1
|
Zhang X, Zhang Y, Chen J, Feng R, Wu X, Zhang T, Yu S, Gan N, Tang K, Wu YX. Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells. Anal Chem 2025. [PMID: 39785614 DOI: 10.1021/acs.analchem.4c05044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO2 nanosheets was developed for multimodal imaging of tumor cells. First, oxidizable MnO2 nanosheets provided a smart tool for use as nanocarriers and contrast agents for intracellular glutathione (GSH)-activated magnetic resonance imaging (MRI). Then, MnO2 nanosheets delivered Tf-AuNC-based biosensing nanoplatforms into cells through endocytosis. Endogenous GSH degraded MnO2 nanosheets into Mn2+, and the released functional nucleic acid probes can perform specific biosensing responses to miR-21 exhibiting multimodal imaging including two-photon near-infrared fluorescence imaging (TP-NIRFI), fluorescence lifetime imaging (FLIM), and MRI. Finally, the biosensing nanoplatform achieved satisfactory results in tumor cells and tissues by TP-NIRFI (300.0 μm penetration depth), FLIM (τ ≈ 50.0 ns), and MRI. Therefore, biosensing nanoplatforms based on Tf-AuNCs and MnO2 nanosheets show great potential for multimodal detection and imaging in tumor cells.
Collapse
Affiliation(s)
- Xianmiao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhang Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangwu Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
2
|
Cheng Z, Li F, Qie Y, Sun J, Wang Y, Zhao Y, Nie G. Hepatic Stellate Cell Membrane-Camouflaged Nanoparticles for Targeted Delivery of an Antifibrotic Agent to Hepatic Stellate Cells with Enhanced Antifibrosis Efficacy. NANO LETTERS 2024; 24:15827-15836. [PMID: 39585320 DOI: 10.1021/acs.nanolett.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs plays a pivotal role in driving the progression of liver fibrosis. Achieving specific targeted delivery of antifibrotic agents toward activated HSCs remains a formidable challenge. Here, we developed an HSC membrane-camouflaged nanosystem, named HSC-PLGA-BAY, for the precise delivery of the antifibrosis agent BAY 11-7082 to activated HSCs in the treatment of liver fibrosis. The designed HSC-PLGA-BAY nanosystem exhibited selective targeting toward activated HSCs, with internalization mediated by homologous cell adhesion molecules from the HSC membrane, namely integrins and N-cadherin. Furthermore, our findings demonstrate that treatment with HSC-PGA-BAY significantly increased apoptosis of activated HSCs and ameliorated liver fibrosis progression in a bile duct ligation (BDL)-induced fibrotic mice model. Collectively, the HSCs-targeted therapeutic platform holds promising potential as an effective strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zhaoxia Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jingyi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
3
|
Wu Y, Zhang Z, Wang Z, Yu C, Huang Z, Tang Y, Li Z, Yin S, Wang G. Enhanced fluorescence properties of polyfluorene-based polymer dots through an ascorbic acid-photoaging treatment for living cell imaging. Talanta 2024; 279:126628. [PMID: 39084040 DOI: 10.1016/j.talanta.2024.126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The polymer dots (Pdots) prepared by the conjugated polymer (PFO, poly (9,9-dihexylfluorene-2,7-diyl)) have high fluorescence intensity and are often used in biological fluorescence imaging. However, due to the chain defects, the PFO Pdots suffer from stability issues such as photoinactivation and photobleaching. To solve this problem, we drew inspiration from the preparation process of organic planar light-emitting devices and added an optimization processing after Pdots was prepared. We used illumination as the driving force to activate defects on its chain, and ascorbic acid as a reducing substance to restore the chain defects of the polymer to a more stable state. Through this method, we increased the fluorescence intensity by nearly 1.9 times, and significantly improving their long and short-term stability. In addition, it ensures other properties remain unchanged. This optimization scheme is also fully compatible with the entire biological imaging process, ensuring that other important properties such as cytotoxicity do not undergo unnecessary changes. Furthermore, we conducted material characterization and theoretical simulation, revealing that the optimization scheme mainly serves to repair C-9 alkyl defects on the polyfluorene unit. This study has improved and enhanced the fluorescence performance of PFO Pdots, and also provides a way to optimize the treatment of other similar conjugated polymer material systems.
Collapse
Affiliation(s)
- Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ze Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhipeng Huang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, 130022, PR China
| | - Zongjun Li
- School of Material Science and Technology, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
4
|
Zhan J, Huang J, Xiao Q, Yu ZA, Wang Y, Wang X, Liu F, Cai Y, Yang Z, Zheng L. Optimized Two-Photon Imaging by Stimuli-Responsive Peptide Self-Assembly Facilitates Self-Assisted Counteraction of Cisplatin-Resistance in Cancer Cells. Anal Chem 2024; 96:12630-12639. [PMID: 39058331 DOI: 10.1021/acs.analchem.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Accurate diagnosis and effective treatment of tumors remain significant clinical challenges. While fluorescence imaging is essential for tumor detection, it has limitations in terms of specificity, penetration depth, and emission wavelength. Here, we report a novel glutathione (GSH)-responsive peptide self-assembly excimer probe (pSE) that optimizes two-photon tumor imaging and self-assisted counteraction of the cisplatin resistance in cancer cells. The GSH-responsive self-assembly of pSE induces a monomer-excimer transition of coumarin, promoting a near-infrared redshift of fluorescence emission under two-photon excitation. This process enhances penetration depth and minimizes interference from biological autofluorescence. Moreover, the intracellular self-assembly of pSE impacts GSH homeostasis, modulates relevant signaling pathways, and significantly reduces GSTP1 expression, resulting in decreased cisplatin efflux in cisplatin-resistant cancer cells. The proposed self-assembled excimer probe not only distinguishes cancer cells from normal cells but also enhances the efficacy of cisplatin chemotherapy, offering significant potential in tumor diagnosis and overcoming cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuqun Xiao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Zhu L, Wang Y, Song J, Sheng Z, Qi J, Li Y, Li G, Tang BZ. Two-Photon Absorption Aggregation-Induced Emission Luminogen/Paclitaxel Nanoparticles for Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27075-27086. [PMID: 38752796 DOI: 10.1021/acsami.4c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Multifaceted nanoplatforms integrating fluorescence imaging and chemotherapy have garnered acknowledgment for their potential potency in cancer diagnosis and simultaneous in situ therapy. However, some drawbacks remain for traditional organic photosensitizers, such as poor photostability, short excitation wavelength, and shallow penetration depth, which will greatly lower the chemotherapy treatment efficiency. Herein, we present lipid-encapsulated two-photon active aggregation-induced emission (AIE) luminogen and paclitaxel (PTX) nanoparticles (AIE@PTX NPs) with bright red fluorescence emission, excellent photostability, and good biocompatibility. The AIE@PTX NPs exhibit dual functionality as two-photon probes for visualizing blood vessels and tumor structures, achieving penetration depth up to 186 and 120 μm, respectively. Furthermore, the tumor growth of the HeLa-xenograft model can be effectively prohibited after the fluorescence imaging-guided and PTX-induced chemotherapy, which shows great potential in the clinical application of two-photon cell and tumor fluorescence imaging and cancer treatment.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yiming Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zonghai Sheng
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Interdisciplinary Center of Cell Response, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Li Y, Zhang Q, Wang Q, Wang X, Wang J, Zhu X, Chen X, Wang S, Sun X, Zhou H. Three-Four Photon Transition Mn(II) Complex Monitoring Lysosome-Related ATP in Real Time via Fluorescence Lifetime Imaging. Anal Chem 2024; 96:3535-3543. [PMID: 38353024 DOI: 10.1021/acs.analchem.3c05390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, in situ monitoring of the adenosine triphosphate (ATP) level in lysosomes is critical to understand their involvement in various biological processes, but it remains difficult due to the interferences of limited targeting and low resolution of fluorescent probes. Herein, we report a classic Mn(II) probe (FX2-MnCl2) with near-infrared (NIR) nonlinear (NLO) properties, accompanied by three-four photon transition and fivefold fluorescence enhancement in the presence of ATP. FX2-MnCl2 combines with ATP through dual recognition sites of diethoxy and manganese ions to reflect slightly fluorescence lifetime change. Through the synergy of multiphoton fluorescence imaging (MP-FI) and multiphoton fluorescence lifetime imaging microscopy (MP-FLIM), it is further demonstrated that FX2-MnCl2 displays lysosome-specific targeting behavior, which can monitor lysosome-related ATP migration under NIR laser light. This work provides a novel multiphoton transformation fluorescence complex, which might be a potential candidate as a simple and straightforward biomarker of lysosome ATP in vitro for clinical diagnosis.
Collapse
Affiliation(s)
- Yaqin Li
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiqi Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xuan Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xingxing Chen
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
7
|
Liu X, Chu Z, Chen B, Ma Y, Xu L, Qian H, Yu Y. Cancer cell membrane-coated upconversion nanoparticles/Zn xMn 1-xS core-shell nanoparticles for targeted photodynamic and chemodynamic therapy of pancreatic cancer. Mater Today Bio 2023; 22:100765. [PMID: 37636984 PMCID: PMC10457453 DOI: 10.1016/j.mtbio.2023.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress induced by reactive oxygen species (ROS) is promising treatment approach for pancreatic ductal adenocarcinoma (PDAC), which is typically insensitive to conventional chemotherapy. In this study, BxPC-3 pancreatic cancer cell membrane-coated upconversion nanoparticles/ZnxMn1-xS core-shell nanoparticles (abbreviated as BUC@ZMS) were developed for tumor-targeted cancer therapy via synergistically oxidative stress and overcoming glutathione (GSH) overexpression. Using a combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT), the BUC@ZMS core-shell nanoparticles were able to elicit the death of pancreatic cancer cells through the high production of ROS. Additionally, the BUC@ZMS core-shell nanoparticles could deplete intracellular GSH and increase the sensitivity of tumor cells to oxidative stress. The in vivo results indicated that BUC@ZMS nanoparticles can accumulate specifically in tumor locations and suppress PDAC without generating obvious toxicity. Thus, it was determined that the as-prepared core-shell nanoparticles would be a viable treatment option for solid malignancies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
- Department of Gastroenterology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui, 237000, PR China
| | - Zhaoyou Chu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yue Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| |
Collapse
|
8
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
9
|
Li S, Chang R, Zhao L, Xing R, van Hest JCM, Yan X. Two-photon nanoprobes based on bioorganic nanoarchitectonics with a photo-oxidation enhanced emission mechanism. Nat Commun 2023; 14:5227. [PMID: 37633974 PMCID: PMC10460436 DOI: 10.1038/s41467-023-40897-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
Two-photon absorption (TPA) fluorescence imaging holds great promise in diagnostics and biomedicine owing to its unparalleled spatiotemporal resolution. However, the adaptability and applicability of currently available TPA probes, which act as a critical element for determining the imaging contrast effect, is severely challenged by limited photo-luminescence in vivo. This is particularly a result of uncontrollable aggregation that causes fluorescence quenching, and inevitable photo-oxidation in harsh physiological milieu, which normally leads to bleaching of the dye. Herein, we describe the remarkably enhanced TPA fluorescence imaging capacity of self-assembling near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be explained by a photo-oxidation enhanced emission mechanism. Singlet oxygen generated during photo-oxidation enables chromophore dimerization to form TPA intermediates responsible for enhanced TPA fluorescence emission. The resulting NPs possess uniform size distribution, excellent stability, more favorable TPA cross-section and anti-bleaching ability than a popular TPA probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs promote their applications in visualizing blood circulation and tumoral accumulation in real-time, even to cellular imaging in vivo. The photo-oxidation enhanced emission mechanism observed in these near-infrared cyanine dye-based nanoaggregates opens an avenue for design and development of more advanced TPA fluorescence probes.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, Dai Y, Zheng QC, Yu Z, Guo J. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg2697. [PMID: 37467325 PMCID: PMC10355835 DOI: 10.1126/sciadv.adg2697] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The polarization of tumor-associated macrophages (TAMs) from M2 to M1 phenotype demonstrates great potential for remodeling the immunosuppressive tumor microenvironment (TME) of hepatocellular carcinoma (HCC). d-lactate (DL; a gut microbiome metabolite) acts as an endogenous immunomodulatory agent that enhances Kupffer cells for clearance of pathogens. In this study, the potential of DL for transformation of M2 TAMs to M1 was confirmed, and the mechanisms underlying such polarization were mainly due to the modulation of phosphatidylinositol 3-kinase/protein kinase B pathway. A poly(lactide-co-glycolide) nanoparticle (NP) was used to load DL, and the DL-loaded NP was modified with HCC membrane and M2 macrophage-binding peptide (M2pep), forming a nanoformulation (DL@NP-M-M2pep). DL@NP-M-M2pep transformed M2 TAMs to M1 and remodeled the immunosuppressive TME in HCC mice, promoting the efficacy of anti-CD47 antibody for long-term animal survival. These findings reveal a potential TAM modulatory function of DL and provide a combinatorial strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xueying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Zhang H, Guan S, Wei T, Wang T, Zhang J, You Y, Wang Z, Dai Z. Homotypic Membrane-Enhanced Blood-Brain Barrier Crossing and Glioblastoma Targeting for Precise Surgical Resection and Photothermal Therapy. J Am Chem Soc 2023; 145:5930-5940. [PMID: 36867864 DOI: 10.1021/jacs.2c13701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The crossing of blood-brain barrier (BBB) is essential for glioblastoma (GBM) therapy, and homotypic targeting is an effective strategy to achieve BBB crossing. In this work, GBM patient-derived tumor cell membrane (GBM-PDTCM) is prepared to cloak gold nanorods (AuNRs). Relying on the high homology of the GBM-PDTCM to the brain cell membrane, GBM-PDTCM@AuNRs realize efficient BBB crossing and selective GBM targeting. Meanwhile, owing to the functionalization of Raman reporter and lipophilic fluorophore, GBM-PDTCM@AuNRs are able to generate fluorescence and Raman signals at GBM lesion, and almost all tumor can be precisely resected in 15 min by the guidance of dual signals, ameliorating the surgical treatment for advanced GBM. In addition, photothermal therapy for orthotopic xenograft mice is accomplished by intravenous injection of GBM-PDTCM@AuNRs, doubling the median survival time of the mice, which improves the nonsurgical treatment for early GBM. Therefore, benefiting from homotypic membrane-enhanced BBB crossing and GBM targeting, all-stage GBM can be treated with GBM-PDTCM@AuNRs in distinct ways, providing an alternative idea for the therapy of tumor in the brain.
Collapse
Affiliation(s)
- Hang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shujuan Guan
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianyou Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
12
|
Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun 2023; 14:1310. [PMID: 36898989 PMCID: PMC10006417 DOI: 10.1038/s41467-023-36958-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Multiphoton excited luminescence is of paramount importance in the field of optical detection and biological photonics. Self-trapped exciton (STE) emission with self-absorption-free advantages provide a choice for multiphoton excited luminescence. Herein, multiphoton excited singlet/triplet mixed STE emission with a large full width at half-maximum (617 meV) and Stokes shift (1.29 eV) has been demonstrated in single-crystalline ZnO nanocrystals. Temperature dependent steady state, transient state and time-resolved electron spin resonance spectra demonstrate a mixture of singlet (63%) and triplet (37%) mixed STE emission, which contributes to a high photoluminescence quantum yield (60.5%). First-principles calculations suggest 48.34 meV energy per exciton stored by phonons in the distorted lattice of excited states, and 58 meV singlet-triplet splitting energy for the nanocrystals being consistent with the experimental measurements. The model clarifies long and controversial debates on ZnO emission in visible region, and the multiphoton excited singlet/triplet mixed STE emission is also observed.
Collapse
|
13
|
Wu CH, Nhien PQ, Cuc TTK, Hue BTB, Lin HC. Designs and Applications of Multi-stimuli Responsive FRET Processes in AIEgen-Functionalized and Bi-fluorophoric Supramolecular Materials. Top Curr Chem (Cham) 2022; 381:2. [PMID: 36495421 DOI: 10.1007/s41061-022-00412-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022]
Abstract
Materials capable of displaying strong ratiometric fluorescence with Förster resonance energy transfer (FRET) processes have attracted much research interest because of various chemosensor and biomedical applications. This review highlights several popular strategies in designing FRET-OFF/ON mechanisms of ratiometric fluorescence systems. In particular, the developments of organic and polymeric FRET materials featuring aggregation-induced emission-based luminogens (AIEgens), supramolecular assemblies, photochromic molecular switches and surfactant-induced AIE/FRET mechanisms are presented. AIEgens have been frequently employed as FRET donor and/or acceptor fluorophores to obtain enhanced ratiometric fluorescences in solution and solid states. Since AIE effects and FRET processes rely on controllable distances between fluorophores, many interesting fluorescent properties can be designed by regulating aggregation states in polymers and supramolecular systems. Photo-switchable fluorophores, such as spiropyran and diarylethene, provide drastic changes in fluorescence spectra upon photo-induced isomerizations, leading to photo-switching mechanisms to activate/deactivate FRET processes. Supramolecular assemblies offer versatile platforms to regulate responsive FRET processes effectively. In rotaxane structures, the donor-acceptor distance and FRET efficiency can be tuned by acid/base-controlled shuttling of the macrocycle component. The tunable supramolecular interactions are strongly influenced by external factors (such as pH values, temperatures, analytes, surfactants, UV-visible lights, etc.), which induce the assembly and disassembly of host-guest systems and thus their FRET-ON/FRET-OFF behavior. In addition, the changes in donor or acceptor fluorescence profiles upon detections of analytes can also sufficiently alter the FRET behavior and result in different ratiometric fluorescence outputs. The strategies and examples provided in this review offer the insights and toolkits for future FRET-based material developments.
Collapse
Affiliation(s)
- Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
14
|
Lee HW, Pati TK, Lee IJ, Lee JM, Kim BR, Kwak SY, Kim HM. In Vivo Simultaneous Imaging of Plasma Membrane and Lipid Droplets in Hepatic Steatosis using Red-Emissive Two-Photon Probes. Anal Chem 2022; 94:15100-15107. [PMID: 36265084 DOI: 10.1021/acs.analchem.2c03285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane, which is a phosphoglyceride bilayer at the outer edge of the cell, plays diverse and important roles in biological systems. Visualization of the plasma membrane in live samples is important for various applications in biological functions. We developed an amphiphilic two-photon (TP) fluorescent probe (THQ-Mem) to selectively monitor the plasma membrane in live samples. This probe exhibited red emission (620-700 nm), large TP absorption cross sections (δmax > 790 GM), and high selectivity to the plasma membrane. In cultured cells and in vivo hepatic tissue imaging, THQ-Mem showed bright TP-excited fluorescence (TPEF) and remarkable selectivity for the plasma membrane. Furthermore, simultaneous in vivo imaging with THQ-Mem and a TP lipid droplet probe could serve as an efficient tool to monitor morphological and physiological changes in the plasma membrane and lipid droplets.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Tanmay Kumar Pati
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Jeong-Mi Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Bo Ra Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Sun Young Kwak
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
15
|
Geng B, Hu J, Li Y, Feng S, Pan D, Feng L, Shen L. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy. Nat Commun 2022; 13:5735. [PMID: 36175446 PMCID: PMC9523047 DOI: 10.1038/s41467-022-33474-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e−–h+ pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy. Combining sonodynamic properties and NIR fluorescence into a single material is desired for deep tissue applications. Here, the authors report on carbon dot sono-sensitizers engineered with a narrow bandgap and coated with cancer cell membrane for targeted NIR guided sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuan Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
16
|
Chi S, Zuo M, Zhu M, Wang Z, Liu Z. Loading Drugs in Natural Phospholipid Bilayers of Cell Membrane Shells to Construct Biomimetic Nanocomposites for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28671-28682. [PMID: 35703029 DOI: 10.1021/acsami.2c08587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug-based oncotherapy is seriously challenged by insufficient drug accumulation at tumor sites, mainly resulting from low drug loading efficiency and poor tumor-targeting ability of drug carriers. We herein proposed a "one-stone, two-bird" strategy to circumvent both obstacles, utilizing the source cancer cell membrane (CM) as a dual-function carrier to simultaneously achieve sufficient drug loading and homologous tumor targeting. Combining the use of TPGS (d-α-tocopherol polyethylene glycol 1000 succinate) to inhibit the drug efflux process of drug-resistant tumor, we constructed core-shell-structured nanocomposites CMGNPs consisting of ICG (indocyanine green)/DOX (doxorubicin)-loaded, TPGS/OA (oleic acid)-stabilized upconversion nanoparticles as the core and ICG-loaded MCF7/ADR CMs as the shell, for combined chemo/phototherapy of MCF7/ADR tumor. The employment of phospholipid bilayers of CMs as natural pockets for extra drug loading while preserving the homologous targeting ability greatly enhanced drug concentration at tumor sites, endowing CMGNPs with excellent therapeutic efficacy. Our effort provides a versatile approach for facilitating drug delivery in diverse therapeutic systems.
Collapse
Affiliation(s)
- Siyu Chi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miaomiao Zuo
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Mengting Zhu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zijun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
17
|
Li CQ, Ma MW, Zhang B, Chen W, Yin ZY, Xie XT, Hou XL, Zhao YD, Liu B. A self-assembled nanoplatform based on Ag 2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H 2O 2-activated near-infrared-II fluorescence imaging. Acta Biomater 2022; 140:547-560. [PMID: 34923095 DOI: 10.1016/j.actbio.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 01/11/2023]
Abstract
A nanoplatform based on Ag2S quantum dots (QDs) and tellurium nanorods (TeNRs) was developed for combined chemo-photothermal therapy guided by H2O2-activated near-infrared (NIR)-II fluorescence imaging. Polypeptide PC10AGRD-modified TeNRs and Ag2S QDs were co-encapsulated in 4T1 cell membrane to prepare a nanoplatform (CCM@AT). Ag2S QDs and TeNRs in the CCM@AT were used as a fluorescence probe and photosensitizer, and a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs, respectively. After the CCM@AT was specifically targeted to the tumor site, the TeNRs were dissolved by the high concentration of H2O2 at the tumor site to light up the fluorescence of Ag2S QDs for NIR-II fluorescence imaging. In addition, the generated toxic TeO66- molecules decreased ATP production by selective cancer chemotherapy, which is beneficial for photothermal therapy. The elevated temperature due to photothermal therapy in turn promoted the chemical reaction in chemotherapy. In vitro and in vivo toxicity results showed that the CCM@AT possesses high biocompatibility. Compared to single photothermal therapy and chemotherapy, the synergistic chemo-photothermal therapy can effectively suppress the growth of 4T1 tumor. This all-in-one nanoplatform provides a boulevard for the combination therapy of tumors guided by NIR-II fluorescence imaging. STATEMENT OF SIGNIFICANCE: NIR-II fluorescence imaging shows the characteristics of low tissue absorption, reflection, and scattering, which can greatly reduce the influence of autofluorescence in vivo. However, the non-negligible effect of autofluorescence is still observed in fluorescence imaging in vivo. Therefore, there is an urgent need to develop a strategy of controlled release of fluorescence for accurate imaging and tumor therapy. Here, Ag2S quantum dots (QDs) with NIR-II fluorescence emission and good photothermal conversion efficiency are used as a fluorescence probe and photosensitizer, and tellurium nanorods (TeNRs) are used as a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs. This multiple nanoplatform provides an inspiration for the combination therapy of tumor guided by NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zhong-Yuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Xiao-Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
18
|
Guo Y, Wang Z, Shi X, Shen M. Engineered cancer cell membranes: An emerging agent for efficient cancer theranostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210171. [PMID: 37324583 PMCID: PMC10190949 DOI: 10.1002/exp.20210171] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/24/2021] [Indexed: 06/15/2023]
Abstract
For efficient cancer theranostics, surface modification of nanomaterials plays an important role in improving targeting ability and reducing the non-specific interactions with normal tissues. Recently, the biomimetic technology represented by coating of cancer cell membranes (CCMs) has been regarded as a promising method to strengthen the biocompatibility and targeting specificity of nanomaterials. Furthermore, the engineered CCMs (ECCMs) integrated with the natural biological properties of CCMs and specific functions from other cells or proteins have offered more possibilities in the field of cancer theranostics. Herein, the recent progresses in the design and preparation of ECCMs are summarized, and the applications of ECCMs in targeting delivery, activation of immunity, and detection of circulating tumor cells are reviewed. Finally, the current challenges and future perspectives with regard to the development of ECCMs are briefly discussed.
Collapse
Affiliation(s)
- Yunqi Guo
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Zhiqiang Wang
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| | - Mingwu Shen
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiP. R. China
| |
Collapse
|
19
|
Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, Qian Z, Zhang H. Hybrid Membrane Nanovaccines Combined with Immune Checkpoint Blockade to Enhance Cancer Immunotherapy. Int J Nanomedicine 2022; 17:73-89. [PMID: 35027827 PMCID: PMC8752078 DOI: 10.2147/ijn.s346044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Cancer vaccines are a promising therapeutic approach in cancer immunotherapy and can inhibit tumor growth and prevent tumor recurrence and metastasis by activating a sustained antitumor immunoprotective effect. However, the therapeutic effect of cancer vaccines is severely weakened by the low immunogenicity of cancer antigens and the immunosuppressive microenvironment in tumor tissues. Methods Here, we report a novel hybrid membrane nanovaccine, composed of mesoporous silica nanoparticle as a delivery carrier, hybrid cell membranes obtained from dendritic cells and cancer cells, and R837 as an immune adjuvant (R837@HM-NPs). We investigated the anti-tumor, tumor recurrence and metastasis prevention abilities of R837@HM-NPs and their mechanisms of action through a series of in vivo and ex vivo experiments. Results R837@HM-NPs not only provide effective antigenic stimulation but are also a durable supply of the immune adjuvant R837. In addition, R837@HM-NPs promote antigen endocytosis into dendritic cells via various receptor-mediated pathways. Compared with HM-NPs or R837@HM-NPs, R837@HM-NPs in combination with an immune checkpoint blockade showed stronger antitumor immune responses in inhibiting tumor growth, thus eliminating established tumors, and rejecting re-challenged tumors by regulating the immunosuppressive microenvironment and immunological memory effect. Conclusion These findings suggest that the hybrid membrane nanovaccine in combination with immune checkpoint blockade is a powerful strategy to enhance antitumor immunotherapy without concerns of systemic toxicity.
Collapse
Affiliation(s)
- Peiqi Zhao
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Yuanlin Xu
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Wei Ji
- Public Laboratory, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Lanfang Li
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| |
Collapse
|
20
|
Wu Y, Shi C, Wang G, Sun H, Yin S. Recent Advances in the Development and Applications of Conjugated Polymer dots. J Mater Chem B 2022; 10:2995-3015. [DOI: 10.1039/d1tb02816b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer dots or semiconducting polymer nanoparticles (Pdots) are nanoparticles prepared based on organic polymers. Pdots have the advantages of lower cost, simple preparation process, good biocompatibility, excellent stability, easy...
Collapse
|
21
|
Yu X, Sha L, Liu Q, Zhao Y, Fang H, Cao Y, Zhao J. Recent advances in cell membrane camouflage-based biosensing application. Biosens Bioelectron 2021; 194:113623. [PMID: 34530371 DOI: 10.1016/j.bios.2021.113623] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
Cell membrane, a semi-permeable membrane composed of phospholipid bilayers, is a natural barrier to prevent extracellular substances from freely entering the cell. Cell membrane with selective permeability and fluidity ensures the relative stability of the intracellular environment and enables various biochemical reactions to smoothly operate in an orderly manner. Inspired by the natural composition and transport process, various cell membranes and synthetic bionic films as the mimics of cell membranes have emerged as appealing camouflage materials for biosensing applications. The membranes are devoted to surface modification and substance delivery, and realize the detection or in situ analysis of multiple biomarkers, such as glucose, nucleic acids, virus, and circulating tumor cells. In this review, we summarize the recent advances in cell membrane camouflage-based biosensing applications, mainly focusing on the use of the membranes extracted from natural cells (e.g., blood cells and cancer cells) as well as biomimetic membranes. Materials and surfaces camouflaged with cell membranes are shown to have superior stability and biocompatibility as well as intrinsic properties of original cells, which greatly facilitate their use in biosensing. In specific, camouflage with blood cell membranes bestows low immunogenicity and prolonged blood circulation time, camouflage with cancer cell membranes provides homologous targeting ability, and camouflage with biomimetic membranes endows considerable plasticity for functionalization. Further research is expected to focus on the deeper understanding of cell-specific properties of membranes and the exploration of hybrid membranes, which might provide new development opportunities for cell membrane camouflage-based biosensing application.
Collapse
Affiliation(s)
- Xiaomeng Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, PR China; Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Sha
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yingyan Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Huan Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, PR China; Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, PR China; Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
22
|
Guo M, Xia C, Wu Y, Zhou N, Chen Z, Li W. Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems. Front Bioeng Biotechnol 2021; 9:772522. [PMID: 34869288 PMCID: PMC8636778 DOI: 10.3389/fbioe.2021.772522] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Cell membrane-coated biomimetic nanoplatforms have many inherent properties, such as bio-interfacing abilities, self-identification, and signal transduction, which enable the biomimetic delivery system to escape immune clearance and opsonization. This can also maximize the drug delivery efficiency of synthetic nanoparticles (NPs) and functional cell membranes. As a new type of delivery system, cell membrane-coated biomimetic delivery systems have broadened the prospects for biomedical applications. In this review, we summarize research progress on cell membrane biomimetic technology from three aspects, including sources of membrane, modifications, and applications, then analyze their limitations and propose future research directions.
Collapse
Affiliation(s)
- Mengyu Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenjie Xia
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Li D, Wang Y, Li C, Wang Q, Sun B, Zhang H, He Z, Sun J. Cancer-specific calcium nanoregulator suppressing the generation and circulation of circulating tumor cell clusters for enhanced anti-metastasis combinational chemotherapy. Acta Pharm Sin B 2021; 11:3262-3271. [PMID: 34729314 PMCID: PMC8546850 DOI: 10.1016/j.apsb.2021.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Tumor metastasis is responsible for chemotherapeutic failure and cancer-related death. Moreover, circulating tumor cell (CTC) clusters play a pivotal role in tumor metastasis. Herein, we develop cancer-specific calcium nanoregulators to suppress the generation and circulation of CTC clusters by cancer membrane-coated digoxin (DIG) and doxorubicin (DOX) co-encapsulated PLGA nanoparticles (CPDDs). CPDDs could precisely target the homologous primary tumor cells and CTC clusters in blood and lymphatic circulation. Intriguingly, CPDDs induce the accumulation of intracellular Ca2+ by inhibiting Na+/K+-ATPase, which help restrain cell–cell junctions to disaggregate CTC clusters. Meanwhile, CPDDs suppress the epithelial–mesenchymal transition (EMT) process, resulting in inhibiting tumor cells escape from the primary site. Moreover, the combination of DOX and DIG at a mass ratio of 5:1 synergistically induces the apoptosis of tumor cells. In vitro and in vivo results demonstrate that CPDDs not only effectively inhibit the generation and circulation of CTC clusters, but also precisely target and eliminate primary tumors. Our findings present a novel approach for anti-metastasis combinational chemotherapy.
Collapse
Key Words
- Breast cancer
- CI, combination index
- CLSM, confocal laser scanning microscopy
- CTC, circulating tumor cell
- Cell–cell junctions
- Circulating tumor cell clusters
- DAPI, 4ʹ,6-diamidino-2-phenylindole
- DIG, digoxin
- DLS, dynamic light scattering
- DOX, doxorubicin
- DiR, 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaineiodide
- Digoxin
- Doxorubicin
- EMT, epithelial–mesenchymal transition
- Epithelial–mesenchymal transition
- H&E, hematoxylin and eosin
- Homologous targeting
- Lung metastasis
- MMP-9, matrix metalloproteinase-9
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazoliumbromide
- TEM, transmission electron microscopy
Collapse
|
24
|
Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, Hu G, Tasciotti E, Lehto VP. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun 2021; 12:5726. [PMID: 34593813 PMCID: PMC8484581 DOI: 10.1038/s41467-021-26052-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membrane coated nanoparticles (NPs) have recently been recognized as attractive nanomedical tools because of their unique properties such as immune escape, long blood circulation time, specific molecular recognition and cell targeting. However, the integrity of the cell membrane coating on NPs, a key metrics related to the quality of these biomimetic-systems and their resulting biomedical function, has remained largely unexplored. Here, we report a fluorescence quenching assay to probe the integrity of cell membrane coating. In contradiction to the common assumption of perfect coating, we uncover that up to 90% of the biomimetic NPs are only partially coated. Using in vitro homologous targeting studies, we demonstrate that partially coated NPs could still be internalized by the target cells. By combining molecular simulations with experimental analysis, we further identify an endocytic entry mechanism for these NPs. We unravel that NPs with a high coating degree (≥50%) enter the cells individually, whereas the NPs with a low coating degree (<50%) need to aggregate together before internalization. This quantitative method and the fundamental understanding of how cell membrane coated NPs enter the cells will enhance the rational designing of biomimetic nanosystems and pave the way for more effective cancer nanomedicine.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | - Xuan Bai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital and San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
25
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
27
|
Lv Y, Li F, Wang S, Lu G, Bao W, Wang Y, Tian Z, Wei W, Ma G. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. SCIENCE ADVANCES 2021; 7:eabd7614. [PMID: 33771861 PMCID: PMC7997510 DOI: 10.1126/sciadv.abd7614] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.
Collapse
Affiliation(s)
- Yanlin Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Zhang D, Ye Z, Liu H, Wang X, Hua J, Ling Y, Wei L, Xia Y, Sun S, Xiao L. Cell membrane coated smart two-dimensional supraparticle for in vivo homotypic cancer targeting and enhanced combinational theranostics. Nanotheranostics 2021; 5:275-287. [PMID: 33654654 PMCID: PMC7914337 DOI: 10.7150/ntno.57657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Development of intelligent and multifunctional nanoparticle for the diagnosis and treatment of cancer has drawn great attention recently. In this work, we design a smart two-dimensional (2D) supraparticle for tumor targeted magnetic resonance imaging (MRI)/photothermal imaging (PTI) and chemo/photothermal therapy (PTT). Methods: The nanoparticle consists of a manganese dioxide (MnO2) nanosheet coated gold nanorod (GNR) core (loading with chemotherapeutics doxorubicin (DOX)), and cancer cell membrane shell (denoted as CM-DOX-GMNPs). Decoration of cell membrane endows the nanoparticle with greatly improved colloidal stability and homotypic cancer cell targeting ability. Once the nanoparticles enter tumor cells, MnO2 nanosheets can be etched to Mn2+ by glutathione (GSH) and acidic hydrogen peroxide (H2O2) in the cytosol, leading to the release of DOX. Meanwhile, stimuli dependent releasing of Mn2+ can act as MRI contrast agent for tumor diagnosis. Illumination with near-infrared (NIR) light, photothermal conversion effect of GNRs can be activated for synergistic cancer therapy. Results:In vivo results illustrate that the CM-DOX-GMNPs display tumor specific MRI/PTI ability and excellent inhibition effect on tumor growth. Conclusion: This bioinspired nanoparticle presents an effective and intelligent approach for tumor imaging and therapy, affording valuable guidance for the rational design of robust theranostics nanoplatform.
Collapse
Affiliation(s)
- Di Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianhao Hua
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yunyun Ling
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Shaokai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Zhang M, Cheng S, Jin Y, Zhang N, Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med 2021; 11:e292. [PMID: 33635002 PMCID: PMC7819108 DOI: 10.1002/ctm2.292] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, cell membrane camouflaging technology has emerged as an important strategy of nanomedicine, and the modification on the membranes is also a promising approach to enhance the properties of the nanoparticles, such as cancer targeting, immune evasion, and phototherapy sensitivity. Indeed, diversified approaches have been exploited to re-engineer the membranes of nanoparticles in several studies. In this review, first we discuss direct modification strategy of cell membrane camouflaged nanoparticles (CM-NP) via noncovalent, covalent, and enzyme-involved methods. Second, we explore how the membranes of CM-NPs can be re-engineered at the cellular level using strategies such as genetic engineering and membranes fusion. Due to the innate biological properties and excellent biocompatibility, the functionalized cell membrane-camouflaged nanoparticles have been widely applied in the fields of drug delivery, imaging, detoxification, detection, and photoactivatable therapy.
Collapse
Affiliation(s)
- Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| |
Collapse
|
30
|
Tang Y, Qian W, Zhang B, Liu W, Sun X, Ji W, Ma L, Zhu D. None-Loss Target Release of Biomimetic CaCO 3 Nanocomposites for Screening Bioactive Components and Target Proteins. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingying Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| | - Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
- Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu, China
| | - Bei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| | - Wenya Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
- Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Jiangsu, China
| | - Xuetong Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| | - Wenwen Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| | - Lijuan Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, China
| |
Collapse
|
31
|
Lu L, Sun Y, Wan C, Hu Y, Lo PC, Lovell JF, Yang K, Jin H. Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Curr Opin Biotechnol 2021; 69:153-161. [PMID: 33476937 DOI: 10.1016/j.copbio.2020.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Although nanomedicines have provided promising anti-tumor effects in cancer animal models, their clinical success remains limited. One of the most significant barriers in the clinical translation of nanomedicines is that they consist of multiple components, each of which may have different toxicities and therapeutic effects. Intravital imaging provides high spatial and temporal resolution for visualizing nanomedicine-mediated interactions between immune cells and tumor cells in real-time. Intravital imaging can facilitate the in vivo evaluation of the properties and effects of nanomedicines, such as their ability to cross the tumor vasculature, specifically eliminate the cancer cells, and modulate the immune cells found in the tumor microenvironment (TME). Thus, intravital imaging can provide direct evidence of nanomedicine's intravital behavior to better understand mechanism and accelerate clinical translation. In this review, we summarize several applications and latest advances in intravital imaging in nanomedicine-assisted anti-cancer therapy and discuss future perspectives in the field.
Collapse
Affiliation(s)
- Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Buguis FL, Maar RR, Staroverov VN, Gilroy JB. Near‐Infrared Boron Difluoride Formazanate Dyes. Chemistry 2021; 27:2854-2860. [DOI: 10.1002/chem.202004793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Francis L. Buguis
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
33
|
Yang Q, Zhou L, Peng L, Yuan G, Ding H, Tan L, Zhou Y. A smart mitochondria-targeting TP-NIR fluorescent probe for the selective and sensitive sensing of H 2S in living cells and mice. NEW J CHEM 2021. [DOI: 10.1039/d1nj00840d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen sulfide (H2S) is one of the important gaseous signalling molecules, which plays key roles in various critical biological processes.
Collapse
Affiliation(s)
- Qiaomei Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Liyi Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Longpeng Peng
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Gangqiang Yuan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Haiyuan Ding
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Libin Tan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Yizhuang Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| |
Collapse
|
34
|
Huang YQ, Jiang SS, Pan LX, Zhang R, Liu KL, Liu XF, Fan QL, Wang LH, Huang W. A zwitterionic red-emitting water-soluble conjugated polymer with high resistance to nonspecific binding for two-photon cell imaging and good singlet oxygen production capability. NEW J CHEM 2021. [DOI: 10.1039/d1nj01431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zwitterionic red-emitting water-soluble conjugated polymer exhibited better two-photon cell imaging and singlet oxygen production capability than its cationic analogue.
Collapse
Affiliation(s)
- Yan-Qin Huang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shan-Shan Jiang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Li-Xiang Pan
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Rui Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Kun-Lin Liu
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xing-Fen Liu
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qu-Li Fan
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lian-Hui Wang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
35
|
Hu L, Chen Z, Liu Y, Tian B, Guo T, Liu R, Wang C, Ying L. In Vivo Bioimaging and Photodynamic Therapy Based on Two-Photon Fluorescent Conjugated Polymers Containing Dibenzothiophene- S, S-dioxide Derivatives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57281-57289. [PMID: 33296171 DOI: 10.1021/acsami.0c12955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a critical component for photodynamic therapy toward cancer treatment, photosensitizers require high photoinduced reactive oxygen species generation efficiency, good biocompatibility, and high phototoxicity. Herein, a series of donor-acceptor conjugated polymers containing dibenzothiophene-S,S-dioxide derivatives are designed and synthesized, which can be used as effective photosensitizers. The resulting copolymer PTA5 shows strong green light emission with high photoluminescence quantum yields owing to the intercrossed excited state of local existed and charge transfer states. The PTA5 nanoparticles can be fabricated by encapsulation with a biocompatible polymer matrix. Upon excitation at 800 nm, these nanoparticles present a relatively large two-photon absorption cross section of 3.29 × 106 GM. These nanoparticles also exhibit good photostability in water and thus can be utilized for bioimaging. The tissue-penetrating depths of up to 170 μm for hepatic vessels and 380 μm for blood vessels of mouse ear were achieved using PTA5 nanoparticles. Furthermore, PTA5 nanoparticles show impressive reactive oxygen species generation capability under the irradiation of a white light source. This can be attributed to the effective intersystem crossing between high-level excited state. Upon irradiation with white light (400-700 nm) at 50 mW cm-2 for 5 min every other day, the tumor growth can be effectively suppressed in the presence of PTA5 nanoparticles. These findings demonstrate that PTA5 nanoparticles can be used as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Liwen Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Zikang Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Yanshan Liu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Bishan Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ting Guo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ruiyuan Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| |
Collapse
|
36
|
Zhang J, Gong L, Zhang X, Zhu M, Su C, Ma Q, Qi D, Bian Y, Du H, Jiang J. Multipolar Porphyrin-Triazatruxene Arrays for Two-Photon Fluorescence Cell Imaging. Chemistry 2020; 26:13842-13848. [PMID: 32468667 DOI: 10.1002/chem.202001367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/24/2020] [Indexed: 11/06/2022]
Abstract
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP)n (n=1-3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40-0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D-π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D-π-A-D multipolar array.
Collapse
Affiliation(s)
- Jinghui Zhang
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Gong
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoshuang Zhang
- Department of Biology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengliang Zhu
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chaorui Su
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qing Ma
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongwu Du
- Department of Biology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
37
|
Dai Z, Wen W, Guo Z, Song XZ, Zheng K, Xu X, Qi X, Tan Z. SiO2-coated magnetic nano-Fe3O4 photosensitizer for synergistic tumour-targeted chemo-photothermal therapy. Colloids Surf B Biointerfaces 2020; 195:111274. [DOI: 10.1016/j.colsurfb.2020.111274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
|
38
|
Wu G, Wei W, Zhang J, Nie W, Yuan L, Huang Y, Zuo L, Huang L, Xi X, Xie HY. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials 2020; 250:119963. [DOI: 10.1016/j.biomaterials.2020.119963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
|
39
|
Zhang F, Lu G, Wen X, Li F, Ji X, Li Q, Wu M, Cheng Q, Yu Y, Tang J, Mei L. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J Control Release 2020; 326:131-139. [PMID: 32580043 DOI: 10.1016/j.jconrel.2020.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
As the combination of photothermal therapy (PTT) with immunotherapy provides an effective strategy in cancer treatment, a magnetic nanoparticle delivery system was constructed to load indocyanine green (ICG) and immunostimulator R837 hydrochloride (R837) for spatio-temporally PTT/immunotherapy synergism in cancer. This delivery system is composed of Fe3O4 magnetic nanoparticles (MPs) as the core to load ICG and polyethylene glycol polyphenols (DPA-PEG) as the coating layer to load R837, which formed R837 loaded polyphenols coating ICG loaded magnetic nanoparticles (MIRDs). After intravenous injection, the formed MIRDs resulted in long circulation, magnetic resonance imaging (MRI) guides, and magnetic targeting. Once targeting to the tumor, the MIRDs with the near-infrared (NIR) irradiation caused tumor ablation and resulted in tumor-associated antigens releasing to induce the body's immunological response, which was markedly improved it to attack the tumors with the R837 releasing from the outer DPA-PEG. In this case, the synergism of the PTT and immunotherapy inhibited tumor growth, metastasis and recurrence, which resulted in potent anticancer therapeutic effects with few side effect.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China; Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, PR China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaolei Wen
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, PR China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Qinzhen Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Jing Tang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
40
|
Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 2020; 10:6278-6309. [PMID: 32483453 PMCID: PMC7255022 DOI: 10.7150/thno.42564] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Multifunctional magnetic nanoparticles and derivative nanocomposites have aroused great concern for multimode imaging and cancer synergistic therapies in recent years. Among the rest, functional magnetic iron oxide nanoparticles (Fe3O4 NPs) have shown great potential as an advanced platform because of their inherent magnetic resonance imaging (MRI), biocatalytic activity (nanozyme), magnetic hyperthermia treatment (MHT), photo-responsive therapy and drug delivery for chemotherapy and gene therapy. Magnetic Fe3O4 NPs can be synthesized through several methods and easily surface modified with biocompatible materials or active targeting moieties. The MRI capacity could be appropriately modulated to induce response between T1 and T2 modes by controlling the size distribution of Fe3O4 NPs. Besides, small-size nanoparticles are also desired due to the enhanced permeation and retention (EPR) effect, thus the imaging and therapeutic efficiency of Fe3O4 NP-based platforms can be further improved. Here, we firstly retrospect the typical synthesis and surface modification methods of magnetic Fe3O4 NPs. Then, the latest biomedical application including responsive MRI, multimodal imaging, nanozyme, MHT, photo-responsive therapy and drug delivery, the mechanism of corresponding treatments and cooperation therapeutics of multifunctional Fe3O4 NPs are also be explained. Finally, we also outline a brief discussion and perspective on the possibility of further clinical translations of these multifunctional nanomaterials. This review would provide a comprehensive reference for readers to understand the multifunctional Fe3O4 NPs in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shengzhe Zhao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
- State Key Lab of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
| |
Collapse
|
41
|
Fan Q, Cui X, Wang Q, Gao P, Shi S, Wen W, Guo H, Xu Y, Peng B. A novel photostable near-infrared-to-near-infrared fluorescent nanoparticle for in vivo imaging. J Biomed Mater Res B Appl Biomater 2020; 108:2912-2924. [PMID: 32386265 DOI: 10.1002/jbm.b.34622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022]
Abstract
Water-soluble K5 HoLi2 F10 (KHLF) nanoprobes with the excitation and emission both in the near-infrared (NIR) region were developed and first demonstrated for in vivo imaging of living mice. The PEG400 coating endows the nanoprobes with good water solubility and biocompatibility. Doping with Ho3+ ions is capable of emitting NIR fluorescence with two peaks centered, respectively, at 887 and 1,180 nm once excited by a 808 nm laser; meanwhile, it also possess good photothermal conversion performance. The KHLF matrix with specifically structure of large ion-distance and low photon energy imparts the nanoprobes low quenching effect and excellent photostability (fluorescence decrease <5% upon 120 min illumination of 808 nm continuous laser with a power density of 1 W/cm2 ). The nanoparticles (NPs) were tested for in vitro bioimaging with living mice. The results show the NPs have low biotoxicity, rapid metabolism, normal biodistribution, together with the photothermal imaging performance and a high-contrast fluorescence images (signal-to-background ratio of 14:1). The superior performances of these nanoprobes in vivo imaging of mice proclaim the great potential of this type of probe for high-contrast imaging and photothermal treatment in practical applications.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China
| | - Peng Gao
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, People's Republic of China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weihua Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
42
|
Gong XT, Xie W, Cao JJ, Zhang S, Pu K, Zhang HL. NIR-emitting semiconducting polymer nanoparticles for in vivo two-photon vascular imaging. Biomater Sci 2020; 8:2666-2672. [PMID: 32253399 DOI: 10.1039/c9bm02063b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescence (TPF) imaging holds great promise for real-time monitoring of cerebral ischemia-reperfusion injury, which is important for the clinical diagnosis of stroke. However, biocompatible and photostable NIR-emitting probes for TPF imaging of ischemic stroke are lacking. Herein, we report the first NIR-emitting TPF probe (named NESPN) prepared using semiconducting polymers for TPF imaging of cerebral ischemia. By virtue of its excellent biocompatibility with the nervous system and bright fluorescence NIR emission, NESPN enables the real-time imaging of mouse brain vasculature with micrometer-scale spatial resolution, realizing clear visualization of ultrafine capillaries (∼3.16 μm). Moreover, NESPN can be utilized in the dynamic monitoring of cerebral blood flow velocity. Microangiography using NESPN was successfully used to indicate the openness of the penumbra area in the mouse brain stroke model. More importantly, this technique allows us to continuously monitor the whole process of ischemic stroke and subsequent reperfusion. This work provides a new and versatile tool for vascular research and diagnosis of vascular diseases.
Collapse
Affiliation(s)
- Xiao-Ting Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wenguang Xie
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Kanyi Pu
- Chemical and Biomedical Engineering, Nanyang Technological University of Singapore, 637457, Singapore.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
43
|
A multifuctional nanoplatform for drug targeted delivery based on radiation-engineered nanogels. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Sevencan C, McCoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, Bay BH, Leong DT. Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900201] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cansu Sevencan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Reece Sean Ashley McCoy
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Centre for Advanced 2D MaterialsGraphene Research Centre Singapore 117546 Singapore
| | - Meng Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingyi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesDepartment of Biomedical EngineeringJinan University Guangzhou 510632 China
| | - Boon Huat Bay
- Department of AnatomyNational University of Singapore 4 Medical Drive Singapore 117594 Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore Singapore 117456 Singapore
| |
Collapse
|
45
|
Li S, Liu J, Sun M, Wang J, Wang C, Sun Y. Cell Membrane-Camouflaged Nanocarriers for Cancer Diagnostic and Therapeutic. Front Pharmacol 2020; 11:24. [PMID: 32116701 PMCID: PMC7010599 DOI: 10.3389/fphar.2020.00024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Cell membrane (CM)-camouflaged nanocarriers (CMNPs) are the tools of a biomimetic strategy that has attracted significant attention. With a wide range of nanoparticle cores and CMs available, various creative CMNP designs have been studied for cancer diagnosis and therapy. The various functional CM molecules available allow CMNPs to demonstrate excellent properties such as prolonged circulation time, immune escape ability, reduced systemic toxicity, and homologous targeting ability when camouflaged with CMs derived from various types of natural cells including red and white blood cells, platelets, stem cells, and cancer cells. In this review, we summarize various CMNPs employed for cancer chemotherapy, immunotherapy, phototherapy, and in vivo imaging. We also predict future challenges and opportunities for fundamental and clinical studies.
Collapse
Affiliation(s)
- Shengxian Li
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jianhua Liu
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Mengyao Sun
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jixue Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Chunxi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Yinghao Sun
- Department of Urology, the First Hospital of Jilin University, Changchun, China.,Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Li Y, Gan Y, Li C, Yang YY, Yuan P, Ding X. Cell membrane-engineered hybrid soft nanocomposites for biomedical applications. J Mater Chem B 2020; 8:5578-5596. [DOI: 10.1039/d0tb00472c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An overview of various cell membrane-engineered hybrid soft nanocomposites for medical applications.
Collapse
Affiliation(s)
- Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Yingying Gan
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen 518107
- China
| |
Collapse
|
47
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
|
49
|
Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Li A, Zhao J, Fu J, Cai J, Zhang P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci 2019; 16:161-174. [PMID: 33995611 PMCID: PMC8105416 DOI: 10.1016/j.ajps.2019.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
The lack of effective methods of diagnosis and treatment presents a major barrier to combat against tumor. The biomimetic concept is an emerging field that expresses great application potential in tumor fighting. Strategy for combining nano-systems with biomimetic technology has gained increasing attention that is proved bioinspired, environmentally benign, and promising. Herein, we provide an up-to-date review of biomimetic nano-systems as well as their applications in tumor therapy. In addition, the challenges and future directions of biomimetic nano-systems to achieve clinical translation are also pointed out.
Collapse
Affiliation(s)
- Anning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiawei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingru Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Cai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|