1
|
Oriel EH, Dirin DN, Shcherbak K, Bodnarchuk MI, Kovalenko MV, Chen LX, Schaller RD. Intraband Cooling and Auger Recombination in Weakly to Strongly Quantum-Confined CsPbBr 3 Perovskite Nanocrystals. J Phys Chem Lett 2024; 15:6062-6068. [PMID: 38820135 DOI: 10.1021/acs.jpclett.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Semiconductor nanocrystals (NCs) with size-tuned energy gaps present unique and desirable properties for optoelectronic applications. Recent synthetic advancements offer routes to spheroidal CsPbBr3 perovskite NCs in the strong quantum confinement regime with narrow size dispersion. Using tunable femtosecond laser pulses, we examine intraband carrier relaxation using transient absorption spectroscopy and show that, across the transition from weak to strong confinement, hot carrier lifetime increases compared to larger bulk-like particles. However, further increases of confinement subsequently lead to a reduction of the hot carrier lifetime and increase of the non-radiative Auger recombination rate. Finally, we show that hot carrier lifetimes increase as a function of excess energy above the band gap less sensitively under high confinement in comparison to the bulk. Understanding such unique trends is important for maximizing hot carrier lifetimes for use in next-generation hot carrier devices as well as evaluating the transition from weak to strong confinement.
Collapse
Affiliation(s)
- Evan H Oriel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry N Dirin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-8600 Dübendorf, Switzerland
| | - Kseniia Shcherbak
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-8600 Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-8600 Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-8600 Dübendorf, Switzerland
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Science and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Yue L, Li J, Qi Y, Chen J, Wang X, Cao J. Auger Recombination and Carrier-Lattice Thermalization in Semiconductor Quantum Dots under Intense Excitation. NANO LETTERS 2023; 23:2578-2585. [PMID: 36972411 DOI: 10.1021/acs.nanolett.2c04804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A thorough understanding of the photocarrier relaxation dynamics in semiconductor quantum dots (QDs) is essential to optimize their device performance. However, resolving hot carrier kinetics under high excitation conditions with multiple excitons per dot is challenging because it convolutes several ultrafast processes, including Auger recombination, carrier-phonon scattering, and phonon thermalization. Here, we report a systematic study of the lattice dynamics induced by intense photoexcitation in PbSe QDs. By probing the dynamics from the lattice perspective using ultrafast electron diffraction together with modeling the correlated processes collectively, we can differentiate their roles in photocarrier relaxation. The results reveal that the observed lattice heating time scale is longer than that of carrier intraband relaxation obtained previously using transient optical spectroscopy. Moreover, we find that Auger recombination efficiently annihilates excitons and speeds up lattice heating. This work can be readily extended to other semiconductor QDs systems with varying dot sizes.
Collapse
Affiliation(s)
- Luye Yue
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjun Li
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingpeng Qi
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jianming Cao
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
3
|
Ruppert M, Bui H, Sagar LK, Geiregat P, Hens Z, Bester G, Huse N. Intraband dynamics of mid-infrared HgTe quantum dots. NANOSCALE 2022; 14:4123-4130. [PMID: 34874046 DOI: 10.1039/d1nr07007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond pump-probe spectroscopy reveals ultrafast carrier dynamics in mid-infrared (MIR) colloidal HgTe nanoparticles with a bandgap of 2.5 μm. We observe intraband relaxation processes after photoexcitation ranging from resonant excitation up to the multi-exciton generation (MEG) regime by identifying initially excited states from atomic effective pseudopotential calculations. Our study elucidates the earliest dynamics below 10 ps in this technologically relevant material. With increasing photon energy, we find carrier relaxation times as long as 2.1 ps in the MEG regime close to the ionization threshold of the particles. For all photon energies, we extract a constant mean carrier energy dissipation rate of 0.36 eV ps-1 from which we infer negligible impact of the density of states on carrier cooling.
Collapse
Affiliation(s)
- Matthias Ruppert
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Hanh Bui
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Laxmi Kishore Sagar
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Gabriel Bester
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Nils Huse
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Mishra K, Acharjee D, Das A, Ghosh S. Subpicosecond Hot Hole Transfer in a Graphene Quantum Dot Composite with High Efficiency. J Phys Chem Lett 2022; 13:606-613. [PMID: 35019662 DOI: 10.1021/acs.jpclett.1c03530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extraction of hot carriers is of prime importance because of its potential to overcome the energy loss that limits the efficiency of an optoelectronic device. Employing a femtosecond upconversion setup, herein we report a few picoseconds carrier cooling time of colloidal graphene quantum dots (GQDs) is at least an order of magnitude slower compared to that in its bulk form. A slower carrier cooling time of GQDs compared to that of the other semiconductor quantum dots and their bulk materials is indeed a coveted property of GQDs that would allow one easy harvesting of high energy species employing a suitable molecular system as shown in this study. A subpicosecond hot hole transfer time scale has been achieved in a GQD-molecular system composite with high transfer efficiency. Our finding suggests a dramatic enhancement of the efficiency of GQD based optoelectronic devices can possibly be a reality.
Collapse
Affiliation(s)
- Krishna Mishra
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
5
|
Kennehan ER, Munson KT, Grieco C, Doucette GS, Marshall AR, Beard MC, Asbury JB. Influence of Ligand Structure on Excited State Surface Chemistry of Lead Sulfide Quantum Dots. J Am Chem Soc 2021; 143:13824-13834. [PMID: 34420309 DOI: 10.1021/jacs.1c06248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ligand-nanocrystal boundaries of colloidal quantum dots (QDs) mediate the primary energy and electron transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We use mid-infrared transient absorption spectroscopy to reveal the influence that ligand structure and bonding to nanocrystal surfaces have on the changes of the excited state surface chemistry of this boundary in PbS QDs and the corresponding impact on charge transfer processes between nanocrystals. We demonstrate that oleate ligands undergo marked changes in their bonding to surfaces in the excitonic excited states of the nanocrystals, indicating that oleate passivated PbS surfaces undergo significant structural changes following photoexcitation. These changes can impact the surface mobility of the ligands and the ability of redox shuttles to approach the nanocrystal surfaces to undergo charge transfer in photocatalytic reactions. In contrast, markedly different transient vibrational features are observed in iodide/mercaptoproprionic acid passivated PbS QD films that result from charge transfer between neighboring nanocrystals and localization of holes at the nanocrystal surfaces near MPA ligands. This ability to distinguish the influence that excitonic excited states vs charge transfer processes have on the surface chemistry of the ligand-nanocrystal boundary lays the groundwork for exploration of how this boundary can be understood and controlled for the design of nanocrystalline materials tailored for specific applications in solar energy harvesting and photocatalytic reactions.
Collapse
Affiliation(s)
- Eric R Kennehan
- Magnitude Instruments, State College, Pennsylvania 16803, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyle T Munson
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher Grieco
- Magnitude Instruments, State College, Pennsylvania 16803, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Grayson S Doucette
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashley R Marshall
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Matthew C Beard
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States.,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Maiti S, Poonia D, Schiettecatte P, Hens Z, Geiregat P, Kinge S, Siebbeles LD. Generating Triplets in Organic Semiconductor Tetracene upon Photoexcitation of Transition Metal Dichalcogenide ReS 2. J Phys Chem Lett 2021; 12:5256-5260. [PMID: 34048249 PMCID: PMC8201445 DOI: 10.1021/acs.jpclett.1c01411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We studied the dynamics of transfer of photoexcited electronic states in a bilayer of the two-dimensional transition metal dichalcogenide ReS2 and tetracene, with the aim to produce triplets in the latter. This material combination was used as the band gap of ReS2 (1.5 eV) is slightly larger than the triplet energy of tetracene (1.25 eV). Using time-resolved optical absorption spectroscopy, transfer of photoexcited states from ReS2 to triplet states in tetracene was found to occur within 5 ps with an efficiency near 38%. This result opens up new possibilities for heterostructure design of two-dimensional materials with suitable organics to produce long-lived triplets. Triplets are of interest as sensitizers in a wide variety of applications including optoelectronics, photovoltaics, photocatalysis, and photon upconversion.
Collapse
Affiliation(s)
- Sourav Maiti
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Deepika Poonia
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Pieter Schiettecatte
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Pieter Geiregat
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Sachin Kinge
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Toyota
Motor Europe, Materials Research & Development, Hoge Wei 33, B-1913 Zaventem, Belgium
| | - Laurens D.A. Siebbeles
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
7
|
Affiliation(s)
- Christopher Melnychuk
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | | |
Collapse
|
8
|
Nikiforov VG. The role of traps with arbitrary distribution in photoinduced charge carrier dynamics in semiconductor quantum dots. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Maiti S, Ferro S, Poonia D, Ehrler B, Kinge S, Siebbeles LDA. Efficient Carrier Multiplication in Low Band Gap Mixed Sn/Pb Halide Perovskites. J Phys Chem Lett 2020; 11:6146-6149. [PMID: 32672041 PMCID: PMC7416307 DOI: 10.1021/acs.jpclett.0c01788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 05/31/2023]
Abstract
Carrier multiplication (CM) generates multiple electron-hole pairs in a semiconductor from a single absorbed photon with energy exceeding twice the band gap. Thus, CM provides a promising way to circumvent the Shockley-Queisser limit of solar cells. The ideal material for CM should have significant overlap with the solar spectrum and should be able to fully utilize the excess energy above the band gap for additional charge carrier generation. We report efficient CM in mixed Sn/Pb halide perovskites (band gap of 1.28 eV) with onset just above twice the band gap. The CM rate outcompetes the carrier cooling process leading to efficient CM with a quantum yield of 2 for photoexcitation at 2.8 times the band gap. Such efficient CM characteristics add to the many advantageous properties of mixed Sn/Pb metal halide perovskites for photovoltaic applications.
Collapse
Affiliation(s)
- Sourav Maiti
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Silvia Ferro
- Center
for Nanophotonics, AMOLF, Science Park 104, Amsterdam, The Netherlands
| | - Deepika Poonia
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Bruno Ehrler
- Center
for Nanophotonics, AMOLF, Science Park 104, Amsterdam, The Netherlands
| | - Sachin Kinge
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Materials
Research & Development, Toyota Motor
Europe, Hoge Wei 33, B-1913 Zaventem, Belgium
| | - Laurens D. A. Siebbeles
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
10
|
Mrad R, Poggi M, Ben Chaâbane R, Negrerie M. Role of surface defects in colloidal cadmium selenide (CdSe) nanocrystals in the specificity of fluorescence quenching by metal cations. J Colloid Interface Sci 2020; 571:368-377. [DOI: 10.1016/j.jcis.2020.03.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
|
11
|
Kennehan ER, Munson KT, Doucette GS, Marshall AR, Beard MC, Asbury JB. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. J Phys Chem Lett 2020; 11:2291-2297. [PMID: 32131595 DOI: 10.1021/acs.jpclett.0c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ligand shell around colloidal quantum dots mediates the electron and energy transfer processes that underpin their use in optoelectronic and photocatalytic applications. Here, we show that the surface chemistry of carboxylate anchoring groups of oleate ligands passivating PbS quantum dots undergoes significant changes when the quantum dots are excited to their excitonic states. We directly probe the changes of surface chemistry using time-resolved mid-infrared spectroscopy that records the evolution of the vibrational frequencies of carboxylate groups following excitation of the electronic states. The data reveal a reduction of the Pb-O coordination of carboxylate anchoring groups to lead atoms at the quantum dot surfaces. The dynamic surface chemistry of the ligands may increase their surface mobility in the excited state and enhance the ability of molecular species to penetrate the ligand shell to undergo energy and charge transfer processes that depend sensitively on distance.
Collapse
Affiliation(s)
- Eric R Kennehan
- Magnitude Instruments, State College, Pennsylvania 16803, United States
| | - Kyle T Munson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Grayson S Doucette
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashley R Marshall
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Matthew C Beard
- Chemical and Materials Science, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - John B Asbury
- Magnitude Instruments, State College, Pennsylvania 16803, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem Soc Rev 2020; 49:49-84. [PMID: 31825404 DOI: 10.1039/c9cs00560a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The certified power conversion efficiency (PCE) record of colloidal quantum dot solar cells (QDSCs) has considerably improved from below 4% to 16.6% in the last few years. However, the record PCE value of QDSCs is still substantially lower than the theoretical efficiency. So far, there have been several reviews on recent and significant achievements in QDSCs, but reviews on photoexcited carrier dynamics in QDSCs are scarce. The photovoltaic performances of QDSCs are still limited by the photovoltage, photocurrent and fill factor that are mainly determined by the photoexcited carrier dynamics, including carrier (or exciton) generation, carrier extraction or transfer, and the carrier recombination process, in the devices. In this review, the photoexcited carrier dynamics in the whole QDSCs, originating from individual quantum dots (QDs) to the entire device as well as the characterization methods used for analyzing the photoexcited carrier dynamics are summarized and discussed. The recent research including photoexcited multiple exciton generation (MEG), hot electron extraction, and carrier transfer between adjacent QDs, as well as carrier injection and recombination at each interface of QDSCs are discussed in detail herein. The influence of photoexcited carrier dynamics on the physiochemical properties of QDs and photovoltaic performances of QDSC devices is also discussed.
Collapse
Affiliation(s)
- Yaohong Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Alimoradi Jazi M, Kulkarni A, Sinai SB, Peters JL, Geschiere E, Failla M, Delerue C, Houtepen AJ, Siebbeles LDA, Vanmaekelbergh D. Room-Temperature Electron Transport in Self-Assembled Sheets of PbSe Nanocrystals with a Honeycomb Nanogeometry. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:14058-14066. [PMID: 31205579 PMCID: PMC6559210 DOI: 10.1021/acs.jpcc.9b03549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 06/09/2023]
Abstract
It has been shown recently that atomically coherent superstructures of a nanocrystal monolayer in thickness can be prepared by self-assembly of monodisperse PbSe nanocrystals, followed by oriented attachment. Superstructures with a honeycomb nanogeometry are of special interest, as theory has shown that they are regular 2-D semiconductors, but with the highest valence and lowest conduction bands being Dirac-type, that is, with a linear energy-momentum relation around the K-points in the zone. Experimental validation will require cryogenic measurements on single sheets of these nanocrystal monolayer superstructures. Here, we show that we can incorporate these fragile superstructures into a transistor device with electrolyte gating, control the electron density, and measure the electron transport characteristics at room temperature. The electron mobility is 1.5 ± 0.5 cm2 V-1 s-1, similar to the mobility observed with terahertz spectroscopy on freestanding superstructures. The terahertz spectroscopic data point to pronounced carrier scattering on crystallographic imperfections in the superstructure, explaining the limited mobility.
Collapse
Affiliation(s)
- Maryam Alimoradi Jazi
- Debye Institute
for Nanomaterials Science, University of
Utrecht, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Aditya Kulkarni
- Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sophia Buhbut Sinai
- Debye Institute
for Nanomaterials Science, University of
Utrecht, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Joep L. Peters
- Debye Institute
for Nanomaterials Science, University of
Utrecht, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Eva Geschiere
- Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Michele Failla
- Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | | | - Arjan J. Houtepen
- Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Laurens D. A. Siebbeles
- Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Daniel Vanmaekelbergh
- Debye Institute
for Nanomaterials Science, University of
Utrecht, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
14
|
Ghosh T, Dehnel J, Fabian M, Lifshitz E, Baer R, Ruhman S. Spin Blockades to Relaxation of Hot Multiexcitons in Nanocrystals. J Phys Chem Lett 2019; 10:2341-2348. [PMID: 31002253 DOI: 10.1021/acs.jpclett.9b00992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conjecture that, as in bulk semiconductors, hot multiexcitons in nanocrystals cool rapidly to the lowest available energy levels is tested here by recording the effects of a single cold "spectator" exciton on the relaxation dynamics of a subsequently deposited hot counterpart. Results in CdSe/CdS nanodots show that a preexisting cold "spectator exciton" allows only half of the photoexcited electrons to relax directly to the band-edge. The rest are blocked in an excited quantum state due to conflicts in spin orientation. The latter fully relax in this sample only after ∼25 ps as the blocked electrons spins flip, prolonging the temporal window of opportunity for harvesting the retained energy more than 100 fold! Common to all quantum-confined nanocrystals, this process will delay cooling and impact the spectroscopic signatures of hot multiexcitons in all envisioned generation scenarios. How the spin-flipping rate scales with particle size and temperature remains to be determined.
Collapse
Affiliation(s)
- Tufan Ghosh
- The Institute of Chemistry, and the Fritz Haber Center for Molecular Dynamics , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Nancy and Stephen Grand Technion Energy Program , Technion Israel Institute of Technology , Haifa 3200003 , Israel
| | - Marcel Fabian
- The Institute of Chemistry, and the Fritz Haber Center for Molecular Dynamics , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Nancy and Stephen Grand Technion Energy Program , Technion Israel Institute of Technology , Haifa 3200003 , Israel
| | - Roi Baer
- The Institute of Chemistry, and the Fritz Haber Center for Molecular Dynamics , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Sanford Ruhman
- The Institute of Chemistry, and the Fritz Haber Center for Molecular Dynamics , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| |
Collapse
|
15
|
Grimaldi G, Geuchies JJ, van der Stam W, du Fossé I, Brynjarsson B, Kirkwood N, Kinge S, Siebbeles LD, Houtepen AJ. Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots. NANO LETTERS 2019; 19:3002-3010. [PMID: 30938530 PMCID: PMC6509645 DOI: 10.1021/acs.nanolett.9b00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/22/2019] [Indexed: 05/20/2023]
Abstract
In transient absorption (TA) measurements on Cd-chalcogenide quantum dots (QDs), the presence of a band-edge (BE) bleach signal is commonly attributed entirely to conduction-band electrons in the 1S(e) state, neglecting contributions from BE holes. While this has been the accepted view for more than 20 years, and has often been used to distinguish electron and hole kinetics, the reason for the absence of a hole contribution to the BE-bleach has remained unclear. Here, we show with three independent experiments that holes do in fact have a significant impact on the BE-bleach of well-passivated Cd-chalcogenide QD samples. Transient absorption experiments on high photoluminescence quantum yield CdSe/CdS/ZnS core-shell-shell QDs clearly show an increase of the band-edge bleach as holes cool down to the band edge. The relative contribution of electron-to-hole bleach is 2:1, as predicted by theory. The same measurements on core-only CdSe QDs with a lower quantum yield do not show a contribution of holes to the band-edge bleach. We assign the lack of hole bleach to the presence of ultrafast hole trapping in samples with insufficient passivation of the QD surface. In addition, we show measurements of optical gain in core-shell-shell QD solutions, providing clear evidence of a significant hole contribution to the BE transient absorption signal. Finally, we present spectroelectrochemical measurements on CdTe QDs films, showing the presence of a BE-bleach for both electron and hole injections. The presence of a contribution of holes to the bleach in passivated Cd-chalcogenides QDs bears important implications for quantitative studies on optical gain as well as for TA determinations of carrier dynamics.
Collapse
Affiliation(s)
- Gianluca Grimaldi
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
- E-mail:
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
- E-mail:
| | - Ward van der Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
| | - Baldur Brynjarsson
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
| | - Nicholas Kirkwood
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
| | - Sachin Kinge
- Materials
Research & Development, Toyota Motor
Europe, Hoge Wei 33, Zaventem B-1930, Belgium
| | - Laurens D.A. Siebbeles
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, HAZ Delft 2629, The Netherlands
- E-mail:
| |
Collapse
|
16
|
Spoor FCM, Grimaldi G, Kinge S, Houtepen AJ, Siebbeles LDA. Model To Determine a Distinct Rate Constant for Carrier Multiplication from Experiments. ACS APPLIED ENERGY MATERIALS 2019; 2:721-728. [PMID: 30714025 PMCID: PMC6354726 DOI: 10.1021/acsaem.8b01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 05/15/2023]
Abstract
Carrier multiplication (CM) is the process in which multiple electron-hole pairs are created upon absorption of a single photon in a semiconductor. CM by an initially hot charge carrier occurs in competition with cooling by phonon emission, with the respective rates determining the CM efficiency. Up until now, CM rates have only been calculated theoretically. We show for the first time how to extract a distinct CM rate constant from experimental data of the relaxation time of hot charge carriers and the yield of CM. We illustrate this method for PbSe quantum dots. Additionally, we provide a simplified method using an estimated energy loss rate to estimate the CM rate constant just above the onset of CM, when detailed experimental data of the relaxation time is missing.
Collapse
Affiliation(s)
- Frank C. M. Spoor
- Optoelectronic Materials
Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gianluca Grimaldi
- Optoelectronic Materials
Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sachin Kinge
- Toyota Motor Europe, Materials Research
& Development, Hoge
Wei 33, B-1930, Zaventem, Belgium
| | - Arjan J. Houtepen
- Optoelectronic Materials
Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| | - Laurens D. A. Siebbeles
- Optoelectronic Materials
Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
17
|
Kroupa DM, Pach GF, Vörös M, Giberti F, Chernomordik BD, Crisp RW, Nozik AJ, Johnson JC, Singh R, Klimov VI, Galli G, Beard MC. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. ACS NANO 2018; 12:10084-10094. [PMID: 30216045 DOI: 10.1021/acsnano.8b04850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.
Collapse
Affiliation(s)
- Daniel M Kroupa
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309 , United States
| | - Gregory F Pach
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Márton Vörös
- Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Federico Giberti
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Boris D Chernomordik
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Ryan W Crisp
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- Department of Physics , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Arthur J Nozik
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309 , United States
| | - Justin C Johnson
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Rohan Singh
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Victor I Klimov
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Giulia Galli
- Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
18
|
Efficient carrier multiplication in CsPbI 3 perovskite nanocrystals. Nat Commun 2018; 9:4199. [PMID: 30305623 PMCID: PMC6180104 DOI: 10.1038/s41467-018-06721-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
The all-inorganic perovskite nanocrystals are currently in the research spotlight owing to their physical stability and superior optical properties—these features make them interesting for optoelectronic and photovoltaic applications. Here, we report on the observation of highly efficient carrier multiplication in colloidal CsPbI3 nanocrystals prepared by a hot-injection method. The carrier multiplication process counteracts thermalization of hot carriers and as such provides the potential to increase the conversion efficiency of solar cells. We demonstrate that carrier multiplication commences at the threshold excitation energy near the energy conservation limit of twice the band gap, and has step-like characteristics with an extremely high quantum yield of up to 98%. Using ultrahigh temporal resolution, we show that carrier multiplication induces a longer build-up of the free carrier concentration, thus providing important insights into the physical mechanism responsible for this phenomenon. The evidence is obtained using three independent experimental approaches, and is conclusive. In semiconductor nanocrystals, efficient carrier multiplication counteracts hot carrier thermalization, increasing the overall carrier generation yield. Here, de Weerd et al. observe a quantum yield of up to 98% in CsPbI3 nanocrystals as a result of efficient carrier multiplication.
Collapse
|
19
|
Wang HI, Infante I, Brinck ST, Cánovas E, Bonn M. Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature. NANO LETTERS 2018; 18:5111-5115. [PMID: 30039708 DOI: 10.1021/acs.nanolett.8b01981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hot carrier cooling processes represent one of the major efficiency losses in solar energy conversion. Losses associated with cooling can in principle be circumvented if hot carrier extraction toward selective contacts is faster than hot carrier cooling in the absorber (in so-called hot carrier solar cells). Previous work has demonstrated the possibility of hot electron extraction in quantum dot (QD)-sensitized systems, in particular, at low temperatures. Here we demonstrate a room-temperature hot electron transfer (HET) with up to unity quantum efficiency in strongly coupled PbS quantum dot-sensitized mesoporous SnO2. We show that the HET efficiency is determined by a kinetic competition between HET rate ( KHET) and the thermalization rate ( KTH) in the dots. KHET can be modulated by changing the excitation photon energy; KTH can be modified through the lattice temperature. DFT calculations demonstrate that the HET rate and efficiency are primarily determined by the density of the state (DoS) of QD and oxide. Our results provide not only a new way to achieve efficient hot electron transfer at room temperature but also new insights on the mechanism of HET and the means to control it.
Collapse
Affiliation(s)
- Hai I Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
- Graduate School of Material Science in Mainz , University of Mainz , Staudingerweg 9 , Mainz 55128 , Germany
| | - Ivan Infante
- Department of Theoretical Chemistry, Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1083 , HV Amsterdam 1081 , The Netherlands
| | - Stephanie Ten Brinck
- Department of Theoretical Chemistry, Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1083 , HV Amsterdam 1081 , The Netherlands
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Faraday 9 , Madrid 28049 , Spain
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
| |
Collapse
|
20
|
Spoor FM, Grimaldi G, Delerue C, Evers WH, Crisp RW, Geiregat P, Hens Z, Houtepen AJ, Siebbeles LDA. Asymmetric Optical Transitions Determine the Onset of Carrier Multiplication in Lead Chalcogenide Quantum Confined and Bulk Crystals. ACS NANO 2018; 12:4796-4802. [PMID: 29664600 PMCID: PMC5968429 DOI: 10.1021/acsnano.8b01530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 05/27/2023]
Abstract
Carrier multiplication is a process in which one absorbed photon excites two or more electrons. This is of great promise to increase the efficiency of photovoltaic devices. Until now, the factors that determine the onset energy of carrier multiplication have not been convincingly explained. We show experimentally that the onset of carrier multiplication in lead chalcogenide quantum confined and bulk crystals is due to asymmetric optical transitions. In such transitions most of the photon energy in excess of the band gap is given to either the hole or the electron. The results are confirmed and explained by theoretical tight-binding calculations of the competition between impact ionization and carrier cooling. These results are a large step forward in understanding carrier multiplication and allow for a screening of materials with an onset of carrier multiplication close to twice the band gap energy. Such materials are of great interest for development of highly efficient photovoltaic devices.
Collapse
Affiliation(s)
- Frank
C. M. Spoor
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gianluca Grimaldi
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | | - Wiel H. Evers
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ryan W. Crisp
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pieter Geiregat
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Arjan J. Houtepen
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Yazdani N, Bozyigit D, Vuttivorakulchai K, Luisier M, Infante I, Wood V. Tuning Electron-Phonon Interactions in Nanocrystals through Surface Termination. NANO LETTERS 2018; 18:2233-2242. [PMID: 29498867 DOI: 10.1021/acs.nanolett.7b04729] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We perform ab initio molecular dynamics on experimentally relevant-sized lead sulfide (PbS) nanocrystals (NCs) constructed with thiol or Cl, Br, and I anion surfaces to determine their vibrational and dynamic electronic structure. We show that electron-phonon interactions can explain the large thermal broadening and fast carrier cooling rates experimentally observed in Pb-chalcogenide NCs. Furthermore, our simulations reveal that electron-phonon interactions are suppressed in halide-terminated NCs due to reduction of both the thermal displacement of surface atoms and the spatial overlap of the charge carriers with these large atomic vibrations. This work shows how surface engineering, guided by simulations, can be used to systematically control carrier dynamics.
Collapse
Affiliation(s)
- Nuri Yazdani
- Labratory for Nanoelectronics, Department of Information Technology and Electrical Engineering , ETH Zurich , Zurich CH-8092 Switzerland
| | - Deniz Bozyigit
- Labratory for Nanoelectronics, Department of Information Technology and Electrical Engineering , ETH Zurich , Zurich CH-8092 Switzerland
| | - Kantawong Vuttivorakulchai
- Nano TCAD Group, Department of Information Technology and Electrical Engineering , ETH Zurich , Zurich CH-8092 Switzerland
| | - Mathieu Luisier
- Nano TCAD Group, Department of Information Technology and Electrical Engineering , ETH Zurich , Zurich CH-8092 Switzerland
| | - Ivan Infante
- Division of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM) , Vrije University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Vanessa Wood
- Labratory for Nanoelectronics, Department of Information Technology and Electrical Engineering , ETH Zurich , Zurich CH-8092 Switzerland
| |
Collapse
|
22
|
Kulkarni A, Evers WH, Tomić S, Beard MC, Vanmaekelbergh D, Siebbeles LDA. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals. ACS NANO 2018; 12:378-384. [PMID: 29241008 PMCID: PMC6150730 DOI: 10.1021/acsnano.7b06511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases in a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.
Collapse
Affiliation(s)
- Aditya Kulkarni
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stanko Tomić
- Joule
Physics Laboratory, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom
| | - Matthew C. Beard
- National
Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Daniel Vanmaekelbergh
- Debye
Institute for Nanomaterials Science, University
of Utrecht, Princetonplein
1, 3584 CC Utrecht, The Netherlands
| | - Laurens D. A. Siebbeles
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
23
|
Kershaw SV, Rogach AL. Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1095. [PMID: 28927007 PMCID: PMC5615749 DOI: 10.3390/ma10091095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
Quantum confined semiconductor nanoparticles, such as colloidal quantum dots, nanorods and nanoplatelets have broad extended absorption spectra at energies above their bandgaps. This means that they can absorb light at high photon energies leading to the formation of hot excitons with finite excited state lifetimes. During their existence, the hot electron and hole that comprise the exciton may start to cool as they relax to the band edge by phonon mediated or Auger cooling processes or a combination of these. Alongside these cooling processes, there is the possibility that the hot exciton may split into two or more lower energy excitons in what is termed carrier multiplication (CM). The fission of the hot exciton to form lower energy multiexcitons is in direct competition with the cooling processes, with the timescales for multiplication and cooling often overlapping strongly in many materials. Once CM has been achieved, the next challenge is to preserve the multiexcitons long enough to make use of the bonus carriers in the face of another competing process, non-radiative Auger recombination. However, it has been found that Auger recombination and the several possible cooling processes can be manipulated and usefully suppressed or retarded by engineering the nanoparticle shape, size or composition and by the use of heterostructures, along with different choices of surface treatments. This review surveys some of the work that has led to an understanding of the rich carrier dynamics in semiconductor nanoparticles, and that has started to guide materials researchers to nanostructures that can tilt the balance in favour of efficient CM with sustained multiexciton lifetimes.
Collapse
Affiliation(s)
- Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R., China.
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R., China.
| |
Collapse
|