1
|
Kamal S, Seo I, Bampoulis P, Jugovac M, Brondin CA, Menteş TO, Šarić Janković I, Matetskiy AV, Moras P, Sheverdyaeva PM, Michely T, Locatelli A, Gohda Y, Kralj M, Petrović M. Unidirectional Nano-modulated Binding and Electron Scattering in Epitaxial Borophene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38041641 DOI: 10.1021/acsami.3c14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality.
Collapse
Affiliation(s)
- Sherif Kamal
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| | - Insung Seo
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Pantelis Bampoulis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Matteo Jugovac
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Carlo Alberto Brondin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Tevfik Onur Menteş
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Iva Šarić Janković
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Thomas Michely
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Andrea Locatelli
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Yoshihiro Gohda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Marko Kralj
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| | - Marin Petrović
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Grubišić‐Čabo A, Michiardi M, Sanders CE, Bianchi M, Curcio D, Phuyal D, Berntsen MH, Guo Q, Dendzik M. In Situ Exfoliation Method of Large-Area 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301243. [PMID: 37236159 PMCID: PMC10401183 DOI: 10.1002/advs.202301243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 05/28/2023]
Abstract
2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement of charge carriers. Many of these phenomena are discovered by surface sensitive techniques, such as photoemission spectroscopy, that work in ultra-high vacuum (UHV). Success in experimental studies of 2D materials, however, inherently relies on producing adsorbate-free, large-area, high-quality samples. The method that yields 2D materials of highest quality is mechanical exfoliation from bulk-grown samples. However, as this technique is traditionally performed in a dedicated environment, the transfer of samples into vacuum requires surface cleaning that might diminish the quality of the samples. In this article, a simple method for in situ exfoliation directly in UHV is reported, which yields large-area, single-layered films. Multiple metallic and semiconducting transition metal dichalcogenides are exfoliated in situ onto Au, Ag, and Ge. The exfoliated flakes are found to be of sub-millimeter size with excellent crystallinity and purity, as supported by angle-resolved photoemission spectroscopy, atomic force microscopy, and low-energy electron diffraction. The approach is well-suited for air-sensitive 2D materials, enabling the study of a new suite of electronic properties. In addition, the exfoliation of surface alloys and the possibility of controlling the substrate-2D material twist angle is demonstrated.
Collapse
Affiliation(s)
- Antonija Grubišić‐Čabo
- Zernike Institute for Advanced MaterialsUniversity of GroningenGroningen9747 AGThe Netherlands
- Department of Applied PhysicsKTH Royal Institute of TechnologyHannes Alfvéns väg 12Stockholm114 19Sweden
| | - Matteo Michiardi
- Quantum Matter InstituteUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBCV6T 1Z1Canada
| | - Charlotte E. Sanders
- Central Laser FacilityResearch Complex at HarwellRutherford Appleton LaboratoryHarwell CampusDidcot0X11 0QXUK
| | - Marco Bianchi
- School of Physics and AstronomyAarhus UniversityAarhus8000 CDenmark
| | - Davide Curcio
- School of Physics and AstronomyAarhus UniversityAarhus8000 CDenmark
| | - Dibya Phuyal
- Department of Applied PhysicsKTH Royal Institute of TechnologyHannes Alfvéns väg 12Stockholm114 19Sweden
| | - Magnus H. Berntsen
- Department of Applied PhysicsKTH Royal Institute of TechnologyHannes Alfvéns väg 12Stockholm114 19Sweden
| | - Qinda Guo
- Department of Applied PhysicsKTH Royal Institute of TechnologyHannes Alfvéns väg 12Stockholm114 19Sweden
| | - Maciej Dendzik
- Department of Applied PhysicsKTH Royal Institute of TechnologyHannes Alfvéns väg 12Stockholm114 19Sweden
| |
Collapse
|
3
|
Masson L, Prévot G. Epitaxial growth and structural properties of silicene and other 2D allotropes of Si. NANOSCALE ADVANCES 2023; 5:1574-1599. [PMID: 36926561 PMCID: PMC10012843 DOI: 10.1039/d2na00808d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Since the breakthrough of graphene, considerable efforts have been made to search for two-dimensional (2D) materials composed of other group 14 elements, in particular silicon and germanium, due to their valence electronic configuration similar to that of carbon and their widespread use in the semiconductor industry. Silicene, the silicon counterpart of graphene, has been particularly studied, both theoretically and experimentally. Theoretical studies were the first to predict a low-buckled honeycomb structure for free-standing silicene possessing most of the outstanding electronic properties of graphene. From an experimental point of view, as no layered structure analogous to graphite exists for silicon, the synthesis of silicene requires the development of alternative methods to exfoliation. Epitaxial growth of silicon on various substrates has been widely exploited in attempts to form 2D Si honeycomb structures. In this article, we provide a comprehensive state-of-the-art review focusing on the different epitaxial systems reported in the literature, some of which having generated controversy and long debates. In the search for the synthesis of 2D Si honeycomb structures, other 2D allotropes of Si have been discovered and will also be presented in this review. Finally, with a view to applications, we discuss the reactivity and air-stability of silicene as well as the strategy devised to decouple epitaxial silicene from the underlying surface and its transfer to a target substrate.
Collapse
Affiliation(s)
| | - Geoffroy Prévot
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP F-75005 Paris France
| |
Collapse
|
4
|
Kawakami N, Arafune R, Minamitani E, Kawahara K, Takagi N, Lin CL. Anomalous dewetting growth of Si on Ag(111). NANOSCALE 2022; 14:14623-14629. [PMID: 36164927 DOI: 10.1039/d2nr03409c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.
Collapse
Affiliation(s)
- Naoya Kawakami
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Ryuichi Arafune
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 304-0044, Japan
| | - Emi Minamitani
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kazuaki Kawahara
- Institute of Engineering Innovation, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Noriaki Takagi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
5
|
Mrezguia H, Giovanelli L, Ksari Y, Akremi A, Themlin JM. Unoccupied electronic states of 2D Si on Ag-3-Si(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225002. [PMID: 33601349 DOI: 10.1088/1361-648x/abe794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Optimizing substrate characterization to grow 2D Si layers on surfaces is a major issue toward the development of synthesis techniques of the promising silicene. We have used inverse photoemission spectroscopy (IPES) to study the electronic band structure of an ordered 2D Si layer on the3×3-Ag/Si(111) surface (3-Ag). Exploiting the large upwards band bending of the3-Ag substrate, we could investigate the evolution of the unoccupied surface and interface states in most of the Si band gap. In particular, thek∥-dispersion of the3-Ag free-electron-likeS1surface state measured by IPES, is reported for the first time. Upon deposition of ∼1 ML Si on3-Ag maintained at ∼200 °C, the interface undergoes a metal-insulator transition with the complete disappearance of theS1state. The latter is replaced by a higher-lying stateU0with a minimum at 1.0 eV aboveEF. The origin of this new state is discussed in terms of various Si 2D structures including silicene.
Collapse
Affiliation(s)
- H Mrezguia
- Aix Marseille Univ, Univ Toulon, CNRS, IM2NP, Marseille, France
- Université de Carthage, Laboratoire de Physique des matériaux, LR01ES15: Structure et Propriétés, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - L Giovanelli
- Aix Marseille Univ, Univ Toulon, CNRS, IM2NP, Marseille, France
| | - Y Ksari
- Aix Marseille Univ, Univ Toulon, CNRS, IM2NP, Marseille, France
| | - A Akremi
- Université de Carthage, Laboratoire de Physique des matériaux, LR01ES15: Structure et Propriétés, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - J-M Themlin
- Aix Marseille Univ, Univ Toulon, CNRS, IM2NP, Marseille, France
| |
Collapse
|
6
|
Quantitative determination of atomic buckling of silicene by atomic force microscopy. Proc Natl Acad Sci U S A 2019; 117:228-237. [PMID: 31871150 DOI: 10.1073/pnas.1913489117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomic buckling in 2D "Xenes" (such as silicene) fosters a plethora of exotic electronic properties such as a quantum spin Hall effect and could be engineered by external strain. Quantifying the buckling magnitude with subangstrom precision is, however, challenging, since epitaxially grown 2D layers exhibit complex restructurings coexisting on the surface. Here, we characterize using low-temperature (5 K) atomic force microscopy (AFM) with CO-terminated tips assisted by density functional theory (DFT) the structure and local symmetry of each prototypical silicene phase on Ag(111) as well as extended defects. Using force spectroscopy, we directly quantify the atomic buckling of these phases within 0.1-Å precision, obtaining corrugations in the 0.8- to 1.1-Å range. The derived band structures further confirm the absence of Dirac cones in any of the silicene phases due to the strong Ag-Si hybridization. Our method paves the way for future atomic-scale analysis of the interplay between structural and electronic properties in other emerging 2D Xenes.
Collapse
|
7
|
Feng B, Zhou H, Feng Y, Liu H, He S, Matsuda I, Chen L, Schwier EF, Shimada K, Meng S, Wu K. Superstructure-Induced Splitting of Dirac Cones in Silicene. PHYSICAL REVIEW LETTERS 2019; 122:196801. [PMID: 31144949 DOI: 10.1103/physrevlett.122.196801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is (3×3)-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K^{'}) points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the (3×3)-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.
Collapse
Affiliation(s)
- Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Feng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Hang Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaolong He
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Iwao Matsuda
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eike F Schwier
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Kenya Shimada
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Sheng Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Optical properties of shortest-width zig-zag silicene nano-ribbons: Effects of local fields. MICRO AND NANO ENGINEERING 2018. [DOI: 10.1016/j.mne.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang Y, qi R, Jiang Y, Sun C, Zhang G, Hu Y, Yang ZD, Li W. Transport and Photoelectric Properties of 2D Silicene/MX 2 (M = Mo, W; X = S, Se) Heterostructures. ACS OMEGA 2018; 3:13251-13262. [PMID: 31458043 PMCID: PMC6644475 DOI: 10.1021/acsomega.8b01282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 06/10/2023]
Abstract
The transport and photoelectric properties of four two-dimensional (2D) silicene/MX2 (M = Mo, W; X = S, Se) heterostructures have been investigated by employing density functional theory, nonequilibrium Green's function, and Keldysh nonequilibrium Green's function methods. The stabilities of silicene (SiE) are obviously improved after being placed on the MX2 (M = Mo, W; X = S, Se) substrates. In particular, the conductivities of SiE/MX2 are enhanced compared with free-standing SiE and MX2. Moreover, the conductivities are increased with the group number of X, i.e., in the order of SiE < SiE/MS2 < SiE/MSe2. An evident current oscillation phenomenon is observed in the SiE/WX2 heterostructures. When a linear light illumination is applied, SiE/MSe2 shows a stronger photoresponse than SiE/MS2. The maximum photoresponse with a value of 9.0a 0 2/photon was obtained for SiE/WSe2. More importantly, SiE/MS2 (M = Mo, W) heterostructures are good candidates for application in designing solar cells owing to the well spatial separation of the charge carriers. This work provides some clues for further exploring 2D SiE/MX2 heterostructures involving tailored photoelectric properties.
Collapse
Affiliation(s)
- Yuxiu Wang
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Rui qi
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Yingjie Jiang
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Cuicui Sun
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Guiling Zhang
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Yangyang Hu
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Zhao-Di Yang
- School of Materials
Science and Engineering, Harbin University
of Science and Technology, Harbin 150080, China
| | - Weiqi Li
- Department of Physics, Harbin
Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Yang K, Huang WQ, Hu W, Huang GF, Wen S. Substrate-induced magnetism and topological phase transition in silicene. NANOSCALE 2018; 10:14667-14677. [PMID: 30039142 DOI: 10.1039/c8nr04570d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicene has shown great potential for applications as a versatile material in nanoelectronics and is particularly promising as a building block for spintronic applications. Unfortunately, despite its intriguing properties, such as a relatively large spin-orbit interaction, one of the greatest obstacles to the use of silicene as a host material in spintronics is its lack of magnetism or a topological phase transition owing to the silicene-substrate interaction, which influences its fundamental properties and has yet to be fully investigated. Here, we show that when silicene is grown on a CeO2 substrate, an appreciable robust magnetic moment appears in silicene covalently bonded to CeO2 (111), while a topological phase transition from a topological insulator to a band insulator occurs regardless of van der Waals (vdW) interactions or covalent bonding interactions at the interface. The induced magnetism of silicene is due to the breaking of Si-Si π-bonds, which also results in a trivial topological phase. The silicene-substrate interaction, and even weak vdW forces (equivalent to an electric field), can destroy the quantum spin Hall effect (QSHE) in silicene. We propose a viable strategy-the construction of an inverse symmetrical sandwich structure (protective layer/silicene/substrate)-to preserve the quantum spin Hall (QSH) state of silicene in a system with weak vdW interactions. This work takes a critical step towards the fundamental physics and realistic applications of silicene-based spintronic devices.
Collapse
Affiliation(s)
- Ke Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China.
| | | | | | | | | |
Collapse
|
11
|
Krawiec M. Functionalization of group-14 two-dimensional materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:233003. [PMID: 29708504 DOI: 10.1088/1361-648x/aac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The great success of graphene has boosted intensive search for other single-layer thick materials, mainly composed of group-14 atoms arranged in a honeycomb lattice. This new class of two-dimensional (2D) crystals, known as 2D-Xenes, has become an emerging field of intensive research due to their remarkable electronic properties and the promise for a future generation of nanoelectronics. In contrast to graphene, Xenes are not completely planar, and feature a low buckled geometry with two sublattices displaced vertically as a result of the interplay between sp2 and sp3 orbital hybridization. In spite of the buckling, the outstanding electronic properties of graphene governed by Dirac physics are preserved in Xenes too. The buckled structure also has several advantages over graphene. Together with the spin-orbit (SO) interaction it may lead to the emergence of various experimentally accessible topological phases, like the quantum spin Hall effect. This in turn would lead to designing and building new electronic and spintronic devices, like topological field effect transistors. In this regard an important issue concerns the electron energy gap, which for Xenes naturally exists owing to the buckling and SO interaction. The electronic properties, including the magnitude of the energy gap, can further be tuned and controlled by external means. Xenes can easily be functionalized by substrate, chemical adsorption, defects, charge doping, external electric field, periodic potential, in-plane uniaxial and biaxial stress, and out-of-plane long-range structural deformation, to name a few. This topical review explores structural, electronic and magnetic properties of Xenes and addresses the question of their functionalization in various ways, including external factors acting simultaneously. It also points to future directions to be explored in functionalization of Xenes. The results of experimental and theoretical studies obtained so far have many promising features making the 2D-Xene materials important players in the field of future nanoelectronics and spintronics.
Collapse
Affiliation(s)
- Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
12
|
Ravikumar A, Kladnik G, Müller M, Cossaro A, Bavdek G, Patera LL, Sánchez-Portal D, Venkataraman L, Morgante A, Brivio GP, Cvetko D, Fratesi G. Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces. NANOSCALE 2018; 10:8014-8022. [PMID: 29667672 DOI: 10.1039/c7nr08737c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We compare the ultrafast charge transfer dynamics of molecules on epitaxial graphene and bilayer graphene grown on Ni(111) interfaces through first principles calculations and X-ray resonant photoemission spectroscopy. We use 4,4'-bipyridine as a prototypical molecule for these explorations as the energy level alignment of core-excited molecular orbitals allows ultrafast injection of electrons from a substrate to a molecule on a femtosecond timescale. We show that the ultrafast injection of electrons from the substrate to the molecule is ∼4 times slower on weakly coupled bilayer graphene than on epitaxial graphene. Through our experiments and calculations, we can attribute this to a difference in the density of states close to the Fermi level between graphene and bilayer graphene. We therefore show how graphene coupling with the substrate influences charge transfer dynamics between organic molecules and graphene interfaces.
Collapse
Affiliation(s)
- Abhilash Ravikumar
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Correa A, Camellone MF, Barragan A, Kumar A, Cepek C, Pedio M, Fabris S, Vitali L. Self-texturizing electronic properties of a 2-dimensional GdAu 2 layer on Au(111): the role of out-of-plane atomic displacement. NANOSCALE 2017; 9:17342-17348. [PMID: 29094126 DOI: 10.1039/c7nr04699e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we show that the electronic properties of a surface-supported 2-dimensional (2D) layer structure can self-texturize at nanoscale. The local electronic properties are determined by structural relaxation processes through variable adsorption stacking configurations. We demonstrate that the spatially modulated layer-buckling, which arises from the lattice mismatch and the layer/substrate coupling at the GdAu2/Au(111) interface, is sufficient to locally open an energy gap of ∼0.5 eV at the Fermi level in an otherwise metallic layer. Additionally, this out-of-plane displacement of the Gd atoms patterns the character of the hybridized Gd-d states and shifts the center of mass of the Gd 4f multiplet proportionally to the lattice distortion. These findings demonstrate the close correlation between the electronic properties of the 2D-layer and its planarity. We demonstrate that the resulting template shows different chemical reactivities which may find important applications.
Collapse
Affiliation(s)
- Alexander Correa
- Departamento de Física de Materiales, Universidad del País Vasco, ES-20018 San Sebastián, Spain. and Donostia International Physics Center, ES-20018 San Sebastián, Spain and Centro de Fisica de Materiales (CSIC-UPV/EHU) y Material Physics Center, ES- 20018 San Sebastián, Spain
| | - Matteo Farnesi Camellone
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche and SISSA, Via Bonomea 265, I-34136, Trieste, Italy.
| | - Ana Barragan
- Departamento de Física de Materiales, Universidad del País Vasco, ES-20018 San Sebastián, Spain. and Centro de Fisica de Materiales (CSIC-UPV/EHU) y Material Physics Center, ES- 20018 San Sebastián, Spain
| | - Abhishek Kumar
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy and Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
| | - Cinzia Cepek
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| | - Maddalena Pedio
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| | - Stefano Fabris
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche and SISSA, Via Bonomea 265, I-34136, Trieste, Italy.
| | - Lucia Vitali
- Departamento de Física de Materiales, Universidad del País Vasco, ES-20018 San Sebastián, Spain. and Centro de Fisica de Materiales (CSIC-UPV/EHU) y Material Physics Center, ES- 20018 San Sebastián, Spain and Ikerbasque Foundation for Science, ES-48013 Bilbao, Spain
| |
Collapse
|