1
|
Völker LA, Herb K, Merchant DA, Bechelli L, Degen CL, Abendroth JM. Charge and Spin Dynamics and Destabilization of Shallow Nitrogen-Vacancy Centers under UV and Blue Excitation. NANO LETTERS 2024; 24:11895-11903. [PMID: 39265047 DOI: 10.1021/acs.nanolett.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Shallow nitrogen-vacancy (NV) centers in diamond offer opportunities to study photochemical reactions, including photogeneration of radical pairs, at the single-molecule regime. A prerequisite is a detailed understanding of charge and spin dynamics of NVs exposed to the short-wavelength light required to excite chemical species. Here, we investigate the charge and spin dynamics of shallow NVs under 445 and 375 nm illumination. With blue excitation, charge-state preparation is power-dependent, and modest spin initialization fidelity is observed. Under UV excitation, charge-state preparation is power-independent and no spin polarization is observed. Aging of NVs under prolonged UV exposure manifests in a reduced charge stability and spin contrast. We attribute this aging to modified local charge environments of near-surface NVs and identify distinct electronic traps only accessible at short wavelengths. Finally, we evaluate the prospects of NVs to probe photogenerated radical pairs based on measured sensitivities and outline possible sensing schemes.
Collapse
Affiliation(s)
- Laura A Völker
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Darin A Merchant
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Lorenzo Bechelli
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - John M Abendroth
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Giri R, Jensen RH, Khurana D, Bocquel J, Radko IP, Lang J, Osterkamp C, Jelezko F, Berg-So̷rensen K, Andersen UL, Huck A. Charge Stability and Charge-State-Based Spin Readout of Shallow Nitrogen-Vacancy Centers in Diamond. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:6603-6610. [PMID: 38162528 PMCID: PMC10753810 DOI: 10.1021/acsaelm.3c01141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require an efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV0) and negative (NV-) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection. Nanoscale sensing applications, however, require shallow NV centers within a few nanometers distance from the surface where surface related effects might degrade the NV charge state. In this article, we investigate the charge state initialization and stability of single NV centers implanted ≈5 nm below the surface of a flat diamond plate. We demonstrate the SCC protocol on four shallow NV centers suitable for nanoscale sensing, obtaining a reduced readout noise of 5-6 times the spin-projection noise limit. We investigate the general applicability of the SCC for shallow NV centers and observe a correlation between the NV charge-state stability and readout noise. Coating the diamond with glycerol improves both the charge initialization and stability. Our results reveal the influence of the surface-related charge environment on the NV charge properties and motivate further investigations to functionalize the diamond surface with glycerol or other materials for charge-state stabilization and efficient spin-state readout of shallow NV centers suitable for nanoscale sensing.
Collapse
Affiliation(s)
- Rakshyakar Giri
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Rasmus Ho̷y Jensen
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Deepak Khurana
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Juanita Bocquel
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ilya P. Radko
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Johannes Lang
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christian Osterkamp
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Ulrik L. Andersen
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Alexander Huck
- Center
for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Bürgler B, Sjolander TF, Brinza O, Tallaire A, Achard J, Maletinsky P. All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond. NPJ QUANTUM INFORMATION 2023; 9:56. [PMID: 38665257 PMCID: PMC11041803 DOI: 10.1038/s41534-023-00724-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 04/28/2024]
Abstract
Solid state spins have demonstrated significant potential in quantum sensing with applications including fundamental science, medical diagnostics and navigation. The quantum sensing schemes showing best performance under ambient conditions all utilize microwave or radio-frequency driving, which poses a significant limitation for miniaturization, energy efficiency, and non-invasiveness of quantum sensors. We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing. Our scheme involves the 15N nuclear spin of the Nitrogen-Vacancy (NV) center in diamond as a sensing resource, and exploits NV spin dynamics in oblique magnetic fields near the NV's excited state level anti-crossing to optically pump the nuclear spin into a quantum superposition state. We demonstrate all-optical free-induction decay measurements-the key protocol for low-frequency quantum sensing-both on single spins and spin ensembles. Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications in challenging environments.
Collapse
Affiliation(s)
- B. Bürgler
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland
| | - T. F. Sjolander
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland
| | - O. Brinza
- Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS-UPR 3407, Université Sorbonne Paris Nord, 99 Avenue JB Clément, Villetaneuse, 93430 France
| | - A. Tallaire
- Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS-UPR 3407, Université Sorbonne Paris Nord, 99 Avenue JB Clément, Villetaneuse, 93430 France
- Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, Université PSL, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - J. Achard
- Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS-UPR 3407, Université Sorbonne Paris Nord, 99 Avenue JB Clément, Villetaneuse, 93430 France
| | - P. Maletinsky
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland
| |
Collapse
|
4
|
Niora M, Lerche MH, Dufva M, Berg-Sørensen K. Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205429. [PMID: 36638251 DOI: 10.1002/smll.202205429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.
Collapse
Affiliation(s)
- Maria Niora
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Kirstine Berg-Sørensen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Nie L, Nusantara AC, Damle VG, Baranov MV, Chipaux M, Reyes-San-Martin C, Hamoh T, Epperla CP, Guricova M, Cigler P, van den Bogaart G, Schirhagl R. Quantum Sensing of Free Radicals in Primary Human Dendritic Cells. NANO LETTERS 2022; 22:1818-1825. [PMID: 34929080 PMCID: PMC8880378 DOI: 10.1021/acs.nanolett.1c03021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Indexed: 05/21/2023]
Abstract
Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.
Collapse
Affiliation(s)
- Linyan Nie
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maxim V. Baranov
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia Reyes-San-Martin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thamir Hamoh
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chandra Prakash Epperla
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Miroslava Guricova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Petr Cigler
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Geert van den Bogaart
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Email for R.S.:
| |
Collapse
|
6
|
Shulevitz HJ, Huang TY, Xu J, Neuhaus SJ, Patel RN, Choi YC, Bassett LC, Kagan CR. Template-Assisted Self-Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies. ACS NANO 2022; 16:1847-1856. [PMID: 35025204 DOI: 10.1021/acsnano.1c09839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Milled nanodiamonds containing nitrogen-vacancy (NV) centers are nanoscale quantum sensors that form colloidal dispersions. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self-assembly. We demonstrate the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size but rather are consistent with heterogeneity in their nanoscale environment.
Collapse
Affiliation(s)
- Henry J Shulevitz
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tzu-Yung Huang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun Xu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Steven J Neuhaus
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raj N Patel
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lee C Bassett
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Lozovoi A, Vizkelethy G, Bielejec E, Meriles CA. Imaging dark charge emitters in diamond via carrier-to-photon conversion. SCIENCE ADVANCES 2022; 8:eabl9402. [PMID: 34995119 PMCID: PMC8741179 DOI: 10.1126/sciadv.abl9402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 05/22/2023]
Abstract
The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV−) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV− leads to a fluorescence change. This “charge-to-photon” conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent “single-charge emitters” that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond.
Collapse
Affiliation(s)
- Artur Lozovoi
- Department of Physics, CUNY-City College of New York, New York, NY 10031, USA
| | | | | | - Carlos A. Meriles
- Department of Physics, CUNY-City College of New York, New York, NY 10031, USA
- CUNY-Graduate Center, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
8
|
High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat Commun 2021; 12:1529. [PMID: 33750779 PMCID: PMC7943573 DOI: 10.1038/s41467-021-21781-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 12/03/2022] Open
Abstract
High fidelity single-shot readout of qubits is a crucial component for fault-tolerant quantum computing and scalable quantum networks. In recent years, the nitrogen-vacancy (NV) center in diamond has risen as a leading platform for the above applications. The current single-shot readout of the NV electron spin relies on resonance fluorescence method at cryogenic temperature. However, the spin-flip process interrupts the optical cycling transition, therefore, limits the readout fidelity. Here, we introduce a spin-to-charge conversion method assisted by near-infrared (NIR) light to suppress the spin-flip error. This method leverages high spin-selectivity of cryogenic resonance excitation and flexibility of photoionization. We achieve an overall fidelity > 95% for the single-shot readout of an NV center electron spin in the presence of high strain and fast spin-flip process. With further improvements, this technique has the potential to achieve spin readout fidelity exceeding the fault-tolerant threshold, and may also find applications on integrated optoelectronic devices. The NV centre in diamond has been used extensively in quantum information processing; however fault-tolerant readout of its spin remains challenging. Here, Zhang et al demonstrate a robust scheme that achieves high-fidelity readout via spin to charge conversion.
Collapse
|
9
|
Jayakumar H, Lozovoi A, Daw D, Meriles CA. Long-Term Spin State Storage Using Ancilla Charge Memories. PHYSICAL REVIEW LETTERS 2020; 125:236601. [PMID: 33337195 DOI: 10.1103/physrevlett.125.236601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
We articulate confocal microscopy and electron spin resonance to implement spin-to-charge conversion in a small ensemble of nitrogen-vacancy (NV) centers in bulk diamond and demonstrate charge conversion of neighboring defects conditional on the NV spin state. We build on this observation to show time-resolved NV spin manipulation and ancilla-charge-aided NV spin state detection via integrated measurements. Our results hint at intriguing opportunities in the development of novel measurement strategies in fundamental science and quantum spintronics as well as in the search for enhanced forms of color-center-based metrology down to the limit of individual point defects.
Collapse
Affiliation(s)
| | - Artur Lozovoi
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | - Damon Daw
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
| | - Carlos A Meriles
- Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
- CUNY-Graduate Center, New York, New York 10016, USA
| |
Collapse
|
10
|
Schrinner PPJ, Olthaus J, Reiter DE, Schuck C. Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits. NANO LETTERS 2020; 20:8170-8177. [PMID: 33136413 DOI: 10.1021/acs.nanolett.0c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanophotonics provides a promising approach to advance quantum technology by replicating fundamental building blocks of nanoscale quantum optic systems in large numbers with high reproducibility on monolithic chips. While photonic integrated circuit components and single-photon detectors offer attractive performance on silicon chips, the large-scale integration of individually accessible quantum emitters has remained a challenge. Here, we demonstrate simultaneous optical access to several integrated solid-state spin systems with Purcell-enhanced coupling of single photons with high modal purity from lithographically positioned nitrogen vacancy centers into photonic integrated circuits. Photonic crystal cavities embedded in networks of tantalum pentoxide-on-insulator waveguides provide efficient interfaces to quantum emitters that allow us to optically detect magnetic resonances (ODMR) as desired in quantum sensing. Nanophotonic networks that provide configurable optical interfaces to nanoscale quantum emitters via many independent channels will allow for novel functionality in photonic quantum information processors and quantum sensing schemes.
Collapse
Affiliation(s)
- Philip P J Schrinner
- Institute of Physics, University of Münster, 48149 Münster, Germany
- Center for NanoTechnology - CeNTech, 48149 Münster, Germany
- Center for Soft Nanoscience - SoN, 48149 Münster, Germany
| | - Jan Olthaus
- Institut für Festkörpertheorie, University of Münster, 48149 Münster, Germany
| | - Doris E Reiter
- Institut für Festkörpertheorie, University of Münster, 48149 Münster, Germany
| | - Carsten Schuck
- Institute of Physics, University of Münster, 48149 Münster, Germany
- Center for NanoTechnology - CeNTech, 48149 Münster, Germany
- Center for Soft Nanoscience - SoN, 48149 Münster, Germany
| |
Collapse
|
11
|
Sow M, Steuer H, Adekanye S, Ginés L, Mandal S, Gilboa B, Williams OA, Smith JM, Kapanidis AN. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. NANOSCALE 2020; 12:21821-21831. [PMID: 33103692 PMCID: PMC8329943 DOI: 10.1039/d0nr05931e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The fluorescent nitrogen-vacancy (NV) defect in diamond has remarkable photophysical properties, including high photostability which allows stable fluorescence emission for hours; as a result, there has been much interest in using nanodiamonds (NDs) for applications in quantum optics and biological imaging. Such applications have been limited by the heterogeneity of NDs and our limited understanding of NV photophysics in NDs, which is partially due to the lack of sensitive and high-throughput methods for photophysical analysis of NDs. Here, we report a systematic analysis of NDs using two-color wide-field epifluorescence imaging coupled to high-throughput single-particle detection of single NVs in NDs with sizes down to 5-10 nm. By using fluorescence intensity ratios, we observe directly the charge conversion of single NV center (NV- or NV0) and measure the lifetimes of different NV charge states in NDs. We also show that we can use changes in pH to control the main NV charge states in a direct and reversible fashion, a discovery that paves the way for performing pH nanosensing with a non-photobleachable probe.
Collapse
Affiliation(s)
- Maabur Sow
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Horst Steuer
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Sanmi Adekanye
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Laia Ginés
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Soumen Mandal
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Barak Gilboa
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | | | - Jason M. Smith
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Achillefs N. Kapanidis
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| |
Collapse
|
12
|
Barton J, Gulka M, Tarabek J, Mindarava Y, Wang Z, Schimer J, Raabova H, Bednar J, Plenio MB, Jelezko F, Nesladek M, Cigler P. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2020; 14:12938-12950. [PMID: 32790348 DOI: 10.1021/acsnano.0c04010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
Collapse
Affiliation(s)
- Jan Barton
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan Tarabek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Yuliya Mindarava
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zhenyu Wang
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Jan Bednar
- Institute for Advanced Biosciences, UMR 5309, Allée des Alpes, 38700 la Tronche, France
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czechia
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| |
Collapse
|
13
|
Li DF, Du B, Chen XD, Guo GC, Sun FW. Low power charge state depletion nanoscopy of the defect in diamonds with a pulsed laser excitation. OPTICS LETTERS 2020; 45:730-733. [PMID: 32004296 DOI: 10.1364/ol.383388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/24/2019] [Indexed: 05/21/2023]
Abstract
Two-photon charge state conversion has been utilized to improve the spatial resolution of the sensing and imaging with the nitrogen vacancy (NV) center in diamonds. Here, we studied the charge state conversion of the NV center under picosecond pulsed laser excitation. With the same average power, the charge state conversion rate can be improved approximately 24 times by reducing the repetition rate of the laser pulse from 80 to 1 MHz. Subsequently, a pulsed laser with a low repetition rate was applied for the super-resolution charge state depletion microscopy of the NV center. The average power of the depletion laser was reduced approximately 5 times. It can decrease the optical heating, which affects the accuracy and sensitivity of sensing. With the assistance of an additional near-infrared laser, a resolution of 12 nm was obtained with 1 mW depletion laser power. Combined with spin manipulation, we expect our results can be used for the development of a diffraction-unlimited NV center sensing.
Collapse
|
14
|
Raabova H, Chvatil D, Cigler P. Diamond nano-optode for fluorescent measurements of pH and temperature. NANOSCALE 2019; 11:18537-18542. [PMID: 31578537 DOI: 10.1039/c9nr03710a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nano-optodes with a diamond core coated with a double stimuli-responsive polymeric shell reversibly respond to pH and temperature changes. Swelling and collapsing of the shell are accompanied by changes in the charge of the polymer. Changes in the fluorescent spectra of nitrogen-vacancy centers ratiometrically indicate pH and temperature.
Collapse
Affiliation(s)
- Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic. and University of Chemistry and Technology, Prague, Technicka 5, 166 28 Praha 6, Czech Republic
| | - David Chvatil
- Nuclear Physics Institute of the CAS, 250 68 Husinec-Rez 130, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:913-931. [DOI: 10.1016/j.msec.2018.12.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
16
|
Hopper DA, Shulevitz HJ, Bassett LC. Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond. MICROMACHINES 2018; 9:mi9090437. [PMID: 30424370 PMCID: PMC6187496 DOI: 10.3390/mi9090437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV center’s spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.
Collapse
Affiliation(s)
- David A Hopper
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Henry J Shulevitz
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lee C Bassett
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|