1
|
Lê-Chesnais J, Steffenhagen M, Méthivier C, Costa D, Rodriguez D, Lambert JF, Maisonhaute E, Landoulsi J. Binding mechanism of oligopeptides on solid surface: assessing the significance of single-molecule approach. NANOSCALE 2025; 17:3460-3477. [PMID: 39714214 DOI: 10.1039/d4nr04474f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This paper addresses the complementarity and potential disparities between single-molecule and ensemble-average approaches to probe the binding mechanism of oligopeptides on inorganic solids. Specifically, we explore the peptide/gold interface owing to its significance in various topics and its suitability to perform experiments both in model and real conditions. Experimental results show that the studied peptide adopts a lying configuration upon adsorption on the gold surface and interacts through its peptidic links and deprotonated thiolate extremities, in agreement with theoretical predictions. Single-molecule force spectroscopy (SMFS) measurements revealed the existence of a wide panel of adhesion forces, resulting from the interaction between individual peptide moieties and the abundant surface sites. We therefore propose methodological developments for sorting the events of interest to understand the peptide adsorption mechanism. Thermodynamic and kinetic aspects of the peptide adsorption are probed using both static and dynamic force spectroscopy measurements. Specifically, we show the possibility of providing a reasonable estimate of the peptide free energy of adsorption ΔadsG° by exploring the fluctuations of the adhesion work, based on the Jarzynski equality, and by using a parametric Gamma estimator. The proposed approach offers a relevant method for studying the different factors influencing the peptide adsorption and evaluating their impact on ΔadsG° as an alternative to exploring adhesion forces that may lead to misinterpretations. This is illustrated by the comparison of the adsorption of two peptides with specific amino acids substitution. Our method provides insights into the overall mechanism by which peptides interact with the surface and allows an integration of the single-molecule versus ensemble-average points of view.
Collapse
Affiliation(s)
- Joanne Lê-Chesnais
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| | - Marie Steffenhagen
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| | - Dominique Costa
- Institut de Recherche de Chimie Paris (IRCP, UMR8247 CNRS), 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Daniela Rodriguez
- CONICET, Departamento de Matematicas y Estadistica, Universidad T. Di Tella, Av. Figueroa Alcorta 7350 (1428), Buenos Aires, Argentina
| | - Jean-François Lambert
- Sorbonne Université, CNRS, Laboratoire d'Archéologie Moléculaire et Structurale, LAMS, F-75005 Paris, France
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| |
Collapse
|
2
|
Petrovskii VS, Potemkin II. Effect of Macromolecular Architecture on Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:371-377. [PMID: 39729596 DOI: 10.1021/acs.langmuir.4c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The behavior of single linear chains on a substrate is a well-studied area of polymer science. Herein, one of the most essential issues is the interaction of the chains with the substrate, which determines both macromolecular conformations near the substrate and adhesive properties of polymer materials. However, very little is known about the effect of macromolecular architecture on adhesion. In particular, there was no assessment of the effect of chain branching on the adhesion force. On the other hand, an essential progress in macromolecular chemistry allows the synthesis of various macromolecular architectures, including star-, comb-like, etc., in a very precise way. They are widely used in numerous applications. In particular, synthetic peptides are currently an integral part of many systems for biomedical purposes including bioglues, for which the adhesion force is a fundamental property. In this study, we conducted force experiments on the desorption of star-like pentapeptide chains from a solid substrate using an atomistic model of computer simulations. The cases of a linear chain and four- and eight-armed stars were considered. We have shown that the presence of branching enhances the adsorption strength under a fixed mass of the macromolecules. The force needed for chain desorption was shown to be linearly dependent on the branching degree.
Collapse
Affiliation(s)
- Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Wang Y, Williams HD, Dikicioglu D, Dalby PA. Predictive Model Building for Aggregation Kinetics Based on Molecular Dynamics Simulations of an Antibody Fragment. Mol Pharm 2024; 21:5827-5841. [PMID: 39348223 PMCID: PMC11539058 DOI: 10.1021/acs.molpharmaceut.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Computational methods including machine learning and molecular dynamics simulations have strong potential to characterize, understand, and ultimately predict the properties of proteins relevant to their stability and function as therapeutics. Such methods would streamline the development pathway by minimizing the current experimental testing required for many protein variants and formulations. The molecular understanding of thermostability and aggregation propensity has advanced significantly along with predictive algorithms based on the sequence-level or structural-level information on a protein. However, these approaches focus largely on a comparison of protein sequence variations to correlate the properties of proteins to their stability, solubility, and aggregation propensity. For therapeutic protein development, it is of equal importance to take into account the impact of the formulation conditions to elucidate and predict the stability of the antibody drugs. At the macroscopic level, changing temperature, pH, ionic strength, and the addition of excipients can significantly alter the kinetics of protein aggregation. The mechanisms controlling aggregation kinetics have been traced back to a combination of molecular features, including conformational stability, partial unfolding to aggregation-prone states, and the colloidal stability governed by surface charges and hydrophobicity. However, very little has been done to evaluate these features in the context of protein dynamics in different formulations. In this work, we have combined a range of molecular features calculated from the Fab A33 protein sequence and molecular dynamics simulations. Using the power of advanced, yet interpretable, statistical tools, it has been possible to uncover greater insights into the mechanisms behind protein stability, validating previous findings, and also develop models that can predict the aggregation kinetics within a range of 49 different solution conditions.
Collapse
Affiliation(s)
- Yuhan Wang
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, U.K.
| | - Hywel D. Williams
- Biopharmaceutical
Product Development, CSL Ltd., 45 Poplar Road, Parkville 3052, Australia
| | - Duygu Dikicioglu
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, U.K.
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, U.K.
| |
Collapse
|
4
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Robinson Brown DC, Webber TR, Casey TM, Franck J, Shell MS, Han S. Computation of Overhauser dynamic nuclear polarization processes reveals fundamental correlation between water dynamics, structure, and solvent restructuring entropy. Phys Chem Chem Phys 2024; 26:14637-14650. [PMID: 38742831 DOI: 10.1039/d4cp00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.
Collapse
Affiliation(s)
- Dennis C Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - John Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
6
|
Mahanta DD, Brown DR, Webber T, Pezzotti S, Schwaab G, Han S, Shell MS, Havenith M. Bridging the Gap in Cryopreservation Mechanism: Unraveling the Interplay between Structure, Dynamics, and Thermodynamics in Cryoprotectant Aqueous Solutions. J Phys Chem B 2024; 128:3720-3731. [PMID: 38584393 DOI: 10.1021/acs.jpcb.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryoprotectants play a crucial role in preserving biological material, ensuring their viability during storage and facilitating crucial applications such as the conservation of medical compounds, tissues, and organs for transplantation. However, the precise mechanism by which cryoprotectants modulate the thermodynamic properties of water to impede the formation and growth of ice crystals, thus preventing long-term damage, remains elusive. This is evident in the use of empirically optimized recipes for mixtures that typically contain DMSO, glycerol, and various sugar constituents. Here, we use terahertz calorimetry, Overhauser nuclear polarization, and molecular dynamics simulations to show that DMSO exhibits a robust structuring effect on water around its methyl groups, reaching a maximum at a DMSO mole fraction of XDMSO = 0.33. In contrast, glycerol exerts a smaller water-structuring effect, even at higher concentrations (Scheme 1). These results potentially suggest that the wrapped water around DMSO's methyl group, which can be evicted upon ligand binding, may render DMSO a more surface-active cryoprotectant than glycerol, while glycerol may participate more as a viscogen that acts on the entire sample. These findings shed light on the molecular intricacies of cryoprotectant solvation behavior and have potentially significant implications for optimizing cryopreservation protocols.
Collapse
Affiliation(s)
- Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Simone Pezzotti
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| |
Collapse
|
7
|
Moon JD, Webber TR, Brown DR, Richardson PM, Casey TM, Segalman RA, Shell MS, Han S. Nanoscale water-polymer interactions tune macroscopic diffusivity of water in aqueous poly(ethylene oxide) solutions. Chem Sci 2024; 15:2495-2508. [PMID: 38362435 PMCID: PMC10866362 DOI: 10.1039/d3sc05377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024] Open
Abstract
The separation and anti-fouling performance of water purification membranes is governed by both macroscopic and molecular-scale water properties near polymer surfaces. However, even for poly(ethylene oxide) (PEO) - ubiquitously used in membrane materials - there is little understanding of whether or how the molecular structure of water near PEO surfaces affects macroscopic water diffusion. Here, we probe both time-averaged bulk and local water dynamics in dilute and concentrated PEO solutions using a unique combination of experimental and simulation tools. Pulsed-Field Gradient NMR and Overhauser Dynamic Nuclear Polarization (ODNP) capture water dynamics across micrometer length scales in sub-seconds to sub-nanometers in tens of picoseconds, respectively. We find that classical models, such as the Stokes-Einstein and Mackie-Meares relations, cannot capture water diffusion across a wide range of PEO concentrations, but that free volume theory can. Our study shows that PEO concentration affects macroscopic water diffusion by enhancing the water structure and altering free volume. ODNP experiments reveal that water diffusivity near PEO is slower than in the bulk in dilute solutions, previously not recognized by macroscopic transport measurements, but the two populations converge above the polymer overlap concentration. Molecular dynamics simulations reveal that the reduction in water diffusivity occurs with enhanced tetrahedral structuring near PEO. Broadly, we find that PEO does not simply behave like a physical obstruction but directly modifies water's structural and dynamic properties. Thus, even in simple PEO solutions, molecular scale structuring and the impact of polymer interfaces is essential to capturing water diffusion, an observation with important implications for water transport through structurally complex membrane materials.
Collapse
Affiliation(s)
- Joshua D Moon
- Materials Department, University of California Santa Barbara California 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Peter M Richardson
- Materials Department, University of California Santa Barbara California 93106 USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Rachel A Segalman
- Materials Department, University of California Santa Barbara California 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Songi Han
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
8
|
Sun H, Tian Y, Fu Y, Lei Y, Wang Y, Yan X, Wang J. Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds. Phys Chem Chem Phys 2023; 25:31791-31803. [PMID: 37966041 DOI: 10.1039/d3cp04351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yani Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Xinrui Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Das Mahanta D, Brown DR, Pezzotti S, Han S, Schwaab G, Shell MS, Havenith M. Local solvation structures govern the mixing thermodynamics of glycerol-water solutions. Chem Sci 2023; 14:7381-7392. [PMID: 37416713 PMCID: PMC10321518 DOI: 10.1039/d3sc00517h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Glycerol is a major cryoprotective agent and is widely used to promote protein stabilization. By a combined experimental and theoretical study, we show that global thermodynamic mixing properties of glycerol and water are dictated by local solvation motifs. We identify three hydration water populations, i.e., bulk water, bound water (water hydrogen bonded to the hydrophilic groups of glycerol) and cavity wrap water (water hydrating the hydrophobic moieties). Here, we show that for glycerol experimental observables in the THz regime allow quantification of the abundance of bound water and its partial contribution to the mixing thermodynamics. Specifically, we uncover a 1 : 1 connection between the population of bound waters and the mixing enthalpy, which is further corroborated by the simulation results. Therefore, the changes in global thermodynamic quantity - mixing enthalpy - are rationalized at the molecular level in terms of changes in the local hydrophilic hydration population as a function of glycerol mole fraction in the full miscibility range. This offers opportunities to rationally design polyol water, as well as other aqueous mixtures to optimize technological applications by tuning mixing enthalpy and entropy based on spectroscopic screening.
Collapse
Affiliation(s)
- Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
- Department of Physics, Technische Universität Dortmund 44227 Dortmund Germany
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California Santa Barbara California 93106-5080 USA
| | - Simone Pezzotti
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Songi Han
- Department of Chemical Engineering, University of California Santa Barbara California 93106-5080 USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106-9510 USA
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara California 93106-5080 USA
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
- Department of Physics, Technische Universität Dortmund 44227 Dortmund Germany
| |
Collapse
|
10
|
Norgren M, Costa C, Alves L, Eivazi A, Dahlström C, Svanedal I, Edlund H, Medronho B. Perspectives on the Lindman Hypothesis and Cellulose Interactions. Molecules 2023; 28:molecules28104216. [PMID: 37241956 DOI: 10.3390/molecules28104216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In the history of cellulose chemistry, hydrogen bonding has been the predominant explanation when discussing intermolecular interactions between cellulose polymers. This is the general consensus in scholarly textbooks and in many research articles, and it applies to several other biomacromolecules' interactions as well. This rather unbalanced description of cellulose has likely impacted the development of materials based on the processing of cellulose-for example, via dissolution in various solvent systems and regeneration into solid materials, such as films and fibers, and even traditional wood fiber handling and papermaking. In this review, we take as a starting point the questioning of the general description of the nature of cellulose and cellulose interactions initiated by Professor Björn Lindman, based on generic physicochemical reasoning about surfactants and polymers. This dispute, which became known as "the Lindman hypothesis", highlights the importance of hydrophobic interactions in cellulose systems and that cellulose is an amphiphilic polymer. This paper elaborates on Björn Lindman's contribution to the subject, which has caused the scientific community to revisit cellulose and reconsider certain phenomena from other perspectives.
Collapse
Affiliation(s)
- Magnus Norgren
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Carolina Costa
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Luís Alves
- Department of Chemical Engineering, CIEPQPF-Chemical Processes and Forest Products Engineering Research Centre, University of Coimbra, Pólo II-R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Alireza Eivazi
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Christina Dahlström
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Ida Svanedal
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Håkan Edlund
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Bruno Medronho
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Dallin BC, Kelkar AS, Van Lehn RC. Structural features of interfacial water predict the hydrophobicity of chemically heterogeneous surfaces. Chem Sci 2023; 14:1308-1319. [PMID: 36756335 PMCID: PMC9891380 DOI: 10.1039/d2sc02856e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that drive numerous biological and industrial processes. Chemically heterogeneous interfaces are abundant in these contexts; examples include the surfaces of proteins, functionalized nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics simulations in conjunction with enhanced sampling and data-centric analysis techniques to quantitatively relate changes in interfacial water structure to the hydration free energy (a thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) composed of ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that only five features of interfacial water structure are required to accurately predict hydration free energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen bonding behaviors that distinguish different surface compositions and patterns. This analysis also identifies the probability of highly coordinated water structures as a unique signature of hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible perturbations of interfacial water structure.
Collapse
Affiliation(s)
- Bradley C. Dallin
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison1415 Engineering DriveMadisonWI53706USA+1-608-263-9487
| | - Atharva S. Kelkar
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison1415 Engineering DriveMadisonWI53706USA+1-608-263-9487
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison1415 Engineering DriveMadisonWI53706USA+1-608-263-9487
| |
Collapse
|
12
|
Gonzalez-Obeso C, Rodriguez-Cabello JC, Kaplan DL. Fast and reversible crosslinking of a silk elastin-like polymer. Acta Biomater 2022; 141:14-23. [PMID: 34971785 PMCID: PMC8898266 DOI: 10.1016/j.actbio.2021.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Elastin-like polymers (ELPs) and their chimeric subfamily the silk elastin-like polymers (SELPs) exhibit a lower critical solvation temperature (LCST) behavior in water which has been extensively studied from theoretical, computational and experimental perspectives. The inclusion of silk domains in the backbone of the ELPs effects the molecular dynamics of the elastin-like domains in response to increased temperature above its transition temperature and confers gelation ability. This response has been studied in terms of initial and long-term changes in structures, however, intermediate transition states have been less investigated. Moreover, little is known about the effects of reversible hydration on the elastin versus silk domains in the physical crosslinks. We used spectroscopic techniques to analyze initial, intermediate and long-term states of the crosslinks in SELPs. A combination of thermoanalytical and rheological measurements demonstrated that the fast reversible rehydration of the elastin motifs adjacent to the relatively small silk domains was capable of breaking the silk physical crosslinks. This feature can be exploited to tailor the dynamics of these types of crosslinks in SELPs. STATEMENT OF SIGNIFICANCE: The combination of silk and elastin in a single molecule results in synergy via their interactions to impact the protein polymer properties. The ability of the silk domains to crosslink affects the thermoresponsive properties of the elastin domains. These interactions have been studied at early and late states of the physical crosslinking, while the intermediate states were the focus of the present study to understand the reversible phase-transitions of the elastin domains over the silk physical crosslinking. The thermoresponsive properties of the elastin domains at the initial, intermediate and late states of silk crosslinking were characterized to demonstrate that reversible hydration of the elastin domains influenced the reversibility of the silk crosslinks.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA; BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - J C Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
13
|
Moon H, Collanton RP, Monroe JI, Casey TM, Shell MS, Han S, Scott SL. Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas. J Am Chem Soc 2022; 144:1766-1777. [PMID: 35041412 DOI: 10.1021/jacs.1c11342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
At aqueous interfaces, the distribution and dynamics of adsorbates are modulated by the behavior of interfacial water. Hydration of a hydrophobic surface can store entropy via the ordering of interfacial water, which contributes to the Gibbs energy of solute binding. However, there is little experimental evidence for the existence of such entropic reservoirs, and virtually no precedent for their rational design in systems involving extended interfaces. In this study, two series of mesoporous silicas were modified in distinct ways: (1) progressively deeper thermal dehydroxylation, via condensation of surface silanols, and (2) increasing incorporation of nonpolar organic linkers into the silica framework. Both approaches result in decreasing average surface polarity, manifested in a blue-shift in the fluorescence of an adsorbed dye. For the inorganic silicas, hydrogen-bonding of water becomes less extensive as the number of surface silanols decreases. Overhauser dynamic nuclear polarization (ODNP) relaxometry indicates enhanced surface water diffusivity, reflecting a loss of enthalpic hydration. In contrast, organosilicas show a monotonic decrease in surface water diffusivity with decreasing polarity, reflecting enhanced hydrophobic hydration. Molecular dynamics simulations predict increased tetrahedrality of interfacial water for the organosilicas, implying increased ordering near the nm-size organic domains (relative to inorganic silicas, which necessarily lack such domains). These findings validate the prediction that hydrophobic hydration at interfaces is controlled by the microscopic length scale of the hydrophobic regions. They further suggest that the hydration thermodynamics of structurally heterogeneous silica surfaces can be tuned to promote adsorption, which in turn tunes the selectivity in catalytic reactions.
Collapse
Affiliation(s)
- Hyunjin Moon
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Ryan P Collanton
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas M Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Susannah L Scott
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
14
|
Bilotto P, Imre AM, Dworschak D, Mears LLE, Valtiner M. Visualization of Ion|Surface Binding and In Situ Evaluation of Surface Interaction Free Energies via Competitive Adsorption Isotherms. ACS PHYSICAL CHEMISTRY AU 2021; 1:45-53. [PMID: 34939072 PMCID: PMC8679647 DOI: 10.1021/acsphyschemau.1c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/30/2022]
Abstract
![]()
Function and properties
at biologic as well as technological interfaces
are controlled by a complex and concerted competition of specific
and unspecific binding with ions and water in the electrolyte. It
is not possible to date to directly estimate by experiment the interfacial
binding energies of involved species in a consistent approach, thus
limiting our understanding of how interactions in complex (physiologic)
media are moderated. Here, we employ a model system utilizing polymers
with end grafted amines interacting with a negatively charged mica
surface. We measure interaction forces as a function of the molecule
density and ion concentration in NaCl solutions. The measured adhesion
decreases by about 90%, from 0.01 to 1 M electrolyte concentration.
We further demonstrate by molecular resolution imaging how ions increasingly
populate the binding surface at elevated concentrations, and are effectively
competing with the functional group for a binding site. We demonstrate
that a competing Langmuir isotherm model can describe this concentration-dependent
competition. Further, based on this model we can quantitatively estimate
ion binding energies, as well as binding energy relationships at a
complex solid|liquid interface. Our approach enables the extraction
of thermodynamic interaction energies and kinetic parameters of ionic
species during monolayer level interactions at a solid|liquid interface,
which to-date is impossible with other techniques.
Collapse
Affiliation(s)
- Pierluigi Bilotto
- Institute of Applied Physics, Applied Interface Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Alexander M. Imre
- Institute of Applied Physics, Applied Interface Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Dominik Dworschak
- Institute of Applied Physics, Applied Interface Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Laura L. E. Mears
- Institute of Applied Physics, Applied Interface Physics, Vienna University of Technology, 1040 Vienna, Austria
| | - Markus Valtiner
- Institute of Applied Physics, Applied Interface Physics, Vienna University of Technology, 1040 Vienna, Austria
| |
Collapse
|
15
|
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Paananen A, Weich S, Szilvay GR, Leitner M, Tappura K, Ebner A. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. J Biol Chem 2021; 296:100728. [PMID: 33933454 PMCID: PMC8164047 DOI: 10.1016/j.jbc.2021.100728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrophobins are surface-active proteins produced by filamentous fungi. The amphiphilic structure of hydrophobins is very compact, containing a distinct hydrophobic patch on one side of the molecule, locked by four intramolecular disulfide bridges. Hydrophobins form dimers and multimers in solution to shield these hydrophobic patches from water exposure. Multimer formation in solution is dynamic, and hydrophobin monomers can be exchanged between multimers. Unlike class I hydrophobins, class II hydrophobins assemble into highly ordered films at the air-water interface. In order to increase our understanding of the strength and nature of the interaction between hydrophobins, we used atomic force microscopy for single molecule force spectroscopy to explore the molecular interaction forces between class II hydrophobins from Trichoderma reesei under different environmental conditions. A genetically engineered hydrophobin variant, NCys-HFBI, enabled covalent attachment of proteins to the apex of the atomic force microscopy cantilever tip and sample surfaces in controlled orientation with sufficient freedom of movement to measure molecular forces between hydrophobic patches. The measured rupture force between two assembled hydrophobins was ∼31 pN, at a loading rate of 500 pN/s. The results indicated stronger interaction between hydrophobins and hydrophobic surfaces than between two assembling hydrophobin molecules. Furthermore, this interaction was stable under different environmental conditions, which demonstrates the dominance of hydrophobicity in hydrophobin-hydrophobin interactions. This is the first time that interaction forces between hydrophobin molecules, and also between naturally occurring hydrophobic surfaces, have been measured directly at a single-molecule level.
Collapse
Affiliation(s)
- Arja Paananen
- Industrial Biotechnology and Food, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| | - Sabine Weich
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Géza R Szilvay
- Industrial Biotechnology and Food, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Michael Leitner
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Kirsi Tappura
- Industrial Biotechnology and Food, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Andreas Ebner
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
17
|
Abstract
Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.
Collapse
|
18
|
Monroe JI, Jiao S, Davis RJ, Robinson Brown D, Katz LE, Shell MS. Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:e2020205118. [PMID: 33372161 PMCID: PMC7821046 DOI: 10.1073/pnas.2020205118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Performance of membranes for water purification is highly influenced by the interactions of solvated species with membrane surfaces, including surface adsorption of solutes upon fouling. Current efforts toward fouling-resistant membranes often pursue surface hydrophilization, frequently motivated by macroscopic measures of hydrophilicity, because hydrophobicity is thought to increase solute-surface affinity. While this heuristic has driven diverse membrane functionalization strategies, here we build on advances in the theory of hydrophobicity to critically examine the relevance of macroscopic characterizations of solute-surface affinity. Specifically, we use molecular simulations to quantify the affinities to model hydroxyl- and methyl-functionalized surfaces of small, chemically diverse, charge-neutral solutes represented in produced water. We show that surface affinities correlate poorly with two conventional measures of solute hydrophobicity, gas-phase water solubility and oil-water partitioning. Moreover, we find that all solutes show attraction to the hydrophobic surface and most to the hydrophilic one, in contrast to macroscopically based hydrophobicity heuristics. We explain these results by decomposing affinities into direct solute interaction energies (which dominate on hydroxyl surfaces) and water restructuring penalties (which dominate on methyl surfaces). Finally, we use an inverse design algorithm to show how heterogeneous surfaces, with multiple functional groups, can be patterned to manipulate solute affinity and selectivity. These findings, importantly based on a range of solute and surface chemistries, illustrate that conventional macroscopic hydrophobicity metrics can fail to predict solute-surface affinity, and that molecular-scale surface chemical patterning significantly influences affinity-suggesting design opportunities for water purification membranes and other engineered interfaces involving aqueous solute-surface interactions.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - R Justin Davis
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Lynn E Katz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
19
|
Kuang Z, Singh KM, Oliver DJ, Dennis PB, Perry CC, Naik RR. Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets. Nat Commun 2020; 11:5517. [PMID: 33139719 PMCID: PMC7606380 DOI: 10.1038/s41467-020-19233-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/28/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental problem in thermodynamics is the recovery of macroscopic equilibrated interaction energies from experimentally measured single-molecular interactions. The Jarzynski equality forms a theoretical basis in recovering the free energy difference between two states from exponentially averaged work performed to switch the states. In practice, the exponentially averaged work value is estimated as the mean of finite samples. Numerical simulations have shown that samples having thousands of measurements are not large enough for the mean to converge when the fluctuation of external work is above 4 kBT, which is easily observable in biomolecular interactions. We report the first example of a statistical gamma work distribution applied to single molecule pulling experiments. The Gibbs free energy of surface adsorption can be accurately evaluated even for a small sample size. The values obtained are comparable to those derived from multi-parametric surface plasmon resonance measurements and molecular dynamics simulations. Measuring interaction energies from experimentally measured single-molecular interactions is challenging. Here, the authors report a gamma work distribution applied to single molecule pulling events for estimating peptide absorption free energy.
Collapse
Affiliation(s)
- Zhifeng Kuang
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Kristi M Singh
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Daniel J Oliver
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Patrick B Dennis
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Rajesh R Naik
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA.
| |
Collapse
|
20
|
Kelkar AS, Dallin BC, Van Lehn RC. Predicting Hydrophobicity by Learning Spatiotemporal Features of Interfacial Water Structure: Combining Molecular Dynamics Simulations with Convolutional Neural Networks. J Phys Chem B 2020; 124:9103-9114. [DOI: 10.1021/acs.jpcb.0c05977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Atharva S. Kelkar
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Bradley C. Dallin
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
22
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros‐Silva J, Gelain F, Weingarth M. Design Parameters of Tissue‐Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marek Prachar
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
23
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros-Silva J, Gelain F, Weingarth M. Design Parameters of Tissue-Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019; 58:16943-16951. [PMID: 31573131 PMCID: PMC6899630 DOI: 10.1002/anie.201907880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Stem-cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue-engineering scaffolds. However, our understanding of the material properties of stem-cell scaffolds is limited to nanoscopic-to-macroscopic length scales. Herein, a solid-state NMR approach is presented that provides atomic-scale information on complex stem-cell substrates at near physiological conditions and at natural isotope abundance. Using self-assembled peptidic scaffolds designed for nervous-tissue regeneration, we show at atomic scale how scaffold-assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid-state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem-cell scaffold. This could improve the design of tissue-engineering scaffolds and other self-assembled biomaterials.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Marek Prachar
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
24
|
Monroe JI, Shell MS. Decoding signatures of structure, bulk thermodynamics, and solvation in three-body angle distributions of rigid water models. J Chem Phys 2019; 151:094501. [PMID: 31492058 DOI: 10.1063/1.5111545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A tetrahedral structure resulting from hydrogen bonding is a hallmark of liquid water and plays a significant role in determining its unique thermophysical properties. This water feature has helped understand anomalous properties and physically interpret and model hydrophobic solvation thermodynamics. Tetrahedrality is well described by the geometric relationship of any central water molecule with two of its nearest neighbors in the first coordination shell, as defined by the corresponding "three-body" angle. While order parameters and even full water models have been developed using specific or average features of the three-body angle distribution, here we examine the distribution holistically, tracking its response to changes in temperature, density, and the presence of model solutes. Surprisingly, we find that the three-body distribution responds by varying primarily along a single degree of freedom, suggesting a remarkably simplified view of water structure. We characterize three-body angle distributions across temperature and density space and identify principal components of the variations with state conditions. We show that these principal components embed physical significance and trace out transitions between tetrahedral and simple-fluid-like behavior. Moreover, we find that the ways three-body angles vary within the hydration shells of model colloids of different types and sizes are nearly identical to the variations seen in bulk water across density and temperature. Importantly, through the principal directions of these variations, we find that perturbations to the hydration-water distributions well predict the thermodynamics associated with colloid solvation, in particular, the relative entropy of this process that captures indirect, solvent-mediated contributions to the hydration free energy.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, USA
| |
Collapse
|
25
|
Dallin BC, Van Lehn RC. Spatially Heterogeneous Water Properties at Disordered Surfaces Decrease the Hydrophobicity of Nonpolar Self-Assembled Monolayers. J Phys Chem Lett 2019; 10:3991-3997. [PMID: 31265306 DOI: 10.1021/acs.jpclett.9b01707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the relationship between hydrophobicity and the properties of functionalized surfaces is vital to the design of materials that interact in aqueous environments. In this Letter, we use atomistic molecular dynamics simulations to investigate the effects of surface order on the hydrophobicity of self-assembled monolayers (SAMs) containing nonpolar ligands. We find that the interfacial hydrophobicity is highly correlated with SAM order and, strikingly, poorly correlated with the solvent-accessible surface area, which typically has been related to interfacial hydrophobicity. Analysis of spatial variations in both SAM and water properties reveals that the SAM-water interface is pinned near regions of disordered SAM surfaces with increased free volume, decreasing the overall interfacial hydrophobicity. Spatial variations in ligand end group positions at disordered SAM surfaces thus translate to spatial variations in hydrophobicity, yielding heterogeneous surface properties. These findings provide new insights into how surface order can alter the hydrophobicity of chemically uniform surfaces.
Collapse
Affiliation(s)
- Bradley C Dallin
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 , United States
| |
Collapse
|
26
|
Wang AH, Zhang ZC, Li GH. Advances in enhanced sampling molecular dynamics simulations for biomolecules. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- An-hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi-chao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Guo-hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Dallin BC, Yeon H, Ostwalt AR, Abbott NL, Van Lehn RC. Molecular Order Affects Interfacial Water Structure and Temperature-Dependent Hydrophobic Interactions between Nonpolar Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2078-2088. [PMID: 30645942 DOI: 10.1021/acs.langmuir.8b03287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding how material properties affect hydrophobic interactions-the water-mediated interactions that drive the association of nonpolar materials-is vital to the design of materials in contact with water. Conventionally, the magnitude of the hydrophobic interactions between extended interfaces is attributed to interfacial chemical properties, such as the amount of nonpolar solvent-exposed surface area. However, recent experiments have demonstrated that the hydrophobic interactions between uniformly nonpolar self-assembled monolayers (SAMs) also depend on molecular-level SAM order. In this work, we use atomistic molecular dynamics simulations to investigate the relationship between SAM order, water structure, and hydrophobic interactions to explain these experimental observations. The SAM-SAM hydrophobic interactions calculated from the simulations increase in magnitude as SAM order increases, matching experimental observations. We explain this trend by showing that the molecular-level order of the SAM impacts the nanoscale structure of interfacial water molecules, leading to an increase in water structure near disordered SAMs. These findings are consistent with a decrease in the solvation entropy of disordered SAMs, which is confirmed by measuring the temperature dependence of hydrophobic interactions using both simulations and experiments. This study elucidates how hydrophobic interactions can be influenced by an interfacial physical property, which may guide the design of synthetic materials with fine-tuned interfacial hydrophobicity.
Collapse
Affiliation(s)
- Bradley C Dallin
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| | - Hongseung Yeon
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| | - Alexis R Ostwalt
- Department of Chemical and Biological Engineering , Montana State University , 306 Cobleigh Hall , Bozeman , Montana 59715 United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
- Department of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 United States
| |
Collapse
|
28
|
Lam J, Lutsko JF. Solvent-mediated interactions between nanostructures: From water to Lennard-Jones liquid. J Chem Phys 2018; 149:134703. [PMID: 30292194 DOI: 10.1063/1.5037571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solvent-mediated interactions emerge from complex mechanisms that depend on the solute structure, its wetting properties, and the nature of the liquid. While numerous studies have focused on the first two influences, here, we compare the results from water and Lennard-Jones liquid in order to reveal to what extent solvent-mediated interactions are universal with respect to the nature of the liquid. Besides the influence of the liquid, the results were obtained with classical density functional theory and brute-force molecular dynamics simulations which allow us to contrast these two numerical techniques.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
29
|
Li X, Liu D, Wang Y, Xu S, Liu H. Water dispersive upconversion nanoparticles for intelligent drug delivery system. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Tang H, Zhao Y, Shan S, Yang X, Liu D, Cui F, Xing B. Wrinkle- and Edge-Adsorption of Aromatic Compounds on Graphene Oxide as Revealed by Atomic Force Microscopy, Molecular Dynamics Simulation, and Density Functional Theory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7689-7697. [PMID: 29929371 DOI: 10.1021/acs.est.8b00585] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the favorable adsorption sites of aromatic compounds (ACs) on graphene oxide (GO) are characterized with both experimental and theoretical approaches. The results show that ACs exhibit a strong preference in adsorbing near the wrinkles and edges. Further analyses reveal that the edge-adsorption is mainly guided by the stronger π-π interaction near edges, accompanied by a stronger hydrogen bond interaction between carboxyl groups and ACs. Additionally, the water-mediated steric hindrance and flexibility of carboxyl groups also contribute to the edge-adsorption. A higher density of atoms and electrons is the main mechanism for the wrinkle-adsorption, and structural investigations indicate that the roughness serving as a steric hindrance for the ACs migration also contributes to the wrinkle-adsorption. This wrinkle- and edge-adsorption pattern will shed light on the design of GO-related environmental materials.
Collapse
Affiliation(s)
- Huan Tang
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | | | | | | | | - Fuyi Cui
- College of Urban Construction and Environmental Engineering , Chongqing University , Chongqing , 40045 , China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
31
|
Frederix PWJM, Patmanidis I, Marrink SJ. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem Soc Rev 2018; 47:3470-3489. [PMID: 29688238 PMCID: PMC5961611 DOI: 10.1039/c8cs00040a] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 01/01/2023]
Abstract
In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation.
Collapse
Affiliation(s)
- Pim W. J. M. Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| |
Collapse
|
32
|
Molecular-level insight of gas transport in composite poly (4-methyl-2-pentyne) and nanoparticles of titanium dioxide. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Jabes BS, Bratko D, Luzar A. Extent of Surface Force Additivity on Chemically Heterogeneous Substrates at Varied Orientations. J Phys Chem B 2018; 122:3596-3603. [PMID: 29185778 DOI: 10.1021/acs.jpcb.7b10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface interactions between chemically mixed surfaces, as well as those among dissolved biomolecules, comprise distinct contributions from polar and hydrophobic moieties. These contributions are often context dependent. Approximate compliance to the Cassie additivity equation for the wetting free energies on mixed surfaces in water is, however, indicative of similarly additive forces between individual surface elements, suggesting a quadratic interpolation model for total force from the forces between pure surfaces. We use molecular dynamics/umbrella sampling simulations of parallel and nonparallel mixed surfaces with demonstrable Cassie-like behavior to verify how well the total surface force between the heterogeneous, molecularly rough surfaces can be approximated as a combination of forces among the homogeneous ones. When accounting for dissimilar distances of approach between functional groups of different types, our results for graphene surfaces with mixed methyl and nitrile coating show such a superposition to provide a reasonable first order approximation of interactions between the platelets. Deviations from additivity are more prominent in parallel-plate configurations, at high content of hydrophobic groups, and small separations. The inclusion of water polarizability does not visibly alter the observed behavior regardless of platelet orientations. The outcome of this study determines the necessary molecular conditions for observing force additivity that emphasize the context dependence of hydrophobic interaction in the presence of polar groups. This notion provides guidelines for the syntheses of new, chemically heterogeneous materials with tailored function-oriented properties in aqueous media.
Collapse
Affiliation(s)
- B Shadrack Jabes
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Dusan Bratko
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Alenka Luzar
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| |
Collapse
|
34
|
Moreno Ostertag L, Utzig T, Klinger C, Valtiner M. Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:766-772. [PMID: 29087720 PMCID: PMC6398919 DOI: 10.1021/acs.langmuir.7b02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The capabilities of atomic force microscopes and optical tweezers to probe unfolding or surface-to-molecule bond rupture at a single-molecular level are widely appreciated. These measurements are typically carried out unidirectionally under nonequilibrium conditions. Jarzynski's equality has proven useful to relate the work obtained along these nonequilibrium trajectories to the underlying free energy of the unfolding or unbinding process. Here, we quantify biases that arise from the molecular design of the bond rupture experiment for probing surface-to-molecule bonds. In particular, we probe the well-studied amine/gold bond as a function of the linker's length which is used to anchor the specific amine functionality during a single molecule unbinding experiment. With increasing linker length, we observe a significant increase in the average work spent on polymer stretching and a strongly biased estimated interaction free energy. Our data demonstrate that free energy estimates converge well for linker lengths below 20 nm, where the bias is <10-15%. With longer linkers severe methodical limits of the method are reached, and convergence within a reasonable number of realizations of the bond rupture is not feasible. Our results also provide new insights into stability and work dissipation mechanisms at adhesive interfaces at the single-molecular level, and offer important design and analysis aspects for single-molecular surface-to-molecule experiments.
Collapse
Affiliation(s)
- Laila Moreno Ostertag
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Thomas Utzig
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Christine Klinger
- Institut
für Physikalische Chemie II, TU Bergakademie
Freiberg, 09599 Freiberg, Germany
| | - Markus Valtiner
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Institute
for Applied Physics, Applied Interface Physics, Technical University of Vienna, 1040 Vienna, Austria
| |
Collapse
|
35
|
Naranjo T, Cerrón F, Nieto-Ortega B, Latorre A, Somoza Á, Ibarra B, Pérez EM. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions. Chem Sci 2017; 8:6037-6041. [PMID: 28989633 PMCID: PMC5625567 DOI: 10.1039/c7sc03044d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/29/2017] [Indexed: 11/26/2022] Open
Abstract
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.
Collapse
Affiliation(s)
- Teresa Naranjo
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Fernando Cerrón
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Belén Nieto-Ortega
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Alfonso Latorre
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Álvaro Somoza
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
- Nanobiotecnología (IMDEA-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 , Madrid , Spain
| | - Borja Ibarra
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
- Nanobiotecnología (IMDEA-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 , Madrid , Spain
| | - Emilio M Pérez
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| |
Collapse
|
36
|
Spengler C, Thewes N, Jung P, Bischoff M, Jacobs K. Determination of the nano-scaled contact area of staphylococcal cells. NANOSCALE 2017; 9:10084-10093. [PMID: 28695218 DOI: 10.1039/c7nr02297b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, 66041 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|