] micronanofiber element is presented. The sensor is comprised of three essential layers, a fibrous core P(VDF-TrFE) layer and two Ni/Cu conductive fabric electrode layers, with a total thickness of less than 300 μm. Using an in situ electrospinning process, the core fibers are deposited directly to a soft poly(dimethylsiloxane) (PDMS) fingertip. The core layer conforms to the surface and requires no additional processing, exhibiting the capability of the in situ electrospinning fabrication method to alleviate poor surface contacts and resolve issues associated with adhesion. The fabricated tactile sensor displayed a reliable and consistent measurement performance of static and instantaneous dynamic loads over a total of 30 000 test cycles. The capabilities and implications of the presented tactile sensor design for multimodal sensing in robot tactile sensing applications is further discussed and elucidated.
Collapse
Affiliation(s)
- Jarred W Fastier-Wooller
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Trung-Hieu Vu
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Hang Nguyen
- University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Hong-Quan Nguyen
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
| | - Maksym Rybachuk
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan 4111, Australia
- Centre for Quantum Dynamics and Australian Attosecond Science Facility, Griffith University, Science Road, Nathan 4111, Australia
| | - Yong Zhu
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan 4111, Australia
| | - Dzung Viet Dao
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan 4111, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport 4222, Australia
- Centre of Catalysis and Clean Energy, Griffith University, 1 Parklands Drive, Southport 4222, Australia
| |
Collapse
|
11
|
Lv Y, Bu T, Zhou H, Liu G, Chen Y, Wang Z, Fu X, Lin Y, Cao J, Zhang C. An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency. NANOSCALE 2022; 14:7906-7912. [PMID: 35593108 DOI: 10.1039/d2nr01530g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triboelectric nanogenerator (TENG) as a new energy harvester has attracted significant attention due to its excellent output performance and high energy conversion efficiency at low-frequency, small-amplitude and weak-force compared with a traditional electromagnetic generator. Here, an ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator (UMA-TENG) has been studied with an atomic force microscope. The electrical output and force curve of UMA-TENG were studied at first, as well as the maximum output performance and highest energy conversion efficiency. Then the influence of the driving frequency, separation distance and motion amplitude was investigated, respectively. Moreover, by introducing an external switch to reach a cycle of maximized energy output, the maximum energy conversion efficiency of the UMA-TENG was up to 73.6% with an input mechanical energy of 48 pJ. This work demonstrates that the TENG shows excellent performance in ultraweak mechanical stimuli and could broaden the applications of the TENG in sensors, actuators, micro-robotics, micro-electro-mechanical-systems, and wearable electronics.
Collapse
Affiliation(s)
- Yi Lv
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zhou
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| | - Yunkang Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhaozheng Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianpeng Fu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Lin
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Jie Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Mechanical Engineering, Jiangsu University, Jiangsu 212013, China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Nguyen TD, Lee JS. Recent Development of Flexible Tactile Sensors and Their Applications. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010050. [PMID: 35009588 PMCID: PMC8747637 DOI: 10.3390/s22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
With the rapid development of society in recent decades, the wearable sensor has attracted attention for motion-based health care and artificial applications. However, there are still many limitations to applying them in real life, particularly the inconvenience that comes from their large size and non-flexible systems. To solve these problems, flexible small-sized sensors that use body motion as a stimulus are studied to directly collect more accurate and diverse signals. In particular, tactile sensors are applied directly on the skin and provide input signals of motion change for the flexible reading device. This review provides information about different types of tactile sensors and their working mechanisms that are piezoresistive, piezocapacitive, piezoelectric, and triboelectric. Moreover, this review presents not only the applications of the tactile sensor in motion sensing and health care monitoring, but also their contributions in the field of artificial intelligence in recent years. Other applications, such as human behavior studies, are also suggested.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Correspondence: ; Tel.: +82-31-750-5814; Fax: +82-31-750-5389
| |
Collapse
|
13
|
Wang H, Cheng J, Wang Z, Ji L, Wang ZL. Triboelectric nanogenerators for human-health care. Sci Bull (Beijing) 2021; 66:490-511. [PMID: 36654185 DOI: 10.1016/j.scib.2020.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 01/20/2023]
Abstract
Since the world's first triboelectric nanogenerator (TENG) was proposed in 2012, numerous TENG-based devices and equipment have sprung up in various fields. In particular, TENG has great potential in the field of human-health care due to its small size, self-powered and low cost. With the continuous deepening of TENG research, its structure, function and technical concept are becoming more and more abundant. In order to summarize the progress and development status of TENG in health care, based on the different types of applications subdirection, this paper reviews the TENG-based research work of this field in recent eight years. The characteristics of various types of TENG-based applications and their corresponding technologies are introduced and analyzed, under the comparison of their structure and performance. This review is dedicated to provide reference and inspiration for the future development and innovation of TENG for health care.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhaozheng Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Linhong Ji
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| |
Collapse
|
14
|
A General Grid-Less Design Method for Location and Pressure Sensors with High Precision. SENSORS 2020; 20:s20247286. [PMID: 33353030 PMCID: PMC7766643 DOI: 10.3390/s20247286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/03/2022]
Abstract
Bionic electronic skin can accurately sense and locate surface pressure, which is widely demanded in many fields. Traditional electronic skin design usually relies on grid-architecture sensor arrays, requiring complex grid and interconnection arrangements as well as high cost. Grid-less planar sensors can solve the problem by using electrodes only at the edges, but they usually require the use of mapping software such as electrical impedance tomography to achieve high precision. In this work, a design method of high-precision grid-less planar pressure sensors based on the back-propagation (BP) neural network is proposed. The measurement precision of this method is demonstrated to be over two orders of magnitude higher than that of a grid-structure sensor array with the same electrode distribution density. Moreover, this method can be used for irregularly-shaped and non-uniform sensors, which further reduces the manufacturing difficulty and increases the application flexibility.
Collapse
|
15
|
Jang J, Jun YS, Seo H, Kim M, Park JU. Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3624. [PMID: 32605148 PMCID: PMC7374490 DOI: 10.3390/s20133624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023]
Abstract
In recent years, to develop more spontaneous and instant interfaces between a system and users, technology has evolved toward designing efficient and simple gesture recognition (GR) techniques. As a tool for acquiring human motion, a tactile sensor system, which converts the human touch signal into a single datum and executes a command by translating a bundle of data into a text language or triggering a preset sequence as a haptic motion, has been developed. The tactile sensor aims to collect comprehensive data on various motions, from the touch of a fingertip to large body movements. The sensor devices have different characteristics that are important for target applications. Furthermore, devices can be fabricated using various principles, and include piezoelectric, capacitive, piezoresistive, and field-effect transistor types, depending on the parameters to be achieved. Here, we introduce tactile sensors consisting of field-effect transistors (FETs). GR requires a process involving the acquisition of a large amount of data in an array rather than a single sensor, suggesting the importance of fabricating a tactile sensor as an array. In this case, an FET-type pressure sensor can exploit the advantages of active-matrix sensor arrays that allow high-array uniformity, high spatial contrast, and facile integration with electrical circuitry. We envision that tactile sensors based on FETs will be beneficial for GR as well as future applications, and these sensors will provide substantial opportunities for next-generation motion sensing systems.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Yoon Sun Jun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Moohyun Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Guo H, Wan J, Wu H, Wang H, Miao L, Song Y, Chen H, Han M, Zhang H. Self-Powered Multifunctional Electronic Skin for a Smart Anti-Counterfeiting Signature System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22357-22364. [PMID: 32293866 DOI: 10.1021/acsami.0c03510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Self-powered electronic skin is a promising field for human-machine interfaces to the next generation of intelligent and interactive products due to its capability of including multiple physical parameters for sensing without additional energy supply. This paper reports a novel active multifunctional electronic skin capable of independently detecting contact trajectory, acceleration, velocity, and pressure based on the synchronized triboelectrification and piezoelectric effect. Motion trajectories in the full plane can be identified by using a net-cross electrodes configuration design. Under this electrode special structure design, the motion information such as velocity and acceleration can be accurately obtained by the time difference between the peak values of the triboelectric signal. Real-time detection of dynamic pressure with only two electrodes is achieved by a spacer-grid design and a high quality piezoelectric nanofiber film. By virtue of its high sensitivity and precision, a smart anti-counterfeiting signature system (SASS) can be achieved by this self-powered multifunctional electronic skin with the capability of recognizing the writing habits of people within a 100 ms error for security. It is also a promising candidate in terms of human-machine interaction, cyber security, and so on.
Collapse
Affiliation(s)
- Hang Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Hanxiang Wu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Haobin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Liming Miao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Yu Song
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Haotian Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengdi Han
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Haixia Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. SCIENCE ADVANCES 2020; 6:eaaz8693. [PMID: 32494718 PMCID: PMC7209995 DOI: 10.1126/sciadv.aaz8693] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/26/2020] [Indexed: 05/18/2023]
Abstract
Human-machine interfaces (HMIs) experience increasing requirements for intuitive and effective manipulation. Current commercialized solutions of glove-based HMI are limited by either detectable motions or the huge cost on fabrication, energy, and computing power. We propose the haptic-feedback smart glove with triboelectric-based finger bending sensors, palm sliding sensor, and piezoelectric mechanical stimulators. The detection of multidirectional bending and sliding events is demonstrated in virtual space using the self-generated triboelectric signals for various degrees of freedom on human hand. We also perform haptic mechanical stimulation via piezoelectric chips to realize the augmented HMI. The smart glove achieves object recognition using machine learning technique, with an accuracy of 96%. Through the integrated demonstration of multidimensional manipulation, haptic feedback, and AI-based object recognition, our glove reveals its potential as a promising solution for low-cost and advanced human-machine interaction, which can benefit diversified areas, including entertainment, home healthcare, sports training, and medical industry.
Collapse
Affiliation(s)
- Minglu Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Zhongda Sun
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Huicong Liu
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
18
|
He J, Guo X, Yu J, Qian S, Hou X, Cui M, Yang Y, Mu J, Geng W, Chou X. A high-resolution flexible sensor array based on PZT nanofibers. NANOTECHNOLOGY 2020; 31:155503. [PMID: 31891922 DOI: 10.1088/1361-6528/ab667a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible tactile sensor array has drawn great attention due to its ability to mimic human skin for sensing weak pressure and distinguishing pressure distribution, but the deficiency of sensitivity, the low resolution, and the complex and costly fabrication process seriously limit its development. Hence, it is urgent to explore a fully flexible sensor array with high sensitivity and high resolution as an electronic-skin. Here, the flexible piezoelectric tactile sensor array based on the composite film of PZT nanowires and polydimethylsiloxane (PDMS) was fabricated by the simple fabrication process (electrospinning process and mixture process). The electrospun PZT nanofibers have high aspect ratio and could enhance the generation and accumulation of the piezoelectric charges in the two electrodes of the composite film. By virtue of the inherently high piezoelectric coefficient of PZT material and high aspect ratio of PZT nanofibers, the composite film (75 wt% PZT nanofibers) presents high force-electric conversion capability and high sensitivity. Owing to the bottom electrode sheet shared by all sensor units and the supporting layer with relatively high elastic modulus, the sensor array shows high resolution to qualitatively sense the distribution and size of the impact in real time. Moreover, the sensor array also shows great durability, repeatability, and large working range. Based on these excellent characteristics, the sensor array has wide potential applications in the field of bionics science, robotics science and human-machine interaction.
Collapse
Affiliation(s)
- Jian He
- Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China. Taiyuan Heavy Machinery Group Co., LTD, Taiyuan 030024, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang H, Yu J, Yang X, Gao G, Qin S, Sun J, Ding M, Jia C, Sun Q, Wang ZL. Ion Gel Capacitively Coupled Tribotronic Gating for Multiparameter Distance Sensing. ACS NANO 2020; 14:3461-3468. [PMID: 32058695 DOI: 10.1021/acsnano.9b09549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing sophisticated device architectures is of great significance to go beyond Moore's law with versatility toward human-machine interaction and artificial intelligence. Tribotronics/tribo-iontronics offer a direct way to controlling the transport properties of semiconductor devices by mechanical actions, which fundamentally relies on how to enhance the tribotronic gating effect through device engineering. Here, we propose a universal method to enhance the tribotronic properties through electric double layer (EDL) capacitive coupling. By preparing an ion gel layer on top of tribotronic graphene transistor, we demonstrate a dual-mode field effect transistor (i.e., a tribotronic transistor with capacitively coupled ion gel and an ion-gel-gated graphene transistor with a second tribotronic gate). The resulted tribotronic gating performances are greatly improved by twice for the on-state current and four times for the on/off ratio (the first mode). It can also be utilized as a multiparameter distance sensor with drain current increased by ∼600 μA and threshold voltage shifted by ∼0.8 V under a mechanical displacement of 0.25 mm (the second mode). The proposed methodology of EDL capacitive coupling offers a facile and efficient way to designing more sophisticated tribotronic devices with superior performance and multifunctional sensations.
Collapse
Affiliation(s)
- Huai Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyun Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Qin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Sun
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
20
|
Abstract
Tribotronics has attracted great attention owing to the demonstrated triboelectrification-controlled electronics and established direct modulation mechanism by external mechanical stimuli. Here, a nanoscale triboelectrification-gated transistor has been studied with contact-mode atomic force microscopy and scanning Kevin probe microscopy. The detailed working principle was analyzed at first, in which the nanoscale triboelectrification can tune the carrier transport in the transistor. Then with the manipulated nanoscale triboelectrification, the effects of contact force, scan speed, contact cycles, contact region and charge diffusion on the transistor were investigated, respectively. Moreover, the manipulated nanoscale triboelectrification serving as a rewritable floating gate has demonstrated different modulation effects by an applied tip voltage. This work has realized the nanoscale triboelectric modulation on electronics, which could provide a deep understanding for the theoretical mechanism of tribotronics and may have great applications in nanoscale transistor, micro/nano-electronic circuit and nano-electromechanical system. Though tribotronics, e.g., semiconductor electronics that utilize triboelectricity, is a promising technology, current devices have limited application in micro/nano electronics. Here, the authors report a triboelectrification-gated transistor with triboelectric modulation at the nanoscale.
Collapse
|
21
|
Zhao J, Bu T, Zhang X, Pang Y, Li W, Zhang Z, Liu G, Wang ZL, Zhang C. Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1398903. [PMID: 32676585 PMCID: PMC7333181 DOI: 10.34133/2020/1398903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Stretchable electronics are of great significance for the development of the next-generation smart interactive systems. Here, we propose an intrinsically stretchable organic tribotronic transistor (SOTT) without a top gate electrode, which is composed of a stretchable substrate, silver nanowire electrodes, semiconductor blends, and a nonpolar elastomer dielectric. The drain-source current of the SOTT can be modulated by external contact electrification with the dielectric layer. Under 0-50% stretching both parallel and perpendicular to the channel directions, the SOTT retains great output performance. After being stretched to 50% for thousands of cycles, the SOTT can survive with excellent stability. Moreover, the SOTT can be conformably attached to the human hand, which can be used for tactile signal perception in human-machine interaction and for controlling smart home devices and robots. This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction, which has extended the application of tribotronics in the human-machine interface, wearable electronics, and robotics.
Collapse
Affiliation(s)
- Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Material Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
Wang HL, Kuang SY, Li HY, Wang ZL, Zhu G. Large-Area Integrated Triboelectric Sensor Array for Wireless Static and Dynamic Pressure Detection and Mapping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906352. [PMID: 31814245 DOI: 10.1002/smll.201906352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Large-area flexible pressure sensors are of paramount importance for various future applications, such as electronic skin, human-machine interfacing, and health-monitoring devices. Here, a self-powered and large-area integrated triboelectric sensor array (ITSA) based on coupling a triboelectric sensor array and an array chip of CD4066 through a traditional connection is reported. Enabled by a simple and cost-effective fabrication process, the size of the ITSA can be scaled up to 38 × 38 cm2 . In addition, unlike previously proposed triboelectric sensors arrays, which can only react to the dynamic interaction, this ITSA is able to detect static and dynamic pressure. Moreover, through integrating the ITSA with a signal processing circuit, a complete wireless sensing system is present. Diverse applications of the system are demonstrated in detail, including detecting pressure, identifying position, tracking trajectory, and recognizing the profile of external contact objects. Thus, the ITSA in this work opens a new route in the direction of large-area, self-powered, and wireless triboelectric sensing systems.
Collapse
Affiliation(s)
- Hai Lu Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
| | - Shuang Yang Kuang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei, Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hua Yang Li
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
23
|
Baek S, Bae GY, Kwon J, Cho K, Jung S. Flexible Pressure-Sensitive Contact Transistors Operating in the Subthreshold Regime. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31111-31118. [PMID: 31373197 DOI: 10.1021/acsami.9b09636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic thin-film transistor (TFT)-based pressure sensors have received huge attention for wearable electronic applications such as health monitoring and smart robotics. However, there still remains a challenge to achieve low power consumption and high sensitivity at the same time for the realization of truly wearable sensor systems where minimizing power consumption is significant because of limited battery run time. Here, we introduce a flexible pressure-sensitive contact transistor (PCT), a new type of pressure-sensing device based on organic TFTs for next-generation wearable electronic skin devices. The PCT consists of deformable S/D electrodes integrated on a staggered TFT. The deformable S/D electrodes were fabricated by embedding conducting single-walled carbon nanotubes on the surface of microstructured polydimethylsiloxane. Under pressure loads, the deformation of the electrodes on an organic semiconductor layer leads modulation of drain current from variation in both the channel geometry and contact resistance. By strategic subthreshold operation to minimize power consumption and increase the dominance of contact resistance because of gated Schottky contact, the PCT achieves both ultralow power consumption (order of 101 nW) and high sensitivity (18.96 kPa-1). Finally, we demonstrate a 5 × 5 active matrix PCT array on a 3 μm-thick parylene substrate. The device with ultralow power consumption and high sensitivity on a biocompatible flexible substrate makes the PCT promising candidate for next-generation wearable electronic skin devices.
Collapse
Affiliation(s)
| | - Geun Yeol Bae
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System , Korea Institute of Industrial Technology , Cheonan-si 331-822 , Chungcheongnam-do, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Yang H, Pang Y, Bu T, Liu W, Luo J, Jiang D, Zhang C, Wang ZL. Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat Commun 2019; 10:2309. [PMID: 31127107 PMCID: PMC6534612 DOI: 10.1038/s41467-019-10298-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/30/2019] [Indexed: 11/09/2022] Open
Abstract
A high-speed micromotor is usually actuated by a power source with high voltage and frequency. Here we report a triboelectric micromotor by coupling a micromotor and a triboelectric nanogenerator, in which the micromotor can be actuated by ultralow-frequency mechanical stimuli. The performances of the triboelectric micromotor are exhibited at various structural parameters of the micromotor, as well as at different mechanical stimuli of the triboelectric nanogenerator. With a sliding range of 50 mm at 0.1 Hz, the micromotor can start to rotate and reach over 1000 r min−1 at 0.8 Hz. The maximum operation efficiency of the triboelectric micromotor can reach 41%. Additionally, the micromotor is demonstrated in two scanning systems for information recognition. This work has realized a high-speed micromotor actuated by ultralow frequency mechanical stimuli without an external power supply, which has extended the application of triboelectric nanogenerator in micro/nano electromechanical systems, intelligent robots and autonomous driving. High-speed electrostatic micromotors with low energy consumption are attractive for small-scale electromechanical systems, but applications are limited by power supplies. Here the authors use a triboelectric nanogenerator for actuation of a high-speed micromotor by low-frequency mechanical stimuli.
Collapse
Affiliation(s)
- Hang Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Wenbo Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Jianjun Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Dongdong Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China. .,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China. .,Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, 530004, Nanning, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, P.R. China. .,School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, P.R. China. .,Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, 530004, Nanning, China. .,School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
25
|
Han Z, Cheng Z, Chen Y, Li B, Liang Z, Li H, Ma Y, Feng X. Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. NANOSCALE 2019; 11:5942-5950. [PMID: 30662990 DOI: 10.1039/c8nr08341j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) porous nanostructure materials have promising applications in pressure sensors or other situations. However, the low sensing sensitivity of these materials restricts precise detection of physiological signals, and it is still a challenge to manufacture highly pressure-sensitive materials, which simultaneously possess other versatile properties. Herein, a simple and cost-efficient strategy is proposed to fabricate versatile 3D carbon nanofiber networks (CNFNs) with superior pressure-sensitivity through electrospinning and thermal treatment. The pressure sensitivity of the CNFNs is 1.41 kPa-1, which is much higher than that of similar 3D porous materials. Unlike traditional carbonaceous materials, the CNFNs exhibit excellent flexibility, stable resilience, and super compressibility (>95%), because of the nano-reinforce of Al2O3. Benefiting from the robust mechanical and piezoresistive properties of the CNFNs, a pressure sensor designed with the CNFNs is able to monitor human physiological signals, such as phonation, pulse, respiration and human activities. An arch-array platform for direction identification of tangential forces and an artificial electronic skin bioinspired by human's hairy skin have been ingeniously designed. The CNFNs also present other versatile characteristics as well, including ultralight density, hydrophobicity, low thermal conductivity, and low infrared emissivity. Therefore, the CNFNs have promising potential in a wide range of applications.
Collapse
Affiliation(s)
- Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gao G, Yu J, Yang X, Pang Y, Zhao J, Pan C, Sun Q, Wang ZL. Triboiontronic Transistor of MoS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806905. [PMID: 30589132 DOI: 10.1002/adma.201806905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Indexed: 05/21/2023]
Abstract
Electric double layers (EDLs) formed in electrolyte-gated field-effect transistors (FETs) induce an extremely large local electric field that gives a highly efficient charge carrier control in the semiconductor channel. To achieve highly efficient triboelectric potential gating on the FET and explore diversified applications of electric double layer FETs (EDL-FETs), a triboiontronic transistor is proposed to bridge triboelectric potential modulation and ion-controlled semiconductor devices. Utilizing the triboelectric potential instead of applying an external gate voltage, the triboiontronic MoS2 transistor is efficiently operated owing to the formation of EDLs in the ion-gel dielectric layer. The operation mechanism of the triboiontronic transistor is proposed, and high current on/off ratio over 107 , low threshold value (75 μm), and steep switching properties (20 µm dec-1 ) are achieved. A triboiontronic logic inverter with desirable gain (8.3 V mm-1 ), low power consumption, and high stability is also demonstrated. This work presents a low-power-consuming, active, and a general approach to efficiently modulate semiconductor devices through mechanical instructions, which has great potential in human-machine interaction, electronic skin, and intelligent wearable devices. The proposed triboiontronics utilize ion migration and arrangement triggered by mechanical stimuli to control electronic properties, which are ready to deliver new interdisciplinary research directions.
Collapse
Affiliation(s)
- Guoyun Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
27
|
Hu W, Zhang C, Wang ZL. Recent progress in piezotronics and tribotronics. NANOTECHNOLOGY 2019; 30:042001. [PMID: 30499452 DOI: 10.1088/1361-6528/aaeddd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the electronic technology is approaching its limits of materials and processing, a smart interaction between functional device and environment is a promising way for future electronic technology above the Moore's law. The mechanical signal triggering is the most common and natural way for the smart interactions, which has realized direct interaction between human/ambient and electronics and artificial intelligence. In 2006, the piezotronic effect, as a novel effect, was first proposed by Wang to achieve the effective, adaptive and seamless interactions between electronic devices and the external stress, which utilizes the piezoelectric polarization potential as the virtual gate to tune/control the carriers' transportation in the electronic device. Since then, this new effect has been widely observed in many low-dimensional semiconductors such as ZnO, GaN, CdS nanowires, and 2D MoS2. In extension, tribotronics was first proposed in 2014 by Wang, which is about the devices manufactured using the electrostatic potential created by triboelectrification as a 'gate' voltage to tune/control energy transformation and electrical transport in semiconductors for the smart interaction between device and environment. Tribotronics has made rapid research progress and many tribotronic functional devices have been studied with a variety of materials, such as tribotronic tactile switch, memory, hydrogen sensor and phototransistor. This review highlights advances in piezotronics and tribotronics with focus on fundamental theories, nanoscale materials, functional devices and simulations. Our emphasis is mainly about their application for third-generation semiconductor. The concepts and results presented in this review show that the piezotronics and tribotronics will facilitate the development of MEMS/NEMS, self-powered sensing, man-computer interfacing, and active wearable electronics.
Collapse
Affiliation(s)
- Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | | | | |
Collapse
|
28
|
Xi F, Pang Y, Li W, Bu T, Zhao J, Liu G, Guo T, Liu W, Zhang C. Tribotronic bipolar junction transistor for mechanical frequency monitoring and use as touch switch. MICROSYSTEMS & NANOENGINEERING 2018; 4:25. [PMID: 31057913 PMCID: PMC6220156 DOI: 10.1038/s41378-018-0026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/02/2018] [Accepted: 06/17/2018] [Indexed: 05/28/2023]
Abstract
Tribotronics, a new field that involves the coupling of triboelectricity and semiconductors, has attracted great interest in the nanoenergy and nanoelectronics domains. This paper proposes a tribotronic bipolar junction transistor (TBJT) that incorporates a bipolar junction transistor and a triboelectric nanogenerator (TENG) in the single-electrode mode. When the mobile triboelectric layer slides on the device surface for electrification, a bias voltage is created and applied to the emitter junction, and then the base current from the TENG is amplified. Based on the fabricated TBJT, a mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch switch were developed. This work demonstrated for the first time a tribotronic device with simultaneously controlled voltage and current voltage/current simultaneously controlled tribotronic device, which has promising potential applications in micro/nano-sensors, human-machine interactions, intelligent instrumentation, wearable electronics, and other applications.
Collapse
Affiliation(s)
- Fengben Xi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wenjian Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tong Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Wenbo Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
29
|
Xu L, Wu H, Yao G, Chen L, Yang X, Chen B, Huang X, Zhong W, Chen X, Yin Z, Wang ZL. Giant Voltage Enhancement via Triboelectric Charge Supplement Channel for Self-Powered Electroadhesion. ACS NANO 2018; 12:10262-10271. [PMID: 30189137 DOI: 10.1021/acsnano.8b05359] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Electroadhesion generates an adhesion force using an externally applied power source, which has versatile applications in robotics and material handling. In this study, a self-powered electroadhesion system using enhanced triboelectric nanogenerators (TENGs) to supply power for electroadhesion is presented. By introducing a triboelectric charge supplement channel, the open circuit voltage of the TENG can be significantly boosted by over 10 times, from ∼230 V to more than 3300 V for a single TENG unit, providing sufficiently high voltage for an electroadhesive patch to generate enough adhesion for practical use. The charge supplement channel takes effect through a replenishing mechanism for dissipated charges, maintaining an optimal charge distribution throughout TENG electrodes, which enables the highest open circuit voltage under given surface charge density and device configuration. The fabricated self-powered electroadhesion system shows the ability to manipulate objects of various materials via easy and straightforward operations, demonstrating a great potential for applications in material handling and robotics. Moreover, the voltage enhancement mechanism by the charge supplement channel could be extended to TENGs of other modes, which can provide reliable power sources for various applications that require a high voltage.
Collapse
Affiliation(s)
- Liang Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Hao Wu
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Guo Yao
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Libo Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Xiaodan Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Baodong Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Xin Huang
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Wei Zhong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Zhouping Yin
- Flexible Electronics Research Center, School of Mechanical Science and Engineering , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing , 100083 , People's Republic of China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
- School of Material Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
30
|
Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction. ACS NANO 2018; 12:5190-5196. [PMID: 29771494 DOI: 10.1021/acsnano.8b02477] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
Collapse
Affiliation(s)
- Ran Cao
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xianjie Pu
- Department of Applied Physics , Chongqing University , Chongqing 400044 , China
| | - Xinyu Du
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiaona Wang
- School of Materials Science & Engineering , Beijing Institute of Fashion Technology , Beijing 100029 , China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment , Beijing 100029 , China
| | - Hengyu Guo
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuyu Zhao
- School of Materials Science & Engineering , Beijing Institute of Fashion Technology , Beijing 100029 , China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment , Beijing 100029 , China
| | - Zuqing Yuan
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Congju Li
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| |
Collapse
|
31
|
Bu T, Xiao T, Yang Z, Liu G, Fu X, Nie J, Guo T, Pang Y, Zhao J, Xi F, Zhang C, Wang ZL. Stretchable Triboelectric-Photonic Smart Skin for Tactile and Gesture Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800066. [PMID: 29534314 DOI: 10.1002/adma.201800066] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2018] [Indexed: 05/22/2023]
Abstract
Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa-1 . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence.
Collapse
Affiliation(s)
- Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianxiao Xiao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwei Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianpeng Fu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhui Nie
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tong Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengben Xi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
32
|
Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C. A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706738. [PMID: 29411908 DOI: 10.1002/adma.201706738] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/13/2017] [Indexed: 05/28/2023]
Abstract
Recently, the quest for new highly stretchable transparent tactile sensors with large-scale integration and rapid response time continues to be a great impetus to research efforts to expand the promising applications in human-machine interactions, artificial electronic skins, and smart wearable equipment. Here, a self-powered, highly stretchable, and transparent triboelectric tactile sensor with patterned Ag-nanofiber electrodes for detecting and spatially mapping trajectory profiles is reported. The Ag-nanofiber electrodes demonstrate high transparency (>70%), low sheet resistance (1.68-11.1 Ω □-1 ), excellent stretchability, and stability (>100% strain). Based on the electrode patterning and device design, an 8 × 8 triboelectric sensor matrix is fabricated, which works well under high strain owing to the effect of the electrostatic induction. Using cross-locating technology, the device can execute more rapid tactile mapping, with a response time of 70 ms. In addition, the object being detected can be made from any commonly used materials or can even be human hands, indicating that this device has widespread potential in tactile sensing and touchpad technology applications.
Collapse
Affiliation(s)
- Xiandi Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiaojia Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyi Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Miaoling Que
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchun Peng
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hui Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
33
|
Zhao J, Guo H, Pang YK, Xi F, Yang ZW, Liu G, Guo T, Dong G, Zhang C, Wang ZL. Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS NANO 2017; 11:11566-11573. [PMID: 29099579 DOI: 10.1021/acsnano.7b06480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flexible electronics has attracted enormous interest in wearable electronics and human-machine interfacing. Here, a flexible organic tribotronic transistor (FOTT) without a top gate electrode has been demonstrated. The FOTT is fabricated on a flexible polyethylene terephthalate film using the p-type pentacene and poly(methyl methacrylate)/Cytop composites as the conductive channel and dielectric layer, respectively. The charge carriers can be modulated by the contact electrification between the dielectric layer and a mobile triboelectric layer. Based on the fabricated FOTT, pressure and magnetic sensors have been developed, respectively, that exhibit great sensitivity, fast response time, and excellent stability. The FOTT in this simple structure shows bright potentials of tribotronics in human-machine interaction, electronic skins, wearable electronics, intelligent sensing, and so on.
Collapse
Affiliation(s)
- Junqing Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hang Guo
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University , Beijing 100084, People's Republic of China
| | - Yao Kun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Fengben Xi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guoxu Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Tong Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guifang Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University , Beijing 100084, People's Republic of China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang ZL. Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications. ACS NANO 2017; 11:8364-8369. [PMID: 28738675 DOI: 10.1021/acsnano.7b03680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tactile sensors with large-scale array and high sensitivity is essential for human-machine interaction, smart wearable devices, and mobile networks. Here, a transparent and flexible triboelectric sensing array (TSA) with fingertip-sized pixels is demonstrated by integrating ITO electrodes, FEP film, and signal transmission circuits on an undivided palm-sized polyethylene terephthalate substrate. The sensing pixels can be triggered by the corresponding external contact to induce the electrostatic potential in the transparent electrodes without power consumption, which is individually recognized by the sensor. By testing the response of the pixels, the electrical characterization is systematically investigated. The proposed TSA exhibits excellent durability, independence, and synchronicity, which is able to realize real-time touch sensing, spatial mapping, and motion monitoring. The integrated TSA has great potential for an active tactile system, human-machine interface, wearable electronics, private communication, and advanced security identification.
Collapse
Affiliation(s)
- Zuqing Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tao Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
| | - Yingying Yin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ran Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Congju Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083 China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245 United States
| |
Collapse
|
35
|
Zhou T, Yang ZW, Pang Y, Xu L, Zhang C, Wang ZL. Tribotronic Tuning Diode for Active Analog Signal Modulation. ACS NANO 2017; 11:882-888. [PMID: 28001357 DOI: 10.1021/acsnano.6b07446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.
Collapse
Affiliation(s)
- Tao Zhou
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|