1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Chau C, Mohanan G, Macaulay I, Actis P, Wälti C. Automated Purification of DNA Origami with SPRI Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308776. [PMID: 38054620 PMCID: PMC11475516 DOI: 10.1002/smll.202308776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/07/2023]
Abstract
DNA origami synthesis is a well-established technique with wide-ranging applications. In most cases, the synthesized origami must be purified to remove excess materials such as DNA oligos and other functional molecules. While several purification techniques are routinely used, all have limitations, and cannot be integrated with robotic systems. Here the use of solid-phase reversible immobilization (SPRI) beads as a scalable, high-throughput, and automatable method to purify DNA origami is demonstrated. Not only can this method remove unreacted oligos and biomolecules with yields comparable to existing methods while maintaining the high structural integrity of the origami, but it can also be integrated into an automated workflow to purify simultaneously large numbers and quantities of samples. It is envisioned that the SPRI beads purification method will improve the scalability of DNA nanostructures synthesis both for research and commercial applications.
Collapse
Affiliation(s)
- Chalmers Chau
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Gayathri Mohanan
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR1 7UZUK
- School of Biological SciencesUniversity of East AngliaNorwichNorfolkNR4 7TJUK
| | - Paolo Actis
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| | - Christoph Wälti
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
3
|
Knadler C, Graham V W, Rolfsmeier M, Haseltine CA. Divalent metal cofactors differentially modulate RadA-mediated strand invasion and exchange in Saccharolobus solfataricus. Biosci Rep 2023; 43:BSR20221807. [PMID: 36601994 PMCID: PMC9950535 DOI: 10.1042/bsr20221807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Central to the universal process of recombination, RecA family proteins form nucleoprotein filaments to catalyze production of heteroduplex DNA between substrate ssDNAs and template dsDNAs. ATP binding assists the filament in assuming the necessary conformation for forming heteroduplex DNA, but hydrolysis is not required. ATP hydrolysis has two identified roles which are not universally conserved: promotion of filament dissociation and enhancing flexibility of the filament. In this work, we examine ATP utilization of the RecA family recombinase SsoRadA from Saccharolobus solfataricus to determine its function in recombinase-mediated heteroduplex DNA formation. Wild-type SsoRadA protein and two ATPase mutant proteins were evaluated for the effects of three divalent metal cofactors. We found that unlike other archaeal RadA proteins, SsoRadA-mediated strand exchange is not enhanced by Ca2+. Instead, the S. solfataricus recombinase can utilize Mn2+ to stimulate strand invasion and reduce ADP-binding stability. Additionally, reduction of SsoRadA ATPase activity by Walker Box mutation or cofactor alteration resulted in a loss of large, complete strand exchange products. Depletion of ADP was found to improve initial strand invasion but also led to a similar loss of large strand exchange events. Our results indicate that overall, SsoRadA is distinct in its use of divalent cofactors but its activity with Mn2+ shows similarity to human RAD51 protein with Ca2+.
Collapse
Affiliation(s)
- Corey J. Knadler
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - William J. Graham V
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - Michael L. Rolfsmeier
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| | - Cynthia A. Haseltine
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, U.S.A
| |
Collapse
|
4
|
Confederat S, Sandei I, Mohanan G, Wälti C, Actis P. Nanopore fingerprinting of supramolecular DNA nanostructures. Biophys J 2022; 121:4882-4891. [PMID: 35986518 PMCID: PMC9808562 DOI: 10.1016/j.bpj.2022.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
DNA nanotechnology has paved the way for new generations of programmable nanomaterials. Utilizing the DNA origami technique, various DNA constructs can be designed, ranging from single tiles to the self-assembly of large-scale, complex, multi-tile arrays. This technique relies on the binding of hundreds of short DNA staple strands to a long single-stranded DNA scaffold that drives the folding of well-defined nanostructures. Such DNA nanostructures have enabled new applications in biosensing, drug delivery, and other multifunctional materials. In this study, we take advantage of the enhanced sensitivity of a solid-state nanopore that employs a poly-ethylene glycol enriched electrolyte to deliver real-time, non-destructive, and label-free fingerprinting of higher-order assemblies of DNA origami nanostructures with single-entity resolution. This approach enables the quantification of the assembly yields for complex DNA origami nanostructures using the nanostructure-induced equivalent charge surplus as a discriminant. We compare the assembly yield of four supramolecular DNA nanostructures obtained with the nanopore with agarose gel electrophoresis and atomic force microscopy imaging. We demonstrate that the nanopore system can provide analytical quantification of the complex supramolecular nanostructures within minutes, without any need for labeling and with single-molecule resolution. We envision that the nanopore detection platform can be applied to a range of nanomaterial designs and enable the analysis and manipulation of large DNA assemblies in real time.
Collapse
Affiliation(s)
- Samuel Confederat
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom
| | - Ilaria Sandei
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Gayathri Mohanan
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom
| | - Christoph Wälti
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, United Kingdom; Bragg Centre for Materials Research, Leeds, United Kingdom.
| |
Collapse
|
5
|
Willaert RG, Kasas S. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames. Methods Mol Biol 2022; 2516:157-167. [PMID: 35922627 DOI: 10.1007/978-1-0716-2413-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct, live imaging of protein-DNA interactions under physiological conditions is invaluable for understanding the mechanism and kinetics of binding and understanding the topological changes of the DNA strand. The DNA origami technology allows for precise placement of target molecules in a designed nanostructure. Here, we describe a protocol for the self-assembly of DNA origami frames with 2 stretched DNA sequences containing the binding site of a transcription factor, i.e., the Protein FadR, which is a TetR-family tanscription factor regulator for fatty acid metabolism in the archaeal organism Sulfolobus acidocaldarius. These frames can be used to study the dynamics of transcription factor binding using high-speed AFM and obtain mechanistic insights into the mechanism of action of transcription factors.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), Brussels, Belgium.
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Brussels, Belgium.
| | - Sandor Kasas
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Brussels, Belgium
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Liu W, Duan H, Zhang D, Zhang X, Luo Q, Xie T, Yan H, Peng L, Hu Y, Liang L, Zhao G, Xie Z, Hu J. Concepts and Application of DNA Origami and DNA Self-Assembly: A Systematic Review. Appl Bionics Biomech 2021; 2021:9112407. [PMID: 34824603 PMCID: PMC8610680 DOI: 10.1155/2021/9112407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
With the arrival of the post-Moore Era, the development of traditional silicon-based computers has reached the limit, and it is urgent to develop new computing technology to meet the needs of science and life. DNA computing has become an essential branch and research hotspot of new computer technology because of its powerful parallel computing capability and excellent data storage capability. Due to good biocompatibility and programmability properties, DNA molecules have been widely used to construct novel self-assembled structures. In this review, DNA origami is briefly introduced firstly. Then, the applications of DNA self-assembly in material physics, biogenetics, medicine, and other fields are described in detail, which will aid the development of DNA computational model in the future.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Huaichuan Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu 610081, China
| | - Xun Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Qing Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Tao Xie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Hailian Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Li Liang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Zhenjian Xie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Jianping Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| |
Collapse
|
7
|
Lee AJ, Endo M, Hobbs JK, Davies AG, Wälti C. Micro-homology intermediates: RecA's transient sampling revealed at the single molecule level. Nucleic Acids Res 2021; 49:1426-1435. [PMID: 33476368 PMCID: PMC7897476 DOI: 10.1093/nar/gkaa1258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 01/21/2023] Open
Abstract
Recombinase A (RecA) is central to homologous recombination. However, despite significant advances, the mechanism with which RecA is able to orchestrate a search for homology remains elusive. DNA nanostructure-augmented high-speed AFM offers the spatial and temporal resolutions required to study the RecA recombination mechanism directly and at the single molecule level. We present the direct in situ observation of RecA-orchestrated alignment of homologous DNA strands to form a stable recombination product within a supporting DNA nanostructure. We show the existence of subtle and short-lived states in the interaction landscape, which suggests that RecA transiently samples micro-homology at the single RecA monomer-level throughout the search for sequence alignment. These transient interactions form the early steps in the search for sequence homology, prior to the formation of stable pairings at >8 nucleotide seeds. The removal of sequence micro-homology results in the loss of the associated transient sampling at that location.
Collapse
Affiliation(s)
- Andrew J Lee
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Houndsfield Road, Sheffield S3 7RH, UK
| | - A Giles Davies
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| | - Christoph Wälti
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Rational design of DNA nanostructures for single molecule biosensing. Nat Commun 2020; 11:4384. [PMID: 32873796 PMCID: PMC7463249 DOI: 10.1038/s41467-020-18132-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.
Collapse
|
9
|
Xing X, Sato S, Wong NK, Hidaka K, Sugiyama H, Endo M. Direct observation and analysis of TET-mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Res 2020; 48:4041-4051. [PMID: 32170318 PMCID: PMC7192588 DOI: 10.1093/nar/gkaa137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
DNA methylation and demethylation play a key role in the epigenetic regulation of gene expression; however, a series of oxidation reactions of 5-methyl cytosine (5mC) mediated by ten-eleven translocation (TET) enzymes driving demethylation process are yet to be uncovered. To elucidate the relationship between the oxidative processes and structural factors of DNA, we analysed the behavior of TET-mediated 5mC-oxidation by incorporating structural stress onto a substrate double-stranded DNA (dsDNA) using a DNA origami nanochip. The reactions and behaviors of TET enzymes were systematically monitored by biochemical analysis and single-molecule observation using atomic force microscopy (AFM). A reformative frame-like DNA origami was established to allow the incorporation of dsDNAs as 5mC-containing substrates in parallel orientations. We tested the potential effect of dsDNAs present in the tense and relaxed states within a DNA nanochip on TET oxidation. Based on enzyme binding and the detection of oxidation reactions within the DNA nanochip, it was revealed that TET preferred a relaxed substrate regardless of the modification types of 5-oxidated-methyl cytosine. Strikingly, when a multi-5mCG sites model was deployed to further characterize substrate preferences of TET, TET preferred the fully methylated site over the hemi-methylated site. This analytical modality also permits the direct observations of dynamic movements of TET such as sliding and interstrand transfer by high-speed AFM. In addition, the thymine DNA glycosylase-mediated base excision repair process was characterized in the DNA nanochip. Thus, we have convincingly established the system's ability to physically regulate enzymatic reactions, which could prove useful for the observation and characterization of coordinated DNA demethylation processes at the nanoscale.
Collapse
Affiliation(s)
- Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Abstract
In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.
Collapse
|
12
|
Lee AJ, Wälti C. DNA nanostructures: A versatile lab-bench for interrogating biological reactions. Comput Struct Biotechnol J 2019; 17:832-842. [PMID: 31316727 PMCID: PMC6611922 DOI: 10.1016/j.csbj.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
At its inception DNA nanotechnology was conceived as a tool for spatially arranging biological molecules in a programmable and deterministic way to improve their interrogation. To date, DNA nanotechnology has provided a versatile toolset of nanostructures and functional devices to augment traditional single molecule investigation approaches - including atomic force microscopy - by isolating, arranging and contextualising biological systems at the single molecule level. This review explores the state-of-the-art of DNA-based nanoscale tools employed to enhance and tune the interrogation of biological reactions, the study of spatially distributed pathways, the visualisation of enzyme interactions, the application and detection of forces to biological systems, and biosensing platforms.
Collapse
Affiliation(s)
- Andrew J. Lee
- Bioelectronics, The Pollard Institute, School of Electronic & Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
13
|
Raghavan G, Hidaka K, Sugiyama H, Endo M. Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guruprasad Raghavan
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Department of BioengineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Kumi Hidaka
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material SciencesKyoto University Yoshida-ushinomiyacho Sakyo-ku Kyoto 606-8501 Japan
| | - Masayuki Endo
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material SciencesKyoto University Yoshida-ushinomiyacho Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
14
|
Raghavan G, Hidaka K, Sugiyama H, Endo M. Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angew Chem Int Ed Engl 2019; 58:7626-7630. [PMID: 30908862 DOI: 10.1002/anie.201900610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Indexed: 11/06/2022]
Abstract
Herein, the direct visualization of the dynamic interaction between a photoresponsive transcription factor fusion, GAL4-VVD, and DNA using high-speed atomic force microscopy (HS-AFM) is reported. A series of different GAL4-VVD movements, such as binding, sliding, stalling, and dissociation, was observed. Inter-strand jumping on two double-stranded (ds) DNAs was also observed. Detailed analysis using a long substrate DNA strand containing five GAL4-binding sites revealed that GAL4-VVD randomly moved on the dsDNA using sliding and hopping to rapidly find specific binding sites, and then stalled to the specific sites to form a stable complex formation. These results suggest the existence of different conformations of the protein to enable sliding and stalling. This single-molecule imaging system with nanoscale resolution provides an insight into the searching mechanism used by DNA-binding proteins.
Collapse
Affiliation(s)
- Guruprasad Raghavan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Bioengineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Liu J, Wang X, Zhang W. Atomic Force Microscopy Imaging Study of Aligning DNA by Dumbbell-like Au-Fe 3O 4 Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14875-14881. [PMID: 30011364 DOI: 10.1021/acs.langmuir.8b01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on nucleic acid structure and interactions between nucleic acid and its binding molecules are of great importance for understanding and controlling many important biological processes. Atomic force microscopy (AFM) imaging is one of the most efficient methods to disclose the DNA structure and binding modes between DNA and DNA-binding molecules. Long-chain DNA tends to form a random coiled structure, which prevents direct AFM imaging observation of the subtle structure formed by DNA itself or protein binding. Aligning DNA from the random coiled state into the extended state is not only important for applications in DNA nanotechnology but also for elucidating the interaction mechanism between DNA and other molecules. Here, we developed an efficient method based on the magnetic field to align long-chain DNA on a silicon surface. We used AFM imaging to study the alignment of DNA at the single-molecule level, showing that DNA can be stretched and highly aligned by the manipulation of magnetic nanoparticles tethered to one end of DNA and that the aligned DNA can be imaged clearly by AFM. In the absence of the magnetic field, the aligned DNA can relax back to a random coiled state upon rinsing. Such alignment and relaxation can be repeated many times, which provides an efficient method for the manipulation of individual DNA molecules and the investigation of DNA and DNA-binding molecule interactions.
Collapse
Affiliation(s)
- Jianyu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Xinxin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Mukhil Raveendran
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Andrew J. Lee
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Christoph Wälti
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| | - Paolo Actis
- Pollard Institute School of Electronic and Electrical EngineeringUniversity of Leeds Leeds United Kingdom
| |
Collapse
|
17
|
刘 林, 魏 余, 刘 文, 孙 彤, 王 凯, 汪 颖, 李 宾. [Progress in the applications of high-speed atomic force microscopy in cell biology]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:931-937. [PMID: 30187879 PMCID: PMC6744042 DOI: 10.3969/j.issn.1673-4254.2018.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/24/2022]
Abstract
Without losing its high resolution, high-speed atomic force microscope (HS-AFM) represents a perfect combinationof scanning speed and precision and allows real-time and in situ observation of the dynamic processes in a biological system atboth the cellular and molecular levels. By combining the extremely high temporal resolution with the spatial resolution andcoupling with other advanced technologies, HS-AFM shows promising prospects for applications in life sciences such as cellbiology. In this review, we summarize the latest progress of HS-AFM in the field of cell biology, and discuss the impact ofenvironmental factors on conformation dynamics of DNA, the binding processes between DNA and protein, the domainchanges of membrane proteins, motility of myosin, and surface structure changes of living cells.
Collapse
Affiliation(s)
- 林 刘
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 余辉 魏
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 文静 刘
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 彤 孙
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 凯喆 王
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学,北京 100049University of Chinese Academy of Sciences, Beijing 100049, China
| | - 颖 汪
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 宾 李
- 中国科学院上海应用物理研究所物理生物研究室,上海 201800Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
18
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|