1
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
2
|
Liu J, Wang D, Wang H, Yang N, Hou J, Lv X, Gong L. Low frequency magnetic field assisted production of acidic protease by Aspergillus niger. Arch Microbiol 2024; 206:273. [PMID: 38772954 DOI: 10.1007/s00203-024-04004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China.
- Hebei Fermentation Technology Innovation Center, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China.
| | - Dongxu Wang
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Hong Wang
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiayang Hou
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Xuemeng Lv
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| | - Luqian Gong
- College of Food and Biology, Hebei University of Science and Technology, ShiJiaZhuang, 050018, China
| |
Collapse
|
3
|
Veselov MM, Efremova MV, Prusov AN, Klyachko NL. Up- and Down-Regulation of Enzyme Activity in Aggregates with Gold-Covered Magnetic Nanoparticles Triggered by Low-Frequency Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:411. [PMID: 38470742 DOI: 10.3390/nano14050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The modern global trend toward sustainable processes that meet the requirements of "green chemistry" provides new opportunities for the broad application of highly active, selective, and specific enzymatic reactions. However, the effective application of enzymes in industrial processes requires the development of systems for the remote regulation of their activity triggered by external physical stimuli, one of which is a low-frequency magnetic field (LFMF). Magnetic nanoparticles (MNPs) transform the energy of an LFMF into mechanical forces and deformations applied to enzyme molecules on the surfaces of MNPs. Here, we demonstrate the up- and down-regulation of two biotechnologically important enzymes, yeast alcohol dehydrogenase (YADH) and soybean formate dehydrogenase (FDH), in aggregates with gold-covered magnetic nanoparticles (GCMNPs) triggered by an LFMF. Two types of aggregates, "dimeric" (with the enzyme attached to several GCMNPs simultaneously), with YADH or FDH, and "monomeric" (the enzyme attached to only one GCMNP), with FDH, were synthesized. Depending on the aggregate type ("dimeric" or "monomeric"), LFMF treatment led to a decrease (down-regulation) or an increase (up-regulation) in enzyme activity. For "dimeric" aggregates, we observed 67 ± 9% and 47 ± 7% decreases in enzyme activity under LFMF exposure for YADH and FDH, respectively. Moreover, in the case of YADH, varying the enzyme or the cross-linking agent concentration led to different magnitudes of the LFMF effect, which was more significant at lower enzyme and higher cross-linking agent concentrations. Different responses to LFMF exposure depending on cofactor presence were also demonstrated. This effect might result from a varying cofactor binding efficiency to enzymes. For the "monomeric" aggregates with FDH, the LFMF treatment caused a significant increase in enzyme activity; the magnitude of this effect depended on the cofactor type: we observed up to 40% enzyme up-regulation in the case of NADP+, while almost no effect was observed in the case of NAD+.
Collapse
Affiliation(s)
- Maxim M Veselov
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V Efremova
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrey N Prusov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Nikitin AA, Ivanova AV, Semkina AS, Lazareva PA, Abakumov MA. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int J Mol Sci 2022; 23:11134. [PMID: 36232435 PMCID: PMC9569787 DOI: 10.3390/ijms231911134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments. The main reason is that the magneto-mechanical effect is extremely sensitive to changes in any parameter of magnetic nanoparticles and the environment and changes in the parameters of the applied magnetic field. Thus, in this review, we (1) summarize and propose a simplified theoretical explanation of the main factors affecting the efficiency of the magneto-mechanical approach; (2) discuss the nature of the MNP-mediated mechanical forces and their order of magnitude; (3) show some of the main applications of the magneto-mechanical approach in the control over the properties of biological systems.
Collapse
Affiliation(s)
- Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna V. Ivanova
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
5
|
Veselov M, Uporov IV, Efremova MV, Le-Deygen IM, Prusov AN, Shchetinin IV, Savchenko AG, Golovin YI, Kabanov AV, Klyachko NL. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS OMEGA 2022; 7:20644-20655. [PMID: 35755395 PMCID: PMC9219078 DOI: 10.1021/acsomega.2c00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Enzymes conjugated to magnetic nanoparticles (MNPs) undergo changes in the catalytic activity of the non-heating low-frequency magnetic field (LFMF). We apply in silico simulations by molecular dynamics (MD) and in vitro spectroscopic analysis of the enzyme kinetics and secondary structure to study α-chymotrypsin (CT) conjugated to gold-coated iron oxide MNPs. The latter are functionalized by either carboxylic or amino group moieties to vary the points of enzyme attachment. The MD simulation suggests that application of the stretching force to the CT globule by its amino or carboxylic groups causes shrinkage of the substrate-binding site but little if any changes in the catalytic triad. Consistent with this, in CT conjugated to MNPs by either amino or carboxylic groups, LFMF alters the Michaelis-Menten constant but not the apparent catalytic constant k cat (= V max/[E]o). Irrespective of the point of conjugation to MNPs, the CT secondary structure was affected with nearly complete loss of α-helices and increase in the random structures in LFMF, as shown by attenuated total reflection Fourier transformed infrared spectroscopy. Both the catalytic activity and the protein structure of MNP-CT conjugates restored 3 h after the field exposure. We believe that such remotely actuated systems can find applications in advanced manufacturing, nanomedicine, and other areas.
Collapse
Affiliation(s)
- Maxim
M. Veselov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Igor V. Uporov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V. Efremova
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - Irina M. Le-Deygen
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor V. Shchetinin
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
| | | | - Yuri I. Golovin
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- G.R.
Derzhavin Tambov State University, Tambov 392000, Russia
| | - Alexander V. Kabanov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| | - Natalia L. Klyachko
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| |
Collapse
|
6
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
da Silva RTP, Ribeiro de Barros H, Sandrini DMF, Córdoba de Torresi SI. Stimuli-Responsive Regulation of Biocatalysis through Metallic Nanoparticle Interaction. Bioconjug Chem 2022; 33:53-66. [PMID: 34914373 DOI: 10.1021/acs.bioconjchem.1c00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The remote control of biocatalytic processes in an extracellular medium is an exciting idea to deliver innovative solutions in the biocatalysis field. With this purpose, metallic nanoparticles (NPs) are great candidates, as their inherent thermal, electric, magnetic, and plasmonic properties can readily be manipulated upon external stimuli. Exploring the unique NP properties beyond an anchoring platform for enzymes brings up the opportunity to extend the efficiency of biocatalysts and modulate their activity through triggered events. In this review, we discuss a set of external stimuli, such as light, electricity, magnetism, and temperature, as tools for the regulation of nanobiocatalysis, including the challenges and perspectives regarding their use. In addition, we elaborate on the use of combined stimuli that create a more refined framework in terms of a multiresponsive system. Finally, we envision this review might instigate researchers in this field of study with a set of promising opportunities in the near future.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Instituto de Química, Universidade de São Paulo, São Paulo (SP), 05508-000, Brazil
| | | | | | | |
Collapse
|
8
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2255. [PMID: 34578570 PMCID: PMC8470408 DOI: 10.3390/nano11092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described.
Collapse
Affiliation(s)
- Yuri I. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Dmitry Yu. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
| | - Ksenia Yu. Vlasova
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Azizbek D. Usvaliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Efremova MV, Spasova M, Heidelmann M, Grebennikov IS, Li ZA, Garanina AS, Tcareva IO, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Room temperature synthesized solid solution AuFe nanoparticles and their transformation into Au/Fe Janus nanocrystals. NANOSCALE 2021; 13:10402-10413. [PMID: 34096958 DOI: 10.1039/d1nr00383f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid solution AuFe nanoparticles were synthesized for the first time under ambient conditions by an adapted method previously established for the Fe3O4-Au core-shell morphology. These AuFe particles preserved the fcc structure of Au incorporated with paramagnetic Fe atoms. The metastable AuFe can be segregated by transformation into Janus Au/Fe particles with bcc Fe and fcc Au upon annealing. The ferromagnetic Fe was epitaxially grown on low index fcc Au planes. This preparation route delivers new perspective materials for magnetoplasmonics and biomedical applications and suggests the reconsideration of existing protocols for magnetite-gold core-shell synthesis.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kladko DV, Zakharzhevskii MA, Vinogradov VV. Magnetic Field-Mediated Control of Whole-Cell Biocatalysis. J Phys Chem Lett 2020; 11:8989-8996. [PMID: 33035064 DOI: 10.1021/acs.jpclett.0c02564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by Saccharomyces cerevisiae due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range. We propose an acceleration mechanism based on magnetic field-induced cell membrane permeabilization. The ability to control cell metabolism without affecting their viability is a promising way for industrial biosynthesis to obtain a beneficial product with genetically engineered cells and subsequent improvement of biotechnological processes.
Collapse
Affiliation(s)
- Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Maxim A Zakharzhevskii
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Vlasova KY, Vishwasrao H, Abakumov MA, Golovin DY, Gribanovsky SL, Zhigachev AO, Poloznikov AА, Majouga AG, Golovin YI, Sokolsky-Papkov M, Klyachko NL, Kabanov AV. Enzyme Release from Polyion Complex by Extremely Low Frequency Magnetic Field. Sci Rep 2020; 10:4745. [PMID: 32179787 PMCID: PMC7076007 DOI: 10.1038/s41598-020-61364-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/11/2019] [Indexed: 01/12/2023] Open
Abstract
Remote nano-magneto-mechanical actuation of magnetic nanoparticles (MNPs) by non-heating extremely low frequency magnetic field (ELF MF) is explored as a tool for non-invasive modification of bionanomaterials in pharmaceutical and medical applications. Here we study the effects of ELF MF (30-160 Hz, 8-120 kA/m) on the activity and release of a model enzyme, superoxide dismutase 1 (SOD1) immobilized by polyion coupling on dispersed MNPs aggregates coated with poly(L-lysine)-block-poly(ethylene glycol) block copolymer (s-MNPs). Such fields do not cause any considerable heating of MNPs but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations in adjacent materials. We observed the changes in the catalytic activity of immobilized SOD1 as well as its release from the s-MNPs/SOD1 polyion complex upon application of the ELF MF for 5 to 15 min. At longer exposures (25 min) the s-MNPs/SOD1 dispersion destabilizes. The bell-shaped effect of the field frequency with maximum at f = 50 Hz and saturation effect of field strength (between 30 kA/m and 120 kA/m at f = 50 Hz) are reported and explained. The findings are significant as one early indication of the nano-magneto-mechanical disruption by ELF MF of cooperative polyion complexes that are widely used for design of current functional healthcare bionanomaterials.
Collapse
Affiliation(s)
- Kseniya Yu Vlasova
- Laboratory for Chemical Design of Bionanomaterials, School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Hemant Vishwasrao
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Maxim A Abakumov
- National University of Science and Technology MISIS, Moscow, 119049, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | | | | | - Andrey А Poloznikov
- FSBI National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, 249036, Russia
| | - Alexander G Majouga
- Laboratory for Chemical Design of Bionanomaterials, School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology MISIS, Moscow, 119049, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Yuri I Golovin
- Laboratory for Chemical Design of Bionanomaterials, School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- G.R. Derzhavin Tambov State University, Tambov, 392036, Russia
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia L Klyachko
- Laboratory for Chemical Design of Bionanomaterials, School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- G.R. Derzhavin Tambov State University, Tambov, 392036, Russia
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Abstract
Chymotrypsin is one of the most extensively known proteases participating in the pathogenesis of various diseases, which can be used in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Cheng Liu
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingjie Cui
- School of Automation
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Jia Cheng
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Li Gao
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
14
|
Catalytic Activity of Immobilized Chymotrypsin on Hybrid Silica-Magnetic Biocompatible Particles and Its Application in Peptide Synthesis. Appl Biochem Biotechnol 2019; 190:1224-1241. [DOI: 10.1007/s12010-019-03158-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
15
|
Goodilin EA, Weiss PS, Gogotsi Y. Nanotechnology Facets of the Periodic Table of Elements. ACS NANO 2019; 13:10879-10886. [PMID: 31544461 DOI: 10.1021/acsnano.9b06998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 150th anniversary of the periodic table of elements highlights its tremendous role in chemistry, physics, biology, astronomy, philosophy, and engineering as a shining scientific breakthrough, shedding light on the fundamental laws of nature. Nanoscience and nanotechnology are multidisciplinary, focusing on nanoscale materials and processes, in which a variety of elements are used and single atoms are often manipulated. In this Perspective, we present a new viewpoint on what the renown periodic table can offer to researchers working on nanomaterials.
Collapse
Affiliation(s)
- Eugene A Goodilin
- Faculty of Materials Science and Chemistry Department , M.V. Lomonosov Moscow State University , Lenin Hills, Moscow 119991 , Russia
| | - Paul S Weiss
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Materials Science and Engineering Department , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
16
|
Le-Deygen IM, Vlasova KY, Kutsenok EO, Usvaliev AD, Efremova MV, Zhigachev AO, Rudakovskaya PG, Golovin DY, Gribanovsky SL, Kudryashova EV, Majouga AG, Golovin YI, Kabanov AV, Klyachko NL. Magnetic nanorods for remote disruption of lipid membranes by non-heating low frequency magnetic field. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102065. [DOI: 10.1016/j.nano.2019.102065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
|
17
|
Castellanos-Rubio I, Rodrigo I, Munshi R, Arriortua O, Garitaonandia JS, Martinez-Amesti A, Plazaola F, Orue I, Pralle A, Insausti M. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals. NANOSCALE 2019; 11:16635-16649. [PMID: 31460555 DOI: 10.1039/c9nr04970c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Most studies on magnetic nanoparticle-based hyperthermia utilize iron oxide nanoparticles smaller than 20 nm, which are intended to have superparamagnetic behavior (SP-MNPs). However, the heating power of larger magnetic nanoparticles with non-fluctuating or fixed magnetic dipoles (F-MNPs) can be significantly greater than that of SP-MNPs if high enough fields (H > 15 mT) are used. But the synthesis of larger single nanocrystals of magnetite (Fe3O4) with a regular shape and narrow size distribution devoid of secondary phases remains a challenge. Iron oxide nanoparticles, grown over 25 nm, often present large shape and size polydispersities, twinning defects and a significant fraction of the wüstite-type (FeO) paramagnetic phase, resulting in degradation of magnetic properties. Herein, we introduce an improved procedure to synthesize monodisperse F-MNPs in the range of 25 to 50 nm with a distinct octahedral morphology and very crystalline magnetite phase. We unravel the subtle phase transformation that takes place during the synthesis by a thorough study in several non-optimized nanoparticles presenting a core-shell structure or composed of magnetite-type clusters embedded in a wüstite lattice. Optimized magnetite samples present a slight decrease in the saturation magnetization compared to bulk magnetite, which is successfully explained by the presence of Fe2+ vacancies. However, due to the high quality of these samples, AC magnetometry measurements have shown excellent specific absorption rates (>1000 W gFe3O4-1 at 40 mT and 300 kHz). Most importantly, the magnetic response and the hyperthermia performance of properly coated F-MNPs are kept basically unaltered in media with very different viscosities and ionic strength. Finally, using a physical model based on single magnetic domain approaches, we derive a novel connection between the octahedral shape and the high hyperthermia performance.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Irati Rodrigo
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain and BC Materials, Basque Center for Materials, Applications and Nanostructures, Sarriena s/n, 48940 Leioa, Spain
| | - Rahul Munshi
- Department of Physics, University at Buffalo, Buffalo, New York 14260, USA
| | - Oihane Arriortua
- Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - José S Garitaonandia
- Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Ana Martinez-Amesti
- SGIker, Servicios Generales de Investigación, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Plazaola
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker, Servicios Generales de Investigación, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, New York 14260, USA
| | - Maite Insausti
- Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain. and BC Materials, Basque Center for Materials, Applications and Nanostructures, Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
18
|
|
19
|
Golovin YI, Zhigachev AO, Efremova MV, Majouga AG, Kabanov AV, Klyachko NL. Ways and Methods for Controlling Biomolecular Structures Using Magnetic Nanoparticles Activated by an Alternating Magnetic Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1995078018030072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Andreeva YI, Drozdov AS, Avnir D, Vinogradov VV. Enzymatic Nanocomposites with Radio Frequency Field-Modulated Activity. ACS Biomater Sci Eng 2018; 4:3962-3967. [PMID: 33418797 DOI: 10.1021/acsbiomaterials.8b00838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The control over enzymatic activity by physical stimuli is of interest to many applications in medicine, biotechnology, synthetic biology, and nanobionics. Although the main focus has been on optically responsive systems, alternative strategies to modulate the enzymatic activity of hybrid systems are needed. Here we describe a radiofrequency (RF) field controlled catalytic activity of an enzymatic sol-gel composite. Specifically, the activity of bovine carbonic anhydrase entrapped in sol-gel-derived magnetite (enzyme@ferria) composite was accelerated by a factor of 460% compared to its initial value, by applying the RF field of 937 A/m, with fast response time. This acceleration is reversible and its magnitude controllable. An acceleration mechanism, based on RF-induced heating of the magnetite by the Néel relaxation effect, is proposed and proven. The entrapment within a sol-gel matrix solves the problem of enhancing activity by heating without denaturing the enzyme. RF-controlled enzymatic composites can be potentially applied as biological RF sensors or to control biochemical reactions within living organisms.
Collapse
Affiliation(s)
- Yulia I Andreeva
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russian Federation
| | - Andrey S Drozdov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russian Federation
| | - David Avnir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russian Federation
| |
Collapse
|
21
|
Efremova MV, Nalench YA, Myrovali E, Garanina AS, Grebennikov IS, Gifer PK, Abakumov MA, Spasova M, Angelakeris M, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Size-selected Fe 3O 4-Au hybrid nanoparticles for improved magnetism-based theranostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2684-2699. [PMID: 30416920 PMCID: PMC6204820 DOI: 10.3762/bjnano.9.251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 05/24/2023]
Abstract
Size-selected Fe3O4-Au hybrid nanoparticles with diameters of 6-44 nm (Fe3O4) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality Fe3O4 nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter Fe3O4-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an extraordinarily high r 2-relaxivity of 495 mM-1·s-1 along with a specific loss power of 617 W·gFe -1 and 327 W·gFe -1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4-Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Yulia A Nalench
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Eirini Myrovali
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Ivan S Grebennikov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Polina K Gifer
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russia
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Makis Angelakeris
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| |
Collapse
|
22
|
Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 2018; 8:11295. [PMID: 30050080 PMCID: PMC6062557 DOI: 10.1038/s41598-018-29618-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
High-quality, 25 nm octahedral-shaped Fe3O4 magnetite nanocrystals are epitaxially grown on 9 nm Au seed nanoparticles using a modified wet-chemical synthesis. These Fe3O4-Au Janus nanoparticles exhibit bulk-like magnetic properties. Due to their high magnetization and octahedral shape, the hybrids show superior in vitro and in vivo T2 relaxivity for magnetic resonance imaging as compared to other types of Fe3O4-Au hybrids and commercial contrast agents. The nanoparticles provide two functional surfaces for theranostic applications. For the first time, Fe3O4-Au hybrids are conjugated with two fluorescent dyes or the combination of drug and dye allowing the simultaneous tracking of the nanoparticle vehicle and the drug cargo in vitro and in vivo. The delivery to tumors and payload release are demonstrated in real time by intravital microscopy. Replacing the dyes by cell-specific molecules and drugs makes the Fe3O4-Au hybrids a unique all-in-one platform for theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Victor A Naumenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
| | - Anastasia D Blokhina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Pavel A Melnikov
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | | | - Markus Heidelmann
- ICAN - Interdisciplinary Center for Analytics on the Nanoscale and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zi-An Li
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Zheng Ma
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Igor V Shchetinin
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Yuri I Golovin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- Derzhavin Tambov State University, Nanocenter, Tambov, 392000, Russian Federation
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Alexander G Savchenko
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russian Federation
- Department of Fundamental and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health and Social Development of the Russian Federation, Moscow, 119034, Russian Federation
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation.
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation.
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russian Federation.
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, 47057, Germany.
| |
Collapse
|