1
|
Bahrami M, Serati Shirazi P, Moradi F, Hadi N, Sabbaghi N, Eslaminezhad S. How nanomaterials act against bacterial structures? a narrative review focusing on nanoparticle molecular mechanisms. Microb Pathog 2024; 196:107002. [PMID: 39393474 DOI: 10.1016/j.micpath.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE In recent years, significant progress has been made in the field of nanotechnology for the treatment and prevention of biofilm formation and Multidrug-resistant bacteria (MDR). MDR bacteria challenges is hazardous when microorganisms induce the formation of biofilms, which amplify resistance to antibiotics and promote the development of multidrug-resistant conditions. The unique physicochemical properties of certain nanomaterials make nanotechnology a promising option for combating MDR infections. Several studies have introduced nanomaterials with different antibacterial mechanisms that can effectively destroy MDR bacteria and their biofilms. This study reviews the research results, focusing on the various nanoparticle mechanisms that target bacterial structures. METHOD To accomplish this study, we conducted investigations to gather articles and relevant studies from validated medical databases such as Scopus, PubMed, Google Scholar, and Web of Science. The selected publications from 2007 to 2023. In this review, we provide a brief overview of nanoparticles, their mechanisms, and how they function against the structure of bacteria. Furthermore, we discuss the recent advancements in using certain nanoparticles to combat infection-induced biofilms and complications caused by multidrug resistance. FINDING Our findings demonstrate that various nanoparticles have the potential to effectively overcome bacterial infectious diseases by targeting biofilms and antibiotic-resistant strains. Additionally, the development of a new drug delivery approach based on nanosystems shows promise in overcoming antibiotic resistance and biofilms.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Serati Shirazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Sabbaghi
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahba Eslaminezhad
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Pars Biotech Research & Development Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Gao Q, Liu R, Wu Y, Wang F, Wu X. Versatile self-assembled near-infrared SERS nanoprobes for multidrug-resistant bacterial infection-specific surveillance and therapy. Acta Biomater 2024:S1742-7061(24)00580-4. [PMID: 39370092 DOI: 10.1016/j.actbio.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The rise of multidrug-resistant bacteria (MDRB) has made bacterial infection one of the biggest health threats, causing numerous antibiotics to fail. Real-time monitoring of bacterial disease treatment efficacy at the infection site is required. Herein, we report a versatile Raman tag 3,3'-diethylthiatricarbocyanine iodide (DTTC)-conjugated star-shaped Au-MoS2@hyaluronic acid (AMD@HA) nanocomposite as a surface-enhanced Raman scattering (SERS) nanoprobe for quick bacterial identification and in-situ eradication. Localized surface plasmon resonance (LSPR) from the hybrid metallic nanostructure makes AMD@HA highly responsive to the near-infrared laser, enabling it to demonstrate a photothermal (PTT) effect, increased SERS activity, and peroxidase-like catalytic reaction to release reactive oxygen species. The tail vein injection of AMD@HA nanoprobes is invasive, however SERS imaging for bacterial identification is non-invasive and sensitive, making it an efficient residual bacteria monitoring method. The detection limit for methicillin-resistant Staphylococcus aureus (MRSA) is as low as 102 CFU·mL-1, and the substrates allow for taking 120 s to acquire a Raman image of 1600 (40 × 40) pixels. In mouse models of MRSA-induced wound infection and skin abscess, the combination of AMD@HA-mediated PTT and catalytic therapy demonstrates a synergistic effect in promoting wound healing through rapid sterilization. This SERS-guided therapeutic approach exhibits little toxicity and does not cause considerable collateral damage, offering a highly promising intervention for treating diseases caused by MDRB. STATEMENT OF SIGNIFICANCE: This research introduces a SERS nanoprobe, AMD@HA, for the rapid identification and eradication of multidrug-resistant bacteria (MDRB), a critical health threat. The nanoprobe leverages localized surface plasmon resonance for photothermal therapy and enhanced Raman signals, offering a sensitive, non-invasive diagnostic tool. With a low detection limit for MRSA and a synergistic therapeutic effect in mouse models, our approach holds significant promise for treating MDRB-driven infections with minimal toxicity, advancing the field of antimicrobial strategies.
Collapse
Affiliation(s)
- Qian Gao
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China
| | - Ruocan Liu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China.
| | - Fuxiang Wang
- School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
3
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
4
|
Liu R, Feng J, Ni Y, Chen K, Wang Y, Zhang T, Zhou M, Zhao C. Dysbiosis and diabetic foot ulcers: A metabolic perspective of Staphylococcus aureus infection. Biomed Pharmacother 2024; 180:117498. [PMID: 39353317 DOI: 10.1016/j.biopha.2024.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is the most prevalent and resistant bacterial infection, posing a worldwide health risk. Compared with healthy people, diabetes patients with weak immune function and abnormal metabolism are more vulnerable to bacterial infection, which aggravates the intensity of infection and causes a series of common and dangerous complications, such as diabetes foot ulcer (DFU). Due to metabolic abnormalities of diabetic patients, S. aureus on the skin surface of DFU transitions from a commensal to an invasive infection. During this process, S. aureus resists a series of unfavorable conditions for bacterial growth by altering energy utilization and metabolic patterns, and secretes various virulence factors, causing persistent infection. With the emergence of multiple super-resistant bacteria, antibiotic treatment is no longer the only treatment option, and developing new drugs and therapies is urgent. Regulating the metabolic signaling pathway of S. aureus plays a decisive role in regulating its virulence factors and impacts adjuvant therapy for DFU. This article focuses on studying the impact of regulating metabolic signals on the virulence of S. aureus from a metabolism perspective. It provides an outlook on the future direction of the novel development of antimicrobial therapy.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Kaixin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
5
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Racca L, Liuzzi E, Comparato S, Giordano G, Pignochino Y. Nanoparticles-Delivered Circular RNA Strategy as a Novel Antitumor Approach. Int J Mol Sci 2024; 25:8934. [PMID: 39201617 PMCID: PMC11354327 DOI: 10.3390/ijms25168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Anticancer therapy urgently needs the development of novel strategies. An innovative molecular target is represented by circular RNAs (circRNAs), single-strand RNA molecules with the 5' and 3' ends joined, characterized by a high stability. Although circRNA properties and biological functions have only been partially elucidated, their relationship and involvement in the onset and progression of cancer have emerged. Specific targeting of circRNAs may be obtained with antisense oligonucleotides and silencing RNAs. Nanotechnology is at the forefront of research for perfecting their delivery. Continuous efforts have been made to develop novel nanoparticles (NPs) and improve their performance, materials, and properties regarding biocompatibility and targeting capabilities. Applications in various fields, from imaging to gene therapy, have been explored. This review sums up the smart strategies developed to directly target circRNAs with the fruitful application of NPs in this context.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisabetta Liuzzi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Simona Comparato
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
- Department of Oncology, University of Turin, 10060 Turin, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
7
|
Mishra S, Gantayat S, Dhara C, Bhatt A, Singh M, Vijayakumar S, Rajput M. Advances in bioinspired nanomaterials managing microbial biofilms and virulence: A critical analysis. Microb Pathog 2024; 193:106738. [PMID: 38857710 DOI: 10.1016/j.micpath.2024.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Microbial virulence and biofilm formation stand as a big concern against the goal of achieving a green and sustainable future. Microbial pathogenesis is the process by which the microbes (bacterial, fungal, and viral) cause illness in their respective host organism. 'Nanotechnology' is a state-of-art discipline to address this problem. The use of conventional techniques against microbial proliferation has been challenging against the environment. To tackle this problem, there has been a revolution in this multi-disciplinary field, to address the aspect of bioinspired nanomaterials in the antibiofilm and antimicrobial sector. Bioinspired nanomaterials prove to be a potential antibiofilm and antimicrobial agent as they are non-hazardous to the environment and mostly synthesized using a single-step reduction protocol. They exhibit synergistic effects against bacterial, fungal, and viral pathogens and thereby, control the virulence. In this literature review, we have elucidated the potential of bioinspired nanoparticles as well as nanomaterials as a promising anti-microbial treatment pedagogy and throw light on the advancements in how smart photo-switchable platforms have been designed to exhibit both bacterial releasing as well as bacterial-killing properties. Certain limitations and possible outcomes of these bio-based nanomaterials have been discussed in the hope of achieving a green and sustainable ecosystem.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India.
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Ayush Bhatt
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Monika Singh
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, China, 264209
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India; Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India.
| |
Collapse
|
8
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
9
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Lei XL, Cheng K, Hu YG, Li Y, Hou XL, Zhang F, Tan LF, Zhong ZT, Wang JH, Fan JX, Zhao YD. Gelatinase-responsive biodegradable targeted microneedle patch for abscess wound treatment of S. aureus infection. Int J Biol Macromol 2023; 253:127548. [PMID: 37865374 DOI: 10.1016/j.ijbiomac.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Abscess wound caused by bacterial infection is usually difficult to heal, thus greatly affect people's quality of life. In this study, a biodegradable drug-loaded microneedle patch (MN) is designed for targeted eradication of S. aureus infection and repair of abscess wound. Firstly, the bacterial responsive composite nanoparticle (Ce6@GNP-Van) with a size of about 182.6 nm is constructed by loading the photosensitizer Ce6 into gelatin nanoparticle (GNP) and coupling vancomycin (Van), which can specifically target S. aureus and effectively shield the phototoxicity of photosensitizer during delivery. When Ce6@GNP-Van is targeted and enriched in the infected regions, the gelatinase secreted by the bacteria can degrade GNP in situ and release Ce6, which can kill the bacteria by generating ROS under laser irradiation. In vivo experiments show that the microneedle is basically degraded in 10 min after inserting into skin, and the abscess wound is completely healed within 13 d after applying Ce6@GNP-Van-loaded MN patch to the abscess wound of the bacterial infected mice with laser irradiation, which can simultaneously achieve the eradication of biofilm and subsequent wound healing cascade activation, showing excellent synergistic antibacterial effect. In conclusion, this work establishes a synergistic treatment strategy to facilitate the repair of chronic abscess wound.
Collapse
Affiliation(s)
- Xiao-Ling Lei
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Lin-Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jian-Hao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
11
|
Ma J, Wu Y, Zou H, Wang H, Zhou M, Wang H. Acid-Responsive Aggregation of Gold Nanoparticles for the Photothermal Treatment of Bacterial Infections. ACS Infect Dis 2023; 9:2538-2547. [PMID: 37963273 DOI: 10.1021/acsinfecdis.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) is considered to be one of the promising methods to combat pathogenic bacteria. However, traditional PTT is prone to generate undesired temperature increase to surrounding normal tissues, which limits the application of PTT. Herein, an acid-responsive PTT system (Au nanoparticles system: AuNPs-S) was constructed based on the photothermal feature of spherical gold nanoparticles (AuNPs) and the low pH of the bacterial infected site. AuNPs-S is composed of two kinds of AuNPs: AuNPs modified with Asp-Asp-Asp-Asp-Asp-Cys (peptide A) were denoted as AuNPs-A; AuNPs modified with 2,3-dimethylmaleic anhydride (DA) grafted Lys-Gly-Gly-Lys-Gly-Gly-Lys-Cys (peptide B) were denoted as AuNPs-B/DA. AuNPs-B/DA with an acid-responsive moiety showed a charge-convertible feature. The negatively charged AuNPs-B/DA became positively charged AuNPs-B at low pH, aggregating with the negatively charged AuNPs-A via an electrostatic interaction, reaching the threshold to the interparticle plasmonic coupling effect among AuNPs, thereby killing bacteria precisely under the irradiation of near-infrared (NIR) light through the elevated temperature at the targeted area. This acid-responsive PTT strategy supplies an excellent mode for combating bacterial infections with no vital damage to normal tissues.
Collapse
Affiliation(s)
- Jiale Ma
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Yiming Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Han Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Hongxun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| | - Huajuan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, P. R. China
| |
Collapse
|
12
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
13
|
Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023; 9:e22105. [PMID: 38034786 PMCID: PMC10685370 DOI: 10.1016/j.heliyon.2023.e22105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Objective With the wide spread of Multidrug-resistant bacteria (MDR) due to the transfer and acquisition of antibiotic resistance genes and the formation of microbial biofilm, various researchers around the world are looking for a solution to overcome these resistances. One potential strategy and the best candidate to overcome these infections is using an effective nanomaterial with antibacterial properties against them. Methods and analysis: In this study, we overview nanomaterials with anti-MDR bacteria and anti-biofilm properties. Hence, we systematically explored biomedical databases (Web of Sciences, Google Scholar, PubMed, and Scopus) to categorize related studies about nanomaterial with anti-MDR bacteria and anti-biofilm activities from 2007 to December 2022. Results In total, forty-one studies were investigated to find antibacterial and anti-biofilm information about the nanomaterial during 2007-2022. According to the collected documents, nineteen types of nanomaterial showed putative antibacterial effects such as Cu, Ag, Au, Au/Pt, TiO2, Al2O3, ZnO, Se, CuO, Cu/Ni, Cu/Zn, Fe3O4, Au/Fe3O4, Au/Ag, Au/Pt, Graphene O, and CuS. In addition, seven types of them considered as anti-biofilm agents such as Ag, ZnO, Au/Ag, Graphene O, Cu, Fe3O4, and Au/Ag. Conclusion According to the studies, each of nanomaterial has been designed with different methods and their effects against standard strains, clinical strains, MDR strains, and bacterial biofilms have been investigated in-vitro and in-vivo conditions. In addition, nanomaterials have different destructive mechanism on bacterial structures. Various nanoparticles (NP) introduced as the best candidate to designing new drug and medical equipment preventing infectious disease outbreaks by overcome antibiotic resistance and bacterial biofilm.
Collapse
Affiliation(s)
- Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Fooladfar
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Zhang A, Wu H, Chen X, Chen Z, Pan Y, Qu W, Hao H, Chen D, Xie S. Targeting and arginine-driven synergizing photodynamic therapy with nutritional immunotherapy nanosystems for combating MRSA biofilms. SCIENCE ADVANCES 2023; 9:eadg9116. [PMID: 37450586 PMCID: PMC10348676 DOI: 10.1126/sciadv.adg9116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
The resistance and immune escape of methicillin-resistant Staphylococcus aureus (MRSA) biofilms cause recalcitrant infections. Here, we design a targeting and synergizing cascade PDT with nutritional immunotherapy nanosystems (Arg-PCN@Gel) containing PCN-224 as PDT platform for providing reactive oxygen species (ROS), incorporating arginine (Arg) as nitric oxide (NO) donor to cascade with ROS to produce more lethal ONOO- and promote immune response, and coating with gelatin as targeting agent and persistent Arg provider. The nanosystems adhered to the autolysin of MRSA and inhibited Arg metabolism by down-regulating icdA and icaA. It suppressed polysaccharide intercellular adhesin and extracellular DNA synthesis to prevent biofilm formation. The NO broke mature biofilms and helped ROS and ONOO- penetrate into biofilms to inactivate internal MRSA. Arg-PCN@Gel drove Arg to enhance immunity via inducible NO synthase/NO axis and arginase/polyamine axis and achieve efficient target treatment in MRSA biofilm infections. The targeting and cascading PDT synergized with nutritional immunotherapy provide an effective promising strategy for biofilm-associated infections.
Collapse
Affiliation(s)
- Aoxue Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Xin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Wei Qu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Haihong Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Geng X, Du X, Wang W, Zhang C, Liu X, Qu Y, Zhao M, Li W, Zhang M, Tu K, Li YQ. Confined Cascade Metabolic Reprogramming Nanoreactor for Targeted Alcohol Detoxification and Alcoholic Liver Injury Management. ACS NANO 2023; 17:7443-7455. [PMID: 37057958 DOI: 10.1021/acsnano.2c12075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alcoholic liver injury (ALI) is the leading cause of serious liver disease, whereas current treatments are mostly supportive and unable to metabolize alcohol directly. Here we report a metabolic reprogramming strategy for targeted alcohol detoxification and ALI management based on a confined cascade nanoreactor. The nanoreactor (named AA@mMOF) is designed by assembling natural enzymes of alcohol oxidase (AOx) and aldehyde dehydrogenase (ALDH) in the cavity of a mesoporous metal organic framework (mMOF) nanozyme with intrinsic catalase (CAT)-like activity. By conducting confined AOx/CAT/ALDH cascade reactions, AA@mMOF enables self-accelerated alcohol degradation (>0.5 mg·mL-1·h-1) with negligible aldehyde diffusion and accumulation, reprogramming alcohol metabolism and allowing high-efficiency detoxification. Administered to high-dose alcohol-intoxicated mice, AA@mMOF shows surprising liver targeting and accumulation performance and dramatically reduces blood alcohol concentration and rapidly reverses unconsciousness and acute liver injury to afford targeted alcoholism treatment. Moreover, AA@mMOF dramatically alleviates fat accumulation and oxidative stress in the liver of chronic alcoholism mice to block and reverse the progression of ALI. By conducting confined AOx/CAT/ALDH cascade reactions for high-efficiency alcohol metabolism reprogramming, AA@mMOF nanoreactor offers a powerful modality for targeted alcohol detoxification and ALI management. The proposed confined cascade metabolic reprogramming strategy provides a paradigm shift for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xudong Geng
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Zhuang J, Yu Y, Lu R. Mesoporous silica nanoparticles as carrier to overcome bacterial drug resistant barriers. Int J Pharm 2023; 631:122529. [PMID: 36563796 DOI: 10.1016/j.ijpharm.2022.122529] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance has become a global threat to health due to abuse of antibiotics. Lots of existing antibiotics have lost their effect on drug resistant bacteria. Moreover, the discovery of novel antibiotics becomes more and more difficult. It is necessary to develop new strategies to fight against antibiotic resistance. Nano-drug delivery systems endow old antibiotics with new vitality to defeat the antibiotic resistant barrier by protecting antibiotics against hydrolysis, increasing uptake and circumventing efflux pump. Among them, mesoporous silica nanoparticles (MSNs) are one of the most extensively investigated as carrier of antibiotics due to large drug loading capability, tunable physicochemical characteristics, and biocompatibility. MSNs can improve the delivery of antibiotics to bacteria greatly by reducing size, modifying surface, and regulating shapes. Furthermore, MSNs hybridized metal ions or metal nanoparticles exert stronger antibacterial effect by controlling the release of metal ions or increasing active oxygen species. In addition, metal capped MSNs are also able to load antibiotics to exert synergistic antibacterial effect. This paper firstly reviewed the current application of various nanomaterials as antibacterial agents, and then focused on the MSNs including the introduction of MSNs and various approaches for improving antibacterial effect of MSNs.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yiming Yu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Rui Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
17
|
Fan W, Han H, Lu Z, Huang Y, Zhang Y, Chen Y, Zhang X, Ji J, Yao K. ε-poly-L-lysine-modified polydopamine nanoparticles for targeted photothermal therapy of drug-resistant bacterial keratitis. Bioeng Transl Med 2023; 8:e10380. [PMID: 36684079 PMCID: PMC9842021 DOI: 10.1002/btm2.10380] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023] Open
Abstract
Bacterial keratitis can lead to intraocular infection and even blindness without prompt and potent treatments. Currently, clinical abuse of antibiotics encouraged the evolution of resistant bacteria. Conventional antibiotic eye drops based keratitis treatment has been heavily restricted due to the lack of bactericidal efficiency and easy induction of bacterial resistance. Hence, developing an effective treatment strategy for bacterial keratitis is of great significance. In this work, we investigated ε-poly-l-lysine (EPL)-modified polydopamine (PDA) nanoparticles (EPL@PDA NPs)-mediated antibacterial photothermal therapy (aPTT), to cope with methicillin-resistant Staphylococcus aureus (MRSA)-induced keratitis. The surface modification of cationic peptide EPL enables EPL@PDA NPs to specifically target negatively charged MRSA and induces local hyperthermia to kill the bacteria under low ambient temperature. Under near-infrared (NIR) irradiation, the sterilization efficiency of EPL@PDA NPs suspension for MRSA in vitro was up to 99.96%. The EPL@PDA-mediated aPTT presented potent antibacterial efficacy in treating MRSA-induced keratitis with little corneal epithelial cytotoxicity and good biocompatibility. In conclusion, the bacterial-targeting aPTT platform in this work provides a prospective method for the management of MRSA-induced refractory bacterial keratitis.
Collapse
Affiliation(s)
- Wenjie Fan
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Zhouyu Lu
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Yin Zhang
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Yaoyao Chen
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Xiaobo Zhang
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| |
Collapse
|
18
|
Aerts R, Bogaerts J, Johannessen C, Herrebout WA. Vibrational Optical Activity Study of Four Antibiotic (Lipo)glycopeptides: Vancomycin, Oritavancin, Dalbavancin, and Teicoplanin. ACS OMEGA 2022; 7:43657-43664. [PMID: 36506196 PMCID: PMC9730478 DOI: 10.1021/acsomega.2c04584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The antibiotic glycopeptide class, of which vancomycin is the original compound, has received due attention over the past few decades in search of antibiotics to overcome resistances developed by bacteria. Crucial for the understanding and further development of glycopeptides that possess desired antibacterial effects is the determination of their conformational behavior, as this sheds light on the mechanism of action of the compound. Among others, vibrational optical activity (VOA) techniques (vibrational circular dichroism and Raman optical activity) can be deployed for this, but the question remains to what extent these spectroscopic techniques can provide information concerning the molecular class under investigation. This contribution takes the last hurdle in the search for the capabilities of the VOA techniques in the conformational analysis of the antibiotic glycopeptide class by extending research that was previously conducted for vancomycin toward its three derivatives: oritavancin, dalbavancin, and teicoplanin. The principal information that can be drawn from VOA spectra is the conformation of the rigid cyclic parts of the glycopeptides and the aromatic rings that are part hereof. The addition or removal of carbohydrates does not induce noticeable VOA spectral responses, preventing the determination of the conformation they adopt.
Collapse
|
19
|
Rapid, direct, visualized and antibody-free bacterial detection with extra species identification and susceptibility evaluation capabilities. Biosens Bioelectron 2022; 221:114902. [DOI: 10.1016/j.bios.2022.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
|
20
|
Liu J, Zheng Z, Luo J, Wang P, Lu G, Pan J. Engineered Reversible Adhesive Biofoams for Accelerated Dermal Wound Healing: Intriguing Multi-covalent Phenylboronic acid/cis-diol Interaction. Colloids Surf B Biointerfaces 2022; 221:112987. [DOI: 10.1016/j.colsurfb.2022.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
21
|
Du X, Zhang M, Zhou H, Wang W, Zhang C, Zhang L, Qu Y, Li W, Liu X, Zhao M, Tu K, Li YQ. Decoy Nanozymes Enable Multitarget Blockade of Proinflammatory Cascades for the Treatment of Multi-Drug-Resistant Bacterial Sepsis. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9767643. [PMID: 36258843 PMCID: PMC9534579 DOI: 10.34133/2022/9767643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Sepsis is a life-threatening organ dysfunction characterized by severe systemic inflammatory response to infection. Effective treatment of bacterial sepsis remains a paramount clinical challenge, due to its astonishingly rapid progression and the prevalence of bacterial drug resistance. Here, we present a decoy nanozyme-enabled intervention strategy for multitarget blockade of proinflammatory cascades to treat multi-drug-resistant (MDR) bacterial sepsis. The decoy nanozymes (named MCeC@MΦ) consist mesoporous silica nanoparticle cores loaded with CeO2 nanocatalyst and Ce6 photosensitizer and biomimetic shells of macrophage membrane. By acting as macrophage decoys, MCeC@MΦ allow targeted photodynamic eradication of MDR bacteria and realize simultaneous endotoxin/proinflammatory cytokine neutralization. Meanwhile, MCeC@MΦ possess intriguing superoxide dismutase and catalase-like activities as well as hydroxyl radical antioxidant capacity and enable catalytic scavenging of multiple reactive oxygen species (ROS). These unique capabilities make MCeC@MΦ to collaboratively address the issues of bacterial infection, endotoxin/proinflammatory cytokine secretion, and ROS burst, fully cutting off the path of proinflammatory cascades to reverse the progression of bacterial sepsis. In vivo experiments demonstrate that MCeC@MΦ considerably attenuate systemic hyperinflammation and rapidly rescue organ damage within 1 day to confer higher survival rates (>75%) to mice with progressive MDR Escherichia coli bacteremia. The proposed decoy nanozyme-enabled multitarget collaborative intervention strategy offers a powerful modality for bacterial sepsis management and opens up possibilities for the treatment of cytokine storm in the COVID-19 pandemic and immune-mediated inflammation diseases.
Collapse
Affiliation(s)
- Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, China
| | - Lei Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
22
|
Xie X, Wei J, Zhang B, Xiong W, He Z, Zhang Y, Gao C, Zhao Y, Liu B. A self-assembled bilayer polypeptide-engineered hydrogel for spatiotemporal modulation of bactericidal and anti-inflammation process in osteomyelitis treatment. J Nanobiotechnology 2022; 20:416. [PMID: 36109760 PMCID: PMC9479290 DOI: 10.1186/s12951-022-01614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug resistance of pathogens and immunosuppression are the main causes of clinical stagnation of osteomyelitis. The ideal treatment strategy for osteomyelitis is to achieve both efficient antibacterial and bone healing through spatiotemporal modulation of immune microenvironment.
Methods
In this study, a bilayer hydrogel based on genetically engineered polypeptide AC10A and AC10ARGD was prepared by self-assembly. Ag2S QDs@DSPE-mPEG2000-Ce6/Aptamer (AD-Ce6/Apt) was loaded in the top layer AC10A hydrogel (AA) for antibacterial, and bone marrow-derived mesenchymal stem cells (BMSCs) were loaded in the lower layer AC10ARGD hydrogel (MAR) for bone healing. The AD-Ce6/Apt can be released from the AA hydrogel to target S. aureus before bacterial biofilm formation and achieved significant bactericidal effect under irradiation with a 660 nm laser. Moreover, AD-Ce6/Apt can induce M1 type polarization of macrophages to activate the immune system and eliminate residual bacteria. Subsequently, BMSCs released from the MAR hydrogel can differentiate into osteoblasts and promote the formation of an anti-inflammatory microenvironment by regulating the M2 type polarization of macrophages. The bilayer AA-MAR hydrogel possessed good biocompatibility.
Results
The in vitro and in vivo results showed that the AA-MAR hydrogel not only realized efficient photodynamic therapy of S. aureus infection, but also promoted the transformation of immune microenvironment to fulfill the different needs of each stage, which ultimately improved bone regeneration and mechanical properties post-surgery.
Conclusion
This work presents an approach for spatiotemporal modulation of immune microenvironment in the treatment of osteomyelitis.
Graphical Abstract
Collapse
|
23
|
Wang Y, Zhang Z, Jian X, Zhao J, Yang L, Gao ZD, Song YY. Engineering hierarchical FeS 2/TiO 2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt for all-day-active degradation of organic pollutants and pathogens. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129501. [PMID: 35803193 DOI: 10.1016/j.jhazmat.2022.129501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The increasing organic and microbiological pollutions in fresh water caused by human activities and industrial development have become a global concern nowadays. In this study, three-dimensional (3D) hierarchical FeS2/TiO2 structures with nanotube geometries were grown on a Ti mesh (M-TNTAs-FeS2). Benefitting from the abundant available reactive sites on the open 3D micro/nanoporous structures, excellent photocatalytic activity of FeS2/TiO2 heterostructure in solar light, and satisfactory Fenton activity of FeS2, the obtained M-TNTAs-FeS2 exhibits outstanding performance as an all-day-active catalyst. Importantly, flexible meshes can be easily tailored and enveloped into fluorinated ethylene propylene (FEP) pockets in a series as a flow-through belt for large-capacitance applications (998 L m-2 at a flow rate of 417 L m-2 h-1 for a four-pockets belt), as indicated by the degradation of azo dyes, antibiotics, pesticides, and pathogens. This study may inspire a new tailorable catalyst design for a promising point-of-use purification device.
Collapse
Affiliation(s)
- Yiming Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhechen Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xiaoxia Jian
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhi-Da Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China.
| |
Collapse
|
24
|
Sun L, Shi S, Wu Z, Huang Y, Ji C, Grimes CA, Feng X, Cai Q. Lanthanide/Cu 2-xSe Nanoparticles for Bacteria-Activated NIR-II Fluorescence Imaging of Infection. ACS Sens 2022; 7:2235-2242. [PMID: 35876580 DOI: 10.1021/acssensors.2c00683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A material system enabling specific NIR-II fluorescence imaging of Gram-positive bacteria is described. The material system is based on the electrostatic binding of Cu2-xSe and vancomycin-modified NaGdF4:Nd,Yb@NaGdF4 downconversion nanoparticles (DCNPs), the fluorescence of which is weak owing to the spectral overlap of Cu2-xSe absorption with the DCNP NIR emission. The presence of Gram-positive bacteria precisely disconnects the bond between vancomycin-modified DCNPs and Cu2-xSe, thus enabling a strong fluorescent signal. In vivo studies show that the material system can be specifically activated at the site of Gram-positive bacterial infection but is essentially nonfluorescent in the area of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Sisi Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zeming Wu
- Inner Mongolia Environmental Monitoring Center, Hohhot 010011, P. R. China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chenhui Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Craig A Grimes
- Flux Photon Corporation, 5950 Shiloh Road East, Alpharetta, Georgia 30005, United States
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
25
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
27
|
Zhang W, Kuang Z, Song P, Li W, Gui L, Tang C, Tao Y, Ge F, Zhu L. Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. NANOMATERIALS 2022; 12:nano12111865. [PMID: 35683721 PMCID: PMC9182539 DOI: 10.3390/nano12111865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/25/2022]
Abstract
Photothermal therapy has been widely used in the treatment of bacterial infections. However, the short photothermal effective radius of conventional nano-photothermal agents makes it difficult to achieve effective photothermal antibacterial activity. Therefore, improving composite targeting can significantly inhibit bacterial growth. We inhibited the growth of Staphylococcus aureus (S. aureus) by using an extremely low concentration of vancomycin (Van) and applied photothermal therapy with molybdenum disulfide (MoS2). This simple method used chitosan (CS) to synthesize fluorescein 5(6)-isothiocyanate (FITC)-labeled and Van-loaded MoS2-nanosheet hydrogels (MoS2-Van-FITC@CS). After modifying the surface, an extremely low concentration of Van could inhibit bacterial growth by trapping bacteria synergistically with the photothermal effects of MoS2, while FITC labeled bacteria and chitosan hydrogels promoted wound healing. The results showed that MoS2-Van-FITC@CS nanosheets had a thickness of approximately 30 nm, indicating the successful synthesis of the nanosheets. The vitro antibacterial results showed that MoS2-Van-FITC with near-infrared irradiation significantly inhibited S. aureus growth, reaching an inhibition rate of 94.5% at nanoparticle concentrations of up to 100 µg/mL. Furthermore, MoS2-Van-FITC@CS could exert a healing effect on wounds in mice. Our results demonstrate that MoS2-Van-FITC@CS is biocompatible and can be used as a wound-healing agent.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu 241002, China;
| | - Chuchu Tang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| |
Collapse
|
28
|
Chen X, Zhou C, Wang J, Wu T, Lei E, Wang Y, Huang G, Yu Y, Cai Q, Pu H, Feng X, Bai Y. Improving the Hemocompatibility of Antimicrobial Peptidomimetics through Amphiphilicity Masking Using a Secondary Amphiphilic Polymer. Adv Healthc Mater 2022; 11:e2200546. [PMID: 35545965 DOI: 10.1002/adhm.202200546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptidomimetics (AMPMs) have received widespread attention as potentially powerful weapons against antibiotic resistance. However, AMPMs' membrane disruption mechanism not only brings resistance-resistant nature, but also nonspecific binding and disruption toward eukaryotic cell membranes, and consequently, their hemolytic activity is the primary concern on clinical applications. Here, the preparation and screening of an AMPM library is reported, through which a best-performing hit, PT-b1, can be obtained. To further improve PT-b1's hemocompatibility, a strategy is devised to mask the amphiphilicity of the AMPM using a charge-free, FDA-approved amphiphilic polymer, Pluronic F-127 (PF127). A PF127 solution containing PT-b1 can form a temperature-sensitive, absorbable hydrogel at higher concentration, but dissolve and complex with PT-b1 through hydrophobic interactions at lower concentration or lower temperature. The complexation from PF127 can mask the amphiphilicity of PT-b1 and render it extremely hemocompatible, yet the reversibility in such nanocomplexation and the existence of a secondary mechanism of action ensure that the AMPM's potency remains unchanged. The in vivo effectiveness of this antimicrobial hydrogel system is demonstrated using a mice wound infection model established with Methicillin-resistant Staphylococcus aureus, and observations indicate the hydrogel can promote wound healing and suppress bacteria-caused inflammation even when resistant pathogens are involved.
Collapse
Affiliation(s)
- Xianhui Chen
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Cailing Zhou
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Jianxue Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Tong Wu
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - E Lei
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yi Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Guopu Huang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yue Yu
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Qingyun Cai
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha 410073 China
| | - Xinxin Feng
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yugang Bai
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| |
Collapse
|
29
|
Ding Q, Wu Z, Tao K, Wei Y, Wang W, Yang BR, Xie X, Wu J. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. MATERIALS HORIZONS 2022; 9:1356-1386. [PMID: 35156986 DOI: 10.1039/d1mh01871j] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Weiyan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
30
|
Deng Y, Shi J, Chan YK, Bai D, Shu R, Shi X, Li Y, Li L, Yang X, Yang W. Heterostructured Metal-Organic Frameworks/Polydopamine Coating Endows Polyetheretherketone Implants with Multimodal Osteogenicity and Photoswitchable Disinfection. Adv Healthc Mater 2022; 11:e2200641. [PMID: 35521819 DOI: 10.1002/adhm.202200641] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Clinically, bacteria-induced contagion and insufficient osseointegrative property inevitably elicit the failure of orthopedic implants. Herein, a heterostructured coating consisting of simvastatin (SIM)-laden metal-organic frameworks and polydopamine nanolayers is created on a porous bioinert polyetheretherketone implant. The heterostructured coating significantly promotes cytocompatibility and osteogenic differentiation through multimodal osteogenicity mechanisms of zinc ion (Zn2+ ) therapy, SIM drug therapy, and surface micro-/nano-topological stimulation. Under the illumination of near-infrared (NIR) light, singlet oxygen (1 O2 ) and local hyperthermia are produced; besides, NIR light dramatically accelerates the release of Zn2+ ions from heterostructured coatings. Gram-positive and -negative bacteria are effectively eradicated by the synergy of photothermal/photodynamic effects and photo-induced accelerated delivery of Zn2+ ions. The superior osteogenicity and osseointegration, as well as photoswitchable disinfection controlled by NIR light are corroborated via in vivo results. This work highlights the great potential of photoresponsive heterostructured orthopedic implants in treatment of the noninvasive bone reconstruction of bacteria-associated infectious tissues through multimodal phototherapy and photoswitchable ion-therapy.
Collapse
Affiliation(s)
- Yi Deng
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Mechanical Engineering The University of Hong Kong Hong Kong 999077 China
| | - Jiacheng Shi
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yau Kei Chan
- Department of Ophthalmology The University of Hong Kong Hong Kong 999077 China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Disease Department of Orthodontics and Pediatrics West China Hospital of Stomatology Sichuan University Chengdu 610064 China
| | - Rui Shu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Disease Department of Orthodontics and Pediatrics West China Hospital of Stomatology Sichuan University Chengdu 610064 China
| | - Xiuyuan Shi
- Department of Materials Imperial College London London SW7 2AZ UK
| | - Yunfei Li
- Department of Biomedical Engineering The City College of City University of New York New York NY 10031 USA
| | - Limei Li
- Science and Technology Achievement Incubation Center Kunming Medical University Kunming 650500 China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu 610064 China
| | - Weizhong Yang
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
31
|
Li L, Sun X, Dong M, Zhang H, Wang J, Bu T, Zhao S, Wang L. NIR-regulated dual-functional silica nanoplatform for infected-wound therapy via synergistic sterilization and anti-oxidation. Colloids Surf B Biointerfaces 2022; 213:112414. [PMID: 35183998 DOI: 10.1016/j.colsurfb.2022.112414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022]
Abstract
Nature-derived bioactive components and photothermal synergistic therapy bring potential strategies for fighting bacterial infection and accelerating would healing by virtue of their excellent therapeutic efficiencies and ignorable side effects, where photothermal property not only acts as sterilization energy but also as a doorkeeper to control the natural component release. Herein, by integrating the excellent antibacterial property of cinnamaldehyde (CA) and the outstanding photothermal performance of copper sulfide nanoparticles (CuS NPs), a multifunctional nanoplatform of SiO2 @CA@CuS nanospheres (NSs) is constructed with silica nanosphere (SiO2 NSs) as carrier. SiO2 @CA@CuS NSs exhibit photothermal property, bacterial absorption capacity, extraordinary antibacterial activity and antioxidant property. Mechanism characteriazation and antibacterial experiment indicate that positive charged SiO2 @CA@CuS can adhere to the negative charged surface of bacteria, and quickly kill bacteria through the synergistic action of the released CA and heat produced under near infrared light (NIR) irradiation at 980 nm. The sterilization efficiencies for Escherichia coli (E. coli) and S. aureus reach 99.86% and 99.84%, respectively. Furthermore, NIR-regulated SiO2 @CA@CuS perform great biocompatibility, as well as effective effects for accelerating S. aureus-infected wound healing at a low photothermal temperature (45 °C) relying on synergistic sterilization and anti-oxidation.
Collapse
Affiliation(s)
- Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
32
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
33
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
34
|
Chen M, Zhou J, Ran P, Lei F, Meng J, Wei J, Li X. Photoactivated Release of Nitric Oxide and Antimicrobial Peptide Derivatives for Synergistic Therapy of Bacterial Skin Abscesses. Adv Healthc Mater 2022; 11:e2200199. [PMID: 35158416 DOI: 10.1002/adhm.202200199] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 12/13/2022]
Abstract
It is of paramount importance to develop novel approaches for combating bacterial resistance and the integration of different antibacterial mechanisms is essential to achieve synergistic bactericidal efficiency while reducing the associated side effects. Herein, amphiphilic antimicrobial copolymers derived from poly-l-lysine (PLL), black phosphorus quantum dots (BPQDs) as near-infrared (NIR) sensitizer, and S-nitrosocysteamine (SNO) as nitric oxide (NO) donor, are assembled into PELI@BPQD-SNO nanoparticles through electrostatic interactions. Amphiphilic copolymers with isopentanyl grafts on PLL at a ratio of 50% achieve an optimal balance between antibacterial activity and hemolysis rate. Photothermal effect of BPQDs leads to NIR-responsive release of NO and the combination with amphiphilic copolymers mutually enhances long-term inhibition of bacterial growth. In an S. aureus-infected subcutaneous abscess model, the bactericidal rate of PELI@BPQD-SNO/NIR treatment reaches nearly 99.6%, which is significantly higher than those without NO release (38%) or amphiphilic copolymers (24%) or NIR irradiation (17%). PELI@BPQD-SNO/NIR treatment shows full recovery of infected wounds, efficient retardation of inflammatory cells, and reconstruction of blood vessels similar to those of healthy skin. Therefore, the electrostatic assembly demonstrates a promising strategy to deliver charged therapeutic agents and the photoactivated release of NO and amphiphilic copolymers achieves synergistic antibacterial efficacy without using any antibiotics.
Collapse
Affiliation(s)
- Maohua Chen
- School of Life Science and Engineering Key Laboratory of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu 610031 P. R. China
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jingjing Zhou
- School of Life Science and Engineering Key Laboratory of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Pan Ran
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Fangmei Lei
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jie Meng
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Junwu Wei
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Xiaohong Li
- School of Life Science and Engineering Key Laboratory of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu 610031 P. R. China
- School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| |
Collapse
|
35
|
Goyal B, Verma N, Kharewal T, Gahlaut A, Hooda V. Structural effects of nanoparticles on their antibacterial activity against multi-drug resistance. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bharti Goyal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
36
|
pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J Nanobiotechnology 2022; 20:12. [PMID: 34983560 PMCID: PMC8725300 DOI: 10.1186/s12951-021-01215-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
The management of diabetic ulcer (DU) to rescue stalled wound healing remains a paramount clinical challenge due to the spatially and temporally coupled pathological wound microenvironment that features hyperglycemia, biofilm infection, hypoxia and excessive oxidative stress. Here we present a pH-switchable nanozyme cascade catalysis (PNCC) strategy for spatial–temporal modulation of pathological wound microenvironment to rescue stalled healing in DU. The PNCC is demonstrated by employing the nanozyme of clinically approved iron oxide nanoparticles coated with a shell of glucose oxidase (Fe3O4-GOx). The Fe3O4-GOx possesses intrinsic glucose oxidase (GOx), catalase (CAT) and peroxidase (POD)-like activities, and can catalyze pH-switchable glucose-initiated GOx/POD and GOx/CAT cascade reaction in acidic and neutral environment, respectively. Specifically, the GOx/POD cascade reaction generating consecutive fluxes of toxic hydroxyl radical spatially targets the acidic biofilm (pH ~ 5.5), and eradicates biofilm to shorten the inflammatory phase and initiate normal wound healing processes. Furthermore, the GOx/CAT cascade reaction producing consecutive fluxes of oxygen spatially targets the neutral wound tissue, and accelerates the proliferation and remodeling phases of wound healing by addressing the issues of hyperglycemia, hypoxia, and excessive oxidative stress. The shortened inflammatory phase temporally coupled with accelerated proliferation and remodeling phases significantly speed up the normal orchestrated wound-healing cascades. Remarkably, this Fe3O4-GOx-instructed spatial–temporal remodeling of DU microenvironment enables complete re-epithelialization of biofilm-infected wound in diabetic mice within 15 days while minimizing toxicity to normal tissues, exerting great transformation potential in clinical DU management. The proposed PNCC concept offers a new perspective for complex pathological microenvironment remodeling, and may provide a powerful modality for the treatment of microenvironment-associated diseases. ![]()
Collapse
|
37
|
Liu W, Gu H, Ran B, Liu W, Sun W, Wang D, Du J, Fan J, Peng X. Accelerated antibacterial red-carbon dots with photodynamic therapy against multidrug-resistant Acinetobacter baumannii. SCIENCE CHINA MATERIALS 2022; 65:845-854. [PMID: 34603825 PMCID: PMC8477720 DOI: 10.1007/s40843-021-1770-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/11/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED The emergence of antibiotic resistance in bacteria is a major public-health issue. Synthesis of efficient antibiotic-free material is very important for fighting bacterial infection-related diseases. Herein, red-carbon dots (R-CDs) with a broad range of spectral absorption (350-700 nm) from organic bactericides or intermediates were synthesized through a solvothermal route. The prepared R-CDs not only had intrinsic antibacterial activities, but also could kill multidrug-resistant bacteria (multidrug-resistant Acinetobacter baumannii (MRAB) and multidrug-resistant Staphylococcus aureus (MRSA)) effectively by generating reactive oxygen species. Furthermore, R-CDs could eliminate and inhibit the formation of MRAB biofilms, while conferring few side effects on normal cells. A unique property of R-CDs was demonstrated upon in vivo treatment of antibiotic-sensitive MRAB-induced infected wounds. These data suggested that this novel R-CDs-based strategy might enable the design of next-generation agents to fight drug-resistant bacteria. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available for this article at 10.1007/s40843-021-1770-0 and is accessible for authorized users.
Collapse
Affiliation(s)
- Weijian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
| | - Hua Gu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
| | - Bei Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016 China
| | - Dongping Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
38
|
Ni Z, Hu J, Zhu H, Shang Y, Chen D, Chen Y, Liu H. In situ formation of a near-infrared controlled dual-antibacterial platform. NEW J CHEM 2022. [DOI: 10.1039/d1nj05028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An in situ formed antibacterial platform was designed for near-infrared controlled pharmacotherapy and photothermal therapy of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daijie Chen
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | | | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK, Chaudhury K, Dhara S. Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. BIOSENSING, THERANOSTICS, AND MEDICAL DEVICES 2022:345-376. [DOI: 10.1007/978-981-16-2782-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
40
|
Yang J, Zhu YX, Lu P, Zhu B, Wu FG. One-step synthesis of quaternized silica nanoparticles with bacterial adhesion and aggregation properties for effective antibacterial and antibiofilm treatments. J Mater Chem B 2022; 10:3073-3082. [DOI: 10.1039/d1tb02830h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preservation of intact cell morphology of bacteria is recognized as one important cause of bacterial drug resistance, and hence developing new antibacterial agents capable of fighting against bacteria via disrupting...
Collapse
|
41
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact Mater 2021; 11:181-191. [PMID: 34938922 PMCID: PMC8665260 DOI: 10.1016/j.bioactmat.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
To endow Ti-based orthopedic implants with strong bactericidal activity, a ZnO nanorods-patterned coating (namely ZNR) was fabricated on Ti utilizing a catalyst- and template-free method of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of ZnO nanorods and a partially crystallized inner layer with nanocrystalline TiO2 and Zn2TiO4 embedded amorphous matrix containing Ti, O and Zn. During HT, Zn2+ ions contained in amorphous matrix of the as-MAOed layer migrate to surface and react with OH− in hydrothermal solution to form ZnO nuclei growing in length at expense of the migrated Zn2+. ZNR exhibits intense bactericidal activity against the adhered and planktonic S. aureus in vitro and in vivo. The crucial contributors to kill the adhered bacteria are ZnO nanorods derived mechano-penetration and released reactive oxygen species (ROS). Within 30 min of S. aureus incubation, ROS is the predominant bactericidal contributor with quantitative contribution value of ∼20%, which transforms into mechano-penetration with prolonging time to reach quantitative contribution value of ∼96% at 24 h. In addition, the bactericidal contributor against the planktonic bacteria of ZNR is relied on the released Zn2+. This work discloses an in-depth bactericidal mechanism of ZnO nanorods. A templates and catalysts-free method is used to fabricate ZnO nanorods on Ti ZnO nanorods-arrayed coating shows intense broad-spectrum bactericidal activity Main bactericidal contributor of ZnO nanorods to adhered bacteria is mechano-puncture Main bactericidal contributor of ZnO nanorods to planktonic bacteria is released Zn2+
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
42
|
Chen X, Han H, Tang Z, Jin Q, Ji J. Aggregation-Induced Emission-Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Adv Healthc Mater 2021; 10:e2100736. [PMID: 34190431 DOI: 10.1002/adhm.202100736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The prevention and control of pathogenic bacteria, fungi, and viruses is a herculean task for all the countries since they greatly threaten global public health. Rapid detection and effective elimination of these pathogens is crucial for the treatment of related diseases. It is urgently demanded to develop new diagnostic and therapeutic strategies to combat bacteria, fungi, and viruses-induced infections. The emergence of aggregation-induced emission (AIE) luminogens (AIEgens) is a revolutionary breakthrough for the treatment of many diseases, including pathogenic infections. In this review, the main focus is on the applications of AIEgens for theranostic treatment of pathogenic bacteria, fungi, and viruses. Due to the AIE characteristic, AIEgens are promising fluorescent probes for the detection of bacteria, fungi, and viruses with excellent sensitivity and photostability. Moreover, AIEgen-based theranostic platforms can be fabricated by introducing bactericidal moieties or designing AIE photosensitizers and AIE photothermal agents. The current strategies and ongoing developments of AIEgens for the treatment of pathogenic bacteria, fungi, and viruses will be discussed in detail.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Haijie Han
- Eye Center the Second Affiliated Hospital School of Medicine Zhejiang University 88 Jiefang Road Hangzhou 310009 P. R. China
| | - Zhe Tang
- Department of Surgery The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| |
Collapse
|
43
|
Lin X, Fang Y, Hao Z, Wu H, Zhao M, Wang S, Liu Y. Bacteria-Triggered Multifunctional Hydrogel for Localized Chemodynamic and Low-Temperature Photothermal Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103303. [PMID: 34643054 DOI: 10.1002/smll.202103303] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is a promising strategy for treatment of bacterial infections. Considering that high temperature does harm to the normal tissues and cells, herein, a bacteria-triggered multifunctional hydrogel is constructed for low-temperature photothermal sterilization with high efficiency by integrating localized chemodynamic therapy (L-CDT). The hydrogel is constructed by incorporating copper sulfide nanoparticles (CuSNPs ) with photothermal profile into the network of hyaluronic acid (HA) and Fe3+ -EDTA complexes, named as CHFH (CuSNPs -HA-Fe3+ -EDTA hydrogel). Bacteria can be accumulated on the surface of CHFH, which secretes hyaluronidase to decompose the HA and release Fe3+ . The Fe3+ is reduced into Fe2+ in microenvironment of bacteria to trigger Fenton reaction. The generated hydroxyl radicals result in sterilization based on L-CDT within short range. By integrating with photothermal property of CuSNPs , low-temperature photothermal therapy (LT-PTT) for sterilization is realized, which improves the antibacterial efficiency while minimizes damage to normal tissues. The CHFH is further used to prepare Band aid which effectively promotes the Staphylococcus aureus-infected wound healing process in vivo, confirming the great potential for clinical application.
Collapse
Affiliation(s)
- Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
44
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
45
|
Feng L, Shi W, Chen Q, Cheng H, Bao J, Jiang C, Zhao W, Zhao C. Smart Asymmetric Hydrogel with Integrated Multi-Functions of NIR-Triggered Tunable Adhesion, Self-Deformation, and Bacterial Eradication. Adv Healthc Mater 2021; 10:e2100784. [PMID: 34050632 DOI: 10.1002/adhm.202100784] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Multifunctional hydrogels acting as wound dressing have received extensive attention in soft tissue repair; however, it is still a challenge to develop a non-antibiotic-dependent antibacterial hydrogel that has tunable adhesion and deformation to achieve on-demand removal. Herein, an asymmetric adhesive hydrogel with near-infrared (NIR)-triggered tunable adhesion, self-deformation, and bacterial eradication is designed. The hydrogel is prepared by the crosslinking polymerization of N-isopropylacrylamide and acrylic acid, during the sedimentation of conductive PPy-PDA nanoparticles based on the polymerization of pyrrole (Py) and dopamine (DA). Due to the conversion capacity from NIR light into heat for PPy-PDA NPs, the formed temperature-sensitive hydrogel exhibits tissue adhesive as well as NIR-triggered tunable adhesion and self-deformation property, which can achieve an on-demand dressing refreshing. Systematically in vitro/in vivo antibacterial experiments indicate that the hydrogel shows excellent disinfection capability to both Gram-negative and Gram-positive bacteria. The in vivo experiments in a full-layer cutaneous wound model demonstrate that the hydrogel has a good treatment effect to promote wound healing. Overall, the asymmetric hydrogel with tunable adhesion, self-deformation, conductive, and photothermal antibacterial activity may be a promising candidate to fulfill the functions of adhesion on skin tissue, easy removing on-demand, and accelerating the wound healing process.
Collapse
Affiliation(s)
- Lan Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Wenbin Shi
- College of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Qin Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Huitong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Jianxu Bao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Chunji Jiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center for Materials Sichuan University Chengdu 610065 China
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610064 China
| |
Collapse
|
46
|
Wu C, Du X, Jia B, Zhang C, Li W, Liu TC, Li YQ. A transformable gold nanocluster aggregate-based synergistic strategy for potentiated radiation/gene cancer therapy. J Mater Chem B 2021; 9:2314-2322. [PMID: 33616590 DOI: 10.1039/d0tb02986f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nano-radiosensitizers provide a powerful tool for cancer radiation therapy. However, their limited tumor retention/penetration and the inherent or adaptive radiation resistance of tumor cells hamper the clinical success of radiation therapy. Herein, we report a synergistic strategy for potentiated cancer radiation/gene therapy based on transformable gold nanocluster aggregates loaded with antisense oligonucleotide-targeting survivin mRNA (named AuNC-ASON). AuNC-ASON exhibited acidic pH-triggered structure splitting from a gold nanocluster aggregate (around 80 nm) to gold nanocluster (<2 nm), leading to the tumor microenvironment-responsive size transformation of the nano-radiosensitizer and activated release of the loaded antisense oligonucleotides to perform gene silencing. The in vitro experiments demonstrated that AuNC-ASON could amplify and improve the radio-sensitivity of tumor cells (the sensitization enhancement ratio was about 1.81) as a result of the synergistic effect of the transformable gold nanocluster radiosensitizer and survivin gene interference. Remarkably, the size transformation capability realized the high tumor retention/penetration and renal metabolism of AuNC-ASON in vivo and boosted the radio-susceptibility of cancer cells with the assistance of survivin gene interference, synergistically achieving potentiated tumor radiation/gene therapy. The proposed concept of transformable nano-radiosensitizer aggregate-based synergistic therapy can be utilized as a general strategy to guide the design of activatable multifunctional nanosystems for cancer theranostics.
Collapse
Affiliation(s)
- Chun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Bingqing Jia
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China. and Suzhou Research Institute, Shandong University, Suzhou 215123, China
| |
Collapse
|
47
|
Highly bioactive and low cytotoxic Si-based NiOOH nanoflowers targeted against various bacteria, including MRSA, and their potential antibacterial mechanism. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Wei Z, Zhang Y, Wang L, Wang Z, Chen S, Bao J, Xie Y, Su B, Zhao C. Photoenhanced Dual-Functional Nanomedicine for Promoting Wound Healing: Shifting Focus from Bacteria Eradication to Host Microenvironment Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32316-32331. [PMID: 34210131 DOI: 10.1021/acsami.1c08875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic bacterial infection has become a serious medical threat to global public health. Once the skin has serious defects, bacterial invasion and the following chain reactions will be a thorny clinical conundrum, which takes a long time to heal. Although various strategies have been used to eradicate bacteria, the treatment which can simultaneously disinfect and regulate the infection-related host responses is rarely reported. Herein, inspired by the host microenvironment, a photoenhanced dual-functional nanomedicine is constructed (Hemin@Phmg-TA-MSN) for localized bacterial ablation and host microenvironment modulation. The "NIR-triggered local microthermal therapy" and positively charged surface endow the nanomedicine with excellent bacterial capture and killing activities. Meanwhile, the nanomedicine exhibits broad-spectrum reactive oxygen species (ROS) scavenging activity via the synergistic effect of hemin and tannic acid with photoenhanced electron and hydrogen transfers. Furthermore, the in vivo experiments demonstrate that the dual-functional nanomedicine not only presents robust bacterial eradication capability, but also triggers the oxidative stress and inflammatory microenvironment regulation. The work not only shows a facile and effective way for infected wound management but also provides a new horizon for designing novel and efficient anti-infection therapy shifting focus from bacteria treatment to host microenvironment modulation.
Collapse
Affiliation(s)
- Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Liya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
49
|
Chen K, Yuan S, Wang D, Qi D, Chen F, Qiu X. Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties. Food Funct 2021; 12:7469-7479. [PMID: 34196335 DOI: 10.1039/d1fo00128k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections and multidrug resistance can seriously endanger the health and lives of humans, therefore the development of novel and efficient antibacterial strategies and drugs is urgently needed. Herein, a series of highly biocompatible lysine modified enzymatic hydrolysis lignins (EHL-Lys-x) were synthesized using the Mannich reaction. The sterilizing efficiency of EHL-Lys-2.0 against S. aureus and E. coli at 20 mg mL-1 is 93% and 50%, respectively, which is 26% higher than pure EHL. Quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) analysis showed that the adsorption and adhesive force between EHL-Lys-x and bacteria increase with the increased amount of grafting of Lys on EHL owing to the increase of the electrostatic interaction between the EHL-Lys-x and bacteria, which results in an improvement in the antimicrobial activity of EHL-Lys-x. Subsequently, EHL-Lys-x combined with alkyl polyglucoside (APG) was used to stabilize the high internal phase emulsion containing curcumin (HIPEs-cur). The dispersed phase fraction of HIPE-cur is 87 vol%, which is the highest internal phase reported to date in the medical research area. The highest residual levels of curcumin in HIPEs are 60-fold, 3-fold and 5-fold compared to that in bulk oil after treatment with UV radiation, thermal emittance and after storage, respectively. The minimum inhibitory concentrations of HIPEs-cur against S. aureus and E. coli were found to be 1.56 and 6.25 mg mL-1, respectively, which are far higher than that of pure EHL-Lys-x. This strategy not only increases the chemical stability and bioavailability of curcumin, but also provides a novel method for the application of lignin in biomedical science.
Collapse
Affiliation(s)
- Kai Chen
- College or Textile Science and Engineering (International institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | | | |
Collapse
|
50
|
Zhang T, Zhu D, Wang W, Qian H, Chu Z, Chen B, Ruan J, Shao M, Zha Z. Facile Synthesis of Thermo-Sensitive Composite Hydrogel with Well Dispersed Ag Nanoparticles for Application in Superior Antibacterial Infections. J Biomed Nanotechnol 2021; 17:1148-1159. [PMID: 34167628 DOI: 10.1166/jbn.2021.3099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we have described a facile process for fabrication of multifunctional composite hydrogel, in which sodium alginate was subjected to cross-linking using Ca2+ derived from ZnO/CaCO₃/Ag composite nanospheres. The ZnO/CaCO₃/Ag composite nanospheres were prepared based on our previously reported AA-[Zn(OH)₄]2- composite nanosphere reaction conducted with silver and calcium salt following hydrothermal method, that led to the disintegration and release of Ca2+ under acidic conditions for application as a cross-linking agentto catalyze reaction with sodium alginate. Ag nanoparticles were well-dispersed in the multifunctional composite hydrogel, exhibiting excellent antibacterial activity. Additionally, polydopamine (PDA) with photothermal effect was also added to obtain a multifunctional composite hydrogel, and this hydrogel showed photothermal conversion performance and facilitated the release of Ag+ to achieve the rapid antibacterial effect. Simultaneously, PDA NPs could scavenge free radicals and improve cell adhesion. All such features would promote wound healing. The potent antimicrobial activity of the prepared composite hydrogel was demonstrated in the mouse model of S. aureus infection, and biosafety of the hydrogel was confirmed by conducting histopathological examination in the mouse model. This type of multifunctional hydrogel wound dressing with photosensitive and antibacterial properties presents with broad applications and prospects in antibacterial treatment.
Collapse
Affiliation(s)
- Tianyu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dongdong Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wanni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Zhaoyou Chu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Benjing Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Juan Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|