1
|
Xu X, Tang L, Yu Y, Zhang J, Zhou X, Zhou T, Xuan C, Tian Q, Pan D. Cooperative amplification of Prussian blue as a signal indicator and functionalized metal-organic framework-based electrochemical biosensor for an ultrasensitive HE4 assay. Biosens Bioelectron 2024; 262:116541. [PMID: 38959719 DOI: 10.1016/j.bios.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Human epididymis protein 4 (HE4), a diagnostic biomarker of ovarian cancer, is crucial for monitoring the early stage of the disease. Hence, it is highly important to develop simple, inexpensive, and user-friendly biosensors for sensitive and quantitative HE4 assays. Herein, a new sandwich-type electrochemical immunosensor based on Prussian blue (PB) as a signal indicator and functionalized metal-organic framework nanocompositesas efficient signal amplifiers was fabricated for quantitative analysis of HE4. In principle, ketjen black (KB) and AuNPs modified on TiMOF (TiMOF-KB@AuNPs) could accelerate electron transfer on the electrode surface and act as a matrix for the immobilization of antibodies via cross-linking to improve the determination sensitivity. The PB that covalently binds to labeled antibodies endows the biosensors with intense electrochemical signals. Furthermore, the concentration of HE4 could be indirectly detected by monitoring the electroactivity of PB. Benefiting from the high signal amplification ability of the PB and MOF nanocomposites, this strategy displayed a wide linear range (0.1-80 ng mL-1) and a lower detection limit (0.02 ng mL-1). Hence, this study demonstrated great promise for application in clinical ovarian cancer diagnosis and treatment, and provided a new platform for detecting other cancer biomarkers.
Collapse
Affiliation(s)
- Xuanming Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China; Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lian Tang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China
| | - Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutaishan Road, 266000 Qingdao, Shandong, China.
| |
Collapse
|
2
|
Ma X, Zhang Y, Zhu L, Wu Y, Li J, Huang K, Xu W. Aptamer and Thiol Co-Regulated Color-Shifting Fluorophores via Dynamic Through-Bond/Space Conjugation for Constructing Ratiometric RNA Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401437. [PMID: 38932671 DOI: 10.1002/smll.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jun Li
- College of Food Science, Hebei Normal University of Science and Technology, Hebei, 066004, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Cui S, Liu X, Zhang X, Shi P, Zheng Y, Wang B, Zhang Q. Engineering Modular DNA Reaction Networks for Signal Processing. Chemistry 2024; 30:e202400740. [PMID: 38623910 DOI: 10.1002/chem.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wang
- School of Software Engineering, Dalian University, Dalian, 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Hu M, Li X, Wu JN, Yang M, Wu T. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates. ACS NANO 2024; 18:2184-2194. [PMID: 38193385 DOI: 10.1021/acsnano.3c09506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Toehold-mediated DNA strand displacement is the foundation of dynamic DNA nanotechnology, encompassing a wide range of tools with diverse functions, dynamics, and thermodynamic properties. However, a majority of these tools are limited to unidirectional reactions driven by thermodynamics. In response to the growing field of dissipative DNA nanotechnology, we present an approach: DNAzyme-based dissipative DNA strand displacement (D-DSD), which combines the principles of dynamic DNA nanotechnology and dissipative DNA nanotechnology. D-DSD introduces circular and dissipative characteristics, distinguishing it from the unidirectional reactions observed in conventional strand displacement. We investigated the reaction mechanism of D-DSD and devised temporal control elements. By substituting temporal components, we designed two distinct temporal AND gates using fewer than 10 strands, eliminating the need for complex network designs. In contrast to previous temporal logic gates, our temporal storage is not through dynamics control or cross-inhibition but through autoregressive storage, a more modular and scalable approach to memory storage. D-DSD preserves the fundamental structure of toehold-mediated strand displacement, while offering enhanced simplicity and versatility.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaolong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Ni Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengyao Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
5
|
Wang FP, Guan Y, Liu JW, Cheng H, Hu R. A functional nucleic acid-based fluorescence sensing platform based on DNA supersandwich nanowires and cation exchange reaction. Analyst 2023; 148:5033-5040. [PMID: 37667620 DOI: 10.1039/d3an01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Accurate and sensitive analysis of p53 DNA is important for early diagnosis of cancer. In this work, a fluorescence sensing system based on DNA supersandwich nanowires and cation exchange (CX)-triggered multiplex signal amplification was constructed for the detection of p53 DNA. In the presence of p53 DNA, the DNA self-assembles to form a DNA supersandwich nanowire that generates long double-stranded DNA. Subsequently, the cation exchange (CX) reaction between ZnS and Ag+ was utilized to release free Zn2+. With the participation of Zn2+, DNAzyme catalyzes the hydrolysis of numerous catalytic molecular beacons, resulting in a greatly enhanced fluorescence signal due to the cycling of DNAzyme. The fluorescence values increased in proportion to the concentrations of p53 DNA in the range of 10 pM to 200 nM, and a detection limit (LOD) of 2.34 pM (S/N = 3) was obtained. This method provides an effective strategy for the quantitative detection of p53 DNA.
Collapse
Affiliation(s)
- Fu-Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| |
Collapse
|
6
|
Zhang S, Lou XY, Liu L, Yang YW. The Creation of DNA Origami-Based Supramolecular Nanostructures for Cancer Therapy. Adv Healthc Mater 2023; 12:e2301066. [PMID: 37252899 DOI: 10.1002/adhm.202301066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Indexed: 06/01/2023]
Abstract
DNA origami technology, a unique type of DNA nanotechnology, has attracted much attention from researchers and is applied in various fields. Through exquisite design and precise self-assembly of four kinds of deoxyribonucleotides, DNA origami nanostructures are endowed with excellent programmability and addressability and show outstanding biocompatibility in bio-related applications, especially in cancer treatment. In this review, nanomaterials based on DNA origami for cancer therapy are concluded, whereby chemotherapy and photo-assisted therapy are the main focus. Furthermore, the working mechanisms of the functional materials attached to the rigid DNA structures to enable targeted delivery and circumvent drug resistance are also discussed. DNA origami nanostructures are valuable carriers for delivering multifunctional therapeutic agents and demonstrate great potential in cancer treatment both in vitro and in vivo. It is undoubted that DNA origami technology is a promising strategy for constructing versatile nanodevices in biological fields and will excel in human healthcare.
Collapse
Affiliation(s)
- Siyuan Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin-Yue Lou
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Lysne D, Hachigian T, Thachuk C, Lee J, Graugnard E. Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions. J Am Chem Soc 2023. [PMID: 37487322 PMCID: PMC10401717 DOI: 10.1021/jacs.3c04344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
DNA strand displacement networks are a critical part of dynamic DNA nanotechnology and are proven primitives for implementing chemical reaction networks. Precise kinetic control of these networks is important for their use in a range of applications. Among the better understood and widely leveraged kinetic properties of these networks are toehold sequence, length, composition, and location. While steric hindrance has been recognized as an important factor in such systems, a clear understanding of its impact and role is lacking. Here, a systematic investigation of steric hindrance within a DNA toehold-mediated strand displacement network was performed through tracking kinetic reactions of reporter complexes with incremental concatenation of steric moieties near the toehold. Two subsets of steric moieties were tested with systematic variation of structures and reaction conditions to isolate sterics from electrostatics. Thermodynamic and coarse-grained computational modeling was performed to gain further insight into the impacts of steric hindrance. Steric factors yielded up to 3 orders of magnitude decrease in the reaction rate constant. This pronounced effect demonstrates that steric moieties can be a powerful tool for kinetic control in strand displacement networks while also being more broadly informative of DNA structural assembly in both DNA-based therapeutic and diagnostic applications that possess elements of steric hindrance through DNA functionalization with an assortment of chemistries.
Collapse
Affiliation(s)
- Drew Lysne
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Tim Hachigian
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Chris Thachuk
- Paul G Allen School of Computer Science and Engineering, University of Washington, Paul G. Allen Center, Box 352350, 185 E Stevens Way NE, Seattle, Washington 98195-2350, United States
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
8
|
Nagipogu RT, Fu D, Reif JH. A survey on molecular-scale learning systems with relevance to DNA computing. NANOSCALE 2023; 15:7676-7694. [PMID: 37066980 DOI: 10.1039/d2nr06202j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA computing has emerged as a promising alternative to achieve programmable behaviors in chemistry by repurposing the nucleic acid molecules into chemical hardware upon which synthetic chemical programs can be executed. These chemical programs are capable of simulating diverse behaviors, including boolean logic computation, oscillations, and nanorobotics. Chemical environments such as the cell are marked by uncertainty and are prone to random fluctuations. For this reason, potential DNA-based molecular devices that aim to be deployed into such environments should be capable of adapting to the stochasticity inherent in them. In keeping with this goal, a new subfield has emerged within DNA computing, focusing on developing approaches that embed learning and inference into chemical reaction systems. If realized in biochemical contexts, such molecular machines can engender novel applications in fields such as biotechnology, synthetic biology, and medicine. Therefore, it would be beneficial to review how different ideas were conceived, how the progress has been so far, and what the emerging ideas are in this nascent field of 'molecular-scale learning'.
Collapse
Affiliation(s)
| | - Daniel Fu
- Department of Computer Science, Duke University, Durham, NC, USA.
| | - John H Reif
- Department of Computer Science, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Wang C, Zhang Y, Liu C, Gou S, Hu S, Guo W. A portable colorimetric point-of-care testing platform for MicroRNA detection based on programmable entropy-driven dynamic DNA network modulated DNA-gold nanoparticle hybrid hydrogel film. Biosens Bioelectron 2023; 225:115073. [PMID: 36701948 DOI: 10.1016/j.bios.2023.115073] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Point-of-care testing (POCT) platforms for microRNA (miRNA) detection have attracted considerable attention in recent years, due to the increasingly important role of miRNA as biomarkers for the diagnosis of many diseases, such as cancers. However, several limitations such as the requirement of enzyme-related amplification system, expensive preservation cost, sophisticated analysis instruments and tedious operations of conventional miRNA biosensing devices severely hinder their widespread applications. In this work, a portable and smart colorimetric analysis platform was developed by employing the ultrathin DNA-gold nanoparticle (AuNP) hybrid hydrogel film as the signaling unit and the enzyme-free entropy-driven dynamic DNA network (EDN) as the signal converter and amplification unit. By programming the DNA sequences of the EDN, the EDN could respond to a specific miRNA, with miRNA-155 or miRNA-21 as the model target, and release a converter DNA with amplified concentration to further trigger the release of AuNPs from the hydrogel film as a colorimetric signal output. To avoid the use of sophisticated spectral instruments, digital analysis based on primary three-color channel (R/G/B) was further introduced by using user-friendly camera and image processing software, and a detection limit at pM level was achieved. Moreover, by introducing H2O2-mediated AuNPs enlargement procedure in the colorimetric analysis platform, the detection limit for miRNA target could further be enhanced to fM level. The POCT platform is also portable and storable with a good storage stability for at least 45 days, suggesting its great potential in practical diagnosis applications.
Collapse
Affiliation(s)
- Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Chang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Siyu Gou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
10
|
Wang J, Fu X, Liu S, Liu R, Li J, Wang K, Huang J. Catalyst-Accelerated Circular Cascaded DNA Circuits: Simpler Design, Faster Speed, Higher Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205903. [PMID: 36638250 DOI: 10.1002/smll.202205903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
DNA cascaded circuits have great potential in detecting low abundance molecules in complex biological environment due to their powerful signal amplification capability and nonenzymatic feature. However, the problem of the cascaded circuits is that the design is relatively complex and the kinetics is slow. Herein, a new design paradigm called catalyst-accelerated circular cascaded circuits is proposed, where the catalyst inlet is implanted and the reaction speed can be adjusted by the catalyst concentration. This new design is very simple and only requires three hairpin probes. Meanwhile, the results of a series of studies demonstrate that the reaction speed can be accelerated and the sensitivity can be also improved. Moreover, endogenous mRNA can also be used as a catalyst to drive the circuits to amplify the detection of target miRNA in live cells and in mice. These catalyst-accelerated circular cascaded circuits can substantially expand the toolbox for intracellular low abundance molecular detection.
Collapse
Affiliation(s)
- Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Xiaoxiao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Ruiting Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225012, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| |
Collapse
|
11
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Zhang X, Xie S, Chen X, Wang L, Li F, Liu S. An allosteric DNA switch-mediated catalytic DNA circuit for ratiometric and sensitive nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:124-131. [PMID: 36504112 DOI: 10.1039/d2ay01751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, a new allosteric DNA switch-mediated catalytic DNA circuit reaction strategy has been proposed for ratiometric and sensitive nucleic acid detection. The sensing system was based on two DNA hybrid probes, each of which was constructed by annealing a reconfigurable DNA hairpin with single-stranded DNA. Upon target recognition by the first DNA hybrid probe, a reconfigurable DNA switch was liberated, triggering a toehold-mediated strand displacement reaction (TSDR) with the second DNA hybrid probe, which was accompanied by the release of another reconfigurable DNA switch. This released allosteric DNA switch could further interact with the first hybrid DNA probe via the TSDR strategy to form a reciprocal strand displacement network between the two DNA hybrid probes. Theoretically, this reciprocal strand displacement reaction would continue till the complete consumption of the reaction substrates. Thus, it provides a new signal amplification method leading toward target recognition. More interestingly, it creates a ratiometric signal response mode for target recognition, which involves the fluorescence increment of one fluorophore (Cy5) and concurrent decrement of another fluorophore (Cy3) accompanied by the target-triggered reciprocal strand displacement reaction. This process could achieve a low detection limit of about 0.1 pM toward the target nucleic acid and selective discrimination toward different mismatched targets. It could also be applied for detection in a serum sample. Thus, the developed catalytic DNA circuit reaction strategy together with ratiometric signal readout provides a new avenue for programmable, reliable and sensitive detection of nucleic acids and might also pave the way for developing more advanced DNA circuits or biosensors.
Collapse
Affiliation(s)
- Xiaofan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Shunjun Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Xue Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China.
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China.
| |
Collapse
|
13
|
Zhang J, Yu J, Jin J, Zhou X, Liang H, Zhou F, Jiang W. Bridge DNA guided assembly of nanoparticles to program chemical reaction networks. NANOSCALE 2022; 14:12162-12173. [PMID: 35968811 DOI: 10.1039/d2nr03948f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bridge DNA is an essential structure for programming chemical reaction networks. In this work, a bridge DNA guided assembly of nanoparticles has been constructed to program one-step and multi-step reactions via toehold-mediated strand displacement reaction for higher structural complexity and dynamic regulation behaviors. The structures of the bridge DNA linker and the length of the toeholds have an essential effect on successful construction of a molecular machine and achievement of multi-step reactions. A six-base toehold is enough to achieve the toehold-mediated strand displacement reaction in bridge DNA. When the difference between toehold length-2 and toehold length-1 is equal to or larger than one, the multi-step reaction can be triggered and performed by the driving of bridge DNA. For application, both simultaneous detection of two target DNA strands as well as the construction of logic gates can be achieved by changing the four single-stranded tails on the bridge DNA. In principle, this approach of the bridge DNA guiding the assembly of AuNPs can implement any behavior that can be expressed mathematically.
Collapse
Affiliation(s)
- Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiayu Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xiang Zhou
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Zhou
- Personalized Prescribing Inc., Toronto, ON M3C 3E5, Canada
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
|
15
|
Xie N, Li M, Wang Y, Lv H, Shi J, Li J, Li Q, Wang F, Fan C. Scaling Up Multi-bit DNA Full Adder Circuits with Minimal Strand Displacement Reactions. J Am Chem Soc 2022; 144:9479-9488. [DOI: 10.1021/jacs.2c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuli Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhang C, Ma X, Zheng X, Ke Y, Chen K, Liu D, Lu Z, Yang J, Yan H. Programmable allosteric DNA regulations for molecular networks and nanomachines. SCIENCE ADVANCES 2022; 8:eabl4589. [PMID: 35108052 PMCID: PMC8809682 DOI: 10.1126/sciadv.abl4589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structure-based molecular regulations have been widely adopted to modulate protein networks in cells and recently developed to control allosteric DNA operations in vitro. However, current examples of programmable allosteric signal transmission through integrated DNA networks are stringently constrained by specific design requirements. Developing a new, more general, and programmable scheme for establishing allosteric DNA networks remains challenging. Here, we developed a general strategy for programmable allosteric DNA regulations that can be finely tuned by varying the dimensions, positions, and number of conformational signals. By programming the allosteric signals, we realized fan-out/fan-in DNA gates and multiple-layer DNA cascading networks, as well as expanding the approach to long-range allosteric signal transmission through tunable DNA origami nanomachines ~100 nm in size. This strategy will enable programmable and complex allosteric DNA networks and nanodevices for nanoengineering, chemical, and biomedical applications displaying sense-compute-actuate molecular functionalities.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing 100871, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Xueying Ma
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Bio-evidence Sciences Academy, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Kuiting Chen
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| |
Collapse
|
17
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
18
|
Gao S, Wu R, Zhang Q. A novel strategy for programmable DNA tile self-assembly with a DNAzyme-mediated DNA cross circuit. NEW J CHEM 2022. [DOI: 10.1039/d1nj06012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed strategy promotes the controllability and modularization of trigger elements, realizes programmable molecular self-assembly, and has broad applications for the construction of DNA nanodevices.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G, Wang W, Lan J, Huang Z, Zhang J, Chen J. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnology 2021; 19:439. [PMID: 34930289 PMCID: PMC8686546 DOI: 10.1186/s12951-021-01195-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Cancer is one of the devastating diseases in the world. The development of nanocarrier provides a promising perspective for improving cancer therapeutic efficacy. However, the issues with potential toxicity, quantity production, and excessive costs limit their further applications in clinical practice. Results Herein, we proposed a nanocarrier obtained from aloe with stability and leak-proofness. We isolated nanovesicles from the gel and rind of aloe (gADNVs and rADNVs) with higher quality and yield by controlling the final centrifugation time within 20 min, and modulating the viscosity at 2.98 mPa S and 1.57 mPa S respectively. The gADNVs showed great structure and storage stability, antioxidant and antidetergent capacity. They could be efficiently taken up by melanoma cells, and with no toxicity in vitro or in vivo. Indocyanine green (ICG) loaded in gADNVs (ICG/gADNVs) showed great stability in both heating system and in serum, and its retention rate exceeded 90% after 30 days stored in gADNVs. ICG/gADNVs stored 30 days could still effectively damage melanoma cells and inhibit melanoma growth, outperforming free ICG and ICG liposomes. Interestingly, gADNVs showed prominent penetrability to mice skin which might be beneficial to noninvasive transdermal administration. Conclusions Our research was designed to simplify the preparation of drug carrier, and reduce production cost, which provided an alternative for the development of economic and safe drug delivery system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01195-7.
Collapse
Affiliation(s)
- Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Huaying Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Wanhua Shi
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Lingfan Chen
- Fujian Province New Drug Safety Evaluation Centre, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Guanyu Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Wenshen Wang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China. .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi-Mode Reconfigurable DNA-Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021; 60:15013-15019. [PMID: 33893703 DOI: 10.1002/anie.202102169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Indexed: 01/17/2023]
Abstract
Developing smart material systems for performing different tasks in diverse environments remains challenging. Here, we show that by integrating stimuli-responsive soft materials with multi-mode reconfigurable DNA-based chemical reaction circuits (D-CRCs), it can control size change of microgels with multiple reaction pathways and adapt expansion behaviors to meet diverse environments. We first use pH-responsive intramolecular conformational switches for regulating DNA strand displacement reactions (SDRs). The ability to regulate SDRs with tunable pH-dependence allows to build dynamic chemical reaction networks with diverse reaction pathways. We confirm that the designed DNA switching circuits are reconfigurable at different pH and perform different logic operations, and the swelling of DNA switching circuit-integrated microgel systems can be programmably directed by D-CRCs. Our approach provides insight into building smart responsive materials and fabricating autonomous soft robots.
Collapse
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
21
|
Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Multi‐Mode Reconfigurable DNA‐Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
22
|
Song L, Xiao M, Lai W, Li L, Wan Y, Pei H. Intracellular Logic Computation with Framework Nucleic
Acid‐Based
Circuits for
mRNA
Imaging
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Ying Wan
- School of Mechanical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
23
|
Zhao S, Yu L, Yang S, Tang X, Chang K, Chen M. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. NANOSCALE HORIZONS 2021; 6:298-310. [PMID: 33877218 DOI: 10.1039/d0nh00587h] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA computers are considered one of the most prominent next-generation molecular computers that perform Boolean logic using DNA elements. DNA-based Boolean logic gates, especially DNA strand displacement-based logic gates (SDLGs), have shown tremendous potential in biosensing since they can perform the logic analysis of multi-targets simultaneously. Moreover, SDLG biosensors generate a unique output in the form of YES/NO, which is contrary to the quantitative measurement used in common biosensors. In this review, the recent achievements of SDLG biosensing strategies are summarized. Initially, the development and mechanisms of Boolean logic gates, strand-displacement reaction, and SDLGs are introduced. Afterwards, the diversified input and output of SDLG biosensors are elaborated. Then, the state-of-the-art SDLG biosensors are reviewed in the classification of different signal-amplification methods, such as rolling circle amplification, catalytic hairpin assembly, strand-displacement amplification, DNA molecular machines, and DNAzymes. Most importantly, limitations and future trends are discussed. The technology reviewed here is a promising tool for multi-input analysis and lays a foundation for intelligent diagnostics.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | | | | | | | | | | |
Collapse
|
24
|
Xiao M, Lai W, Yu H, Yu Z, Li L, Fan C, Pei H. Assembly Pathway Selection with DNA Reaction Circuits for Programming Multiple Cell-Cell Interactions. J Am Chem Soc 2021; 143:3448-3454. [PMID: 33631070 DOI: 10.1021/jacs.0c12358] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The manipulation of cell-cell interactions promotes the study of multicellular behavior, but it remains a great challenge for programming multicellular assembly in complex reaction pathways with multiple cell types. Here we report a DNA reaction circuit-based approach to cell-surface engineering for the programmable regulation of multiple cell-cell interactions. The DNA circuits are designed on the basis of a stem-loop-integrated DNA hairpin motif, which has the capability of programming diverse molecular self-assembly and disassembly pathways by sequential allosteric activation. Modifying the cell surface with such DNA reaction circuits allows for performing programmable chemical functions on cell membranes and the control of multicellular self-assembly with selectivity. We demonstrate the selective control of targeting the capability of natural killer (NK) cells to two types of tumor cells, which show selectively enhanced cell-specific adaptive immunotherapy efficacy. We hope that our method provides new ideas for the programmable control of multiple cell-cell interactions in complex reaction pathways and potentially promotes the development of cell immunotherapy.
Collapse
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Huizhen Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zijing Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
25
|
Xiong X, Xiao M, Lai W, Li L, Fan C, Pei H. Optochemical Control of DNA‐Switching Circuits for Logic and Probabilistic Computation. Angew Chem Int Ed Engl 2021; 60:3397-3401. [DOI: 10.1002/anie.202013883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
26
|
Xiong X, Xiao M, Lai W, Li L, Fan C, Pei H. Optochemical Control of DNA‐Switching Circuits for Logic and Probabilistic Computation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
27
|
Guo Y, Yao D, Zheng B, Sun X, Zhou X, Wei B, Xiao S, He M, Li C, Liang H. pH-Controlled Detachable DNA Circuitry and Its Application in Resettable Self-Assembly of Spherical Nucleic Acids. ACS NANO 2020; 14:8317-8327. [PMID: 32579339 DOI: 10.1021/acsnano.0c02329] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Toehold-mediated strand displacement reaction, the fundamental basis in dynamic DNA nanotechnology, has proven its extraordinary power in programming dynamic molecular systems. Programmed activation of the toehold in a DNA substrate is crucial for building sophisticated DNA devices with digital and dynamic behaviors. Here we developed a detachable DNA circuit by embedding a pH-controlled intermolecular triplex between the toehold and branch migration domain of the traditional "linear substrate". The reaction rate and the "on/off" state of the detachable circuit can be regulated by varying the pHs. Similarly, a two-input circuit composed of three pH-responsive DNA modules was then constructed. Most importantly, a resettable self-assembly system of spherical nucleic acids was built by utilizing the high detachability of the intermolecular triplex structure-based DNA circuit. This work demonstrated a dynamic DNA device that can be repeatedly operated at constant temperature without generating additional waste DNA products. Moreover, this strategy showed an example of recycling waste spherical nucleic acids from a self-assembly system of spherical nucleic acids. Our strategy will provide a facile approach for dynamic regulation of complex molecular systems and reprogrammable nanoparticle assembly structures.
Collapse
Affiliation(s)
- Yijun Guo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, People's Republic of China
| | - Xianbao Sun
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bing Wei
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Miao He
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chengxu Li
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
28
|
He L, Chen F, Zhang D, Xie S, Xu S, Wang Z, Zhang L, Cui C, Liu Y, Tan W. Transducing Complex Biomolecular Interactions by Temperature-Output Artificial DNA Signaling Networks. J Am Chem Soc 2020; 142:14234-14239. [DOI: 10.1021/jacs.0c05453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dailiang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
29
|
Li L, Zhang W, Tang X, Li Z, Wu Y, Xiao X. Fine and bidirectional regulation of toehold-mediated DNA strand displacement by a wedge-like DNA tool. Chem Commun (Camb) 2020; 56:8794-8797. [DOI: 10.1039/d0cc03722b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We established a novel wedge-like tool that could subtly and bidirectionally regulate the DNA strand displacement kinetics.
Collapse
Affiliation(s)
- Longjie Li
- Institute of Reproductive Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| | - Wenkai Zhang
- Institute of Reproductive Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| | - Xiaofeng Tang
- Institute of Reproductive Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| | - Zejian Li
- Institute of Reproductive Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Xianjin Xiao
- Institute of Reproductive Health
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| |
Collapse
|
30
|
Xiao M, Lai W, Wang F, Li L, Fan C, Pei H. Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. J Am Chem Soc 2019; 141:20354-20364. [DOI: 10.1021/jacs.9b10765] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
31
|
Xiao M, Gao L, Chandrasekaran AR, Zhao J, Tang Q, Qu Z, Wang F, Li L, Yang Y, Zhang X, Wan Y, Pei H. Bio-functional G-molecular hydrogels for accelerated wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110067. [DOI: 10.1016/j.msec.2019.110067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
|
32
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Cao M, Sun Y, Xiao M, Li L, Liu X, Jin H, Pei H. Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9273-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Constructing Controllable Logic Circuits Based on DNAzyme Activity. Molecules 2019; 24:molecules24224134. [PMID: 31731630 PMCID: PMC6891523 DOI: 10.3390/molecules24224134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, DNA molecules have been widely used to construct advanced logic devices due to their unique properties, such as a simple structure and predictable behavior. In fact, there are still many challenges in the process of building logic circuits. Among them, the scalability of the logic circuit and the elimination of the crosstalk of the cascade circuit have become the focus of research. Inspired by biological allosteric regulation, we developed a controllable molecular logic circuit strategy based on the activity of DNAzyme. The E6 DNAzyme sequence was temporarily blocked by hairpin DNA and activated under appropriate input trigger conditions. Using a substrate with ribonucleobase (rA) modification as the detection strand, a series of binary basic logic gates (YES, AND, and INHIBIT) were implemented on the computational component platform. At the same time, we demonstrate a parallel demultiplexer and two multi-level cascade circuits (YES-YES and YES-Three input AND (YES-TAND)). In addition, the leakage of the cascade process was reduced by exploring factors such as concentration and DNA structure. The proposed DNAzyme activity regulation strategy provides great potential for the expansion of logic circuits in the future.
Collapse
|
35
|
Pan J, Zeng L, Chen J. An enzyme-free DNA circuit for the amplified detection of Cd 2+ based on hairpin probe-mediated toehold binding and branch migration. Chem Commun (Camb) 2019; 55:11932-11935. [PMID: 31531427 DOI: 10.1039/c9cc06311k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enzyme-free DNA circuit was designed for the amplified detection of Cd2+ based on hairpin probe-mediated toehold binding and branch migration. A Cd2+-specific aptamer was used to recognize Cd2+ and a G-quadruplex was used to report the detection signal. The assay is sensitive, with a detection limit of 5 pM.
Collapse
Affiliation(s)
- Jiafeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528000, China and Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| |
Collapse
|
36
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
37
|
Lai W, Xiong X, Wang F, Li Q, Li L, Fan C, Pei H. Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. ACS Synth Biol 2019; 8:2106-2112. [PMID: 31461263 DOI: 10.1021/acssynbio.9b00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA is used to construct synthetic chemical reaction networks (CRNs), such as inorganic oscillators and gene regulatory networks. Nonlinear regulation with a simpler molecular mechanism is particularly important in large-scale CRNs with complex dynamics, such as bistability, adaptation, and oscillation of cellular functions. Here we introduce a new approach based on ultrasensitive switches as modular regulatory elements to nonlinearly regulate DNA-based CRNs. The nonlinear behavior of the systems can be finely tuned by programmable regulation of the linker length and the ligand binding sites, of which the Hill coefficients (nH) are in the range of 1.00-2.32. By integrating two different strand displacement reactions with low-order nonlinearities (nH ≈ 1.44 and 1.54), we could construct CRNs exhibiting high-order nonlinearities with Hill coefficients of up to ∼2.70. In addition, this could provide an efficient approach for designing CRNs at will with complex chemical dynamics by incorporating our design with previously developed enzyme-free DNA circuits.
Collapse
Affiliation(s)
- Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fei Wang
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
38
|
Fluorescence decay rate of selected compounds from Eysenhardtia polystachya extracts and their viability as biosensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109978. [PMID: 31500000 DOI: 10.1016/j.msec.2019.109978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 11/24/2022]
Abstract
Eysenhardtia polystachya (EP) is an endemic Mexican plant that has been widely studied for its antidiabetic, antibacterial, and antioxidant properties. Several studies had reported the main components of EP, but their fluorescence properties had not been broadly studied. In a previous study we obtained extracts with different composition from this plant and they presented florescence. In this work we study fluorescent compounds from EP and evaluate their fluorescence properties. EP extracts were obtained by Soxhlet extraction with ethanol, samples were dried, and compounds were separated by column chromatography. Fluorescent fractions were classified apart from other fractions and characterized by Scanning electron microscopy (SEM), UV-Vis, Raman, FTIR and 1H NMR spectra. Additionally, we obtained functional nanomaterials (using silica nanoparticles). TD-DFT molecular calculations of the fluorescent components were carried out to compare their theoretical UV-Vis spectra to experimental results. Nine fractions were obtained by chromatography and five of them showed fluorescence. Fluorescence of extracts from Eysenhardtia polystachya is due to more than one component and we suggest that could be other hydrochalcones for which we present possible structures. This finding would help to dissipate questions about which component is responsible for fluorescence in extracts from the plant and in this way determinate the appropriate use for these fluorophores. Finally, the application and viability as a biosensor using pulmonary epithelium fibroblast cell culture IMR-90 was proved, and in the concentration used are non-toxic materials.
Collapse
|
39
|
Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection. Anal Chim Acta 2019; 1069:117-125. [DOI: 10.1016/j.aca.2019.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023]
|
40
|
Xiao M, Wang X, Li L, Pei H. Stochastic RNA Walkers for Intracellular MicroRNA Imaging. Anal Chem 2019; 91:11253-11258. [DOI: 10.1021/acs.analchem.9b02265] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
41
|
Asadi F, Azizi SN, Chaichi MJ. Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110058. [PMID: 31546432 DOI: 10.1016/j.msec.2019.110058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/14/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
In this work, a novel and highly fluorescent (FL) metal-organic framework (MOF)-based host-guest hybrid system was developed through encapsulation of polyethylene glycol (PEG)-capped ZnS quantum dots (QDs) into zeolitic imidazolate framework (ZIF)-67 at ambient temperature. This new composite material was characterized by FT-IR, XRD, TEM, UV-Vis absorption and FL spectroscopy, and then exploited as fluorescence sensor for highly sensitive and selective detection of Cu (II) ions in water samples. The as-prepared PEG-ZnS QDs@ZIF-67 nanohybrids took advantages of both accumulation effect in ZIF-67 and FL sensitivity and selectivity in ZnS QDs toward analyte-Cu2+. In this regard, ZIF-67 was treated as absorbents to capture and enrich Cu (II) ions, and ZnS QDs were exploited as tentacle to selectively and sensitively sense the bonding interactions between ZIF-67 and Cu (II) ions, and further transduce these chemical events to the detectable fluorescence signals. By this approach, Cu2+ could be detected in a wide concentration range of 3 to 500 nM with a LOD as low as 0.96 nM. The proposed FL-sensor can be promising in the field of preparation of various QDs@MOFs platforms for application in high-performance optical sensing.
Collapse
Affiliation(s)
- Fateme Asadi
- Analytical Division, Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Seyed Naser Azizi
- Analytical Division, Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran.
| | | |
Collapse
|
42
|
A nanoflow cytometric strategy for sensitive ctDNA detection via magnetic separation and DNA self-assembly. Anal Bioanal Chem 2019; 411:6039-6047. [DOI: 10.1007/s00216-019-01985-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
|
43
|
Deng S, Yan J, Wang F, Su Y, Zhang X, Li Q, Liu G, Fan C, Pei H, Wan Y. In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. Biosens Bioelectron 2019; 137:263-270. [DOI: 10.1016/j.bios.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
|
44
|
Cao Y, Li L, Han B, Wang Y, Dai Y, Zhao J. A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Biosens Bioelectron 2019; 141:111397. [PMID: 31200334 DOI: 10.1016/j.bios.2019.111397] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, exosomes that carry abundant information have attracted increasing attention as potent biomarkers of liquid biopsy and ideal candidates for early diagnosis and treatment of cancers. In this work, we propose a "principle-of-proof" biosensing method for amplified electrochemical detection of exosomes by using HepG2-derived exosomes as models. Specifically, target exosomes are enriched on anti-CD63-functionalized immunobeads and then recognized by a DNA chain containing CD63 aptamer region, which subsequently initiates a catalytic molecule machine that relies on cascade toehold-mediated strand displacement reaction. Benefiting from high efficiency of the molecule machine, the method shows a linear range from 1 × 105 to 5 × 107 particles/mL and a detection limit of 1.72 × 104 particles/mL toward target exosomes, better than most existing detection methods. Moreover, the method demonstrates a high specificity even in serum samples and suggests a potential use in clinic, which may provide sufficient information for disease diagnosis, especially early detection and prognosis monitoring of tumors.
Collapse
Affiliation(s)
- Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, 200444, PR China
| | - Bing Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Ying Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Yuhao Dai
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| |
Collapse
|
45
|
Guo J, Qin S, Wei Y, Liu S, Peng H, Li Q, Luo L, Lv M. Silver nanoparticles exert concentration-dependent influences on biofilm development and architecture. Cell Prolif 2019; 52:e12616. [PMID: 31050052 PMCID: PMC6668980 DOI: 10.1111/cpr.12616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the impact of silver nanoparticles (AgNPs) on the biofilm growth and architecture. Materials and methods Silver nitrate was reduced by d‐maltose to prepare AgNPs in the presence of ammonia and sodium hydroxide. The physicochemical properties of AgNPs were characterized by transmission electron microscopy, ultraviolet‐visible spectroscopy and inductively coupled plasma mass spectrometry. The development of biofilm with and without AgNPs was explored by crystal violet stain. The structures of mature biofilm were visually studied by confocal laser scanning microscopy and scanning electron microscopy. Bacterial cell, polysaccharide and protein within biofilm were assessed quantitatively by colony‐counting method, phenol‐sulphuric acid method and Bradford assay, respectively. Results The spherical AgNPs (about 30 nm) were successfully synthesized. The effect of AgNPs on Pseudomonas aeruginosa biofilm development was concentration‐dependent. Biofilm was more resistant to AgNPs than planktonic cells. Low doses of AgNPs exposure remarkably delayed the growth cycle of biofilm, whereas high concentration (18 μg/mL) of AgNPs fully prevented biofilm development. The analysis of biofilm architecture at the mature stage demonstrated that AgNPs exposure at all concentration led to significant decrease of cell viability within treated biofilms. However, sublethal doses of AgNPs increased the production of both polysaccharide and protein compared to control, which significantly changed the biofilm structure. Conclusions AgNPs exert concentration‐dependent influences on biofilm development and structure, which provides new insight into the role of concentration played in the interaction between antibacterial nanoparticles and biofilm, especially, an ignored sublethal concentration associated with potential unintended consequences.
Collapse
Affiliation(s)
- Jingyang Guo
- College of Sciences, Shanghai University, Shanghai, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Simin Qin
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wei
- Key Lab of Health Technology Assessment (National Health Commission), School of Public Health, Fudan University, Shanghai, China
| | - Shima Liu
- College of Sciences, Shanghai University, Shanghai, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhen Peng
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai, China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Hao Pei. Chempluschem 2019; 84:524. [DOI: 10.1002/cplu.201900285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H. Rational Design of Framework Nucleic Acids for Bioanalytical Applications. Chempluschem 2019; 84:512-523. [DOI: 10.1002/cplu.201900118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yuwei Su
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Bingyi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
- Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| |
Collapse
|
48
|
Man T, Ji W, Liu X, Zhang C, Li L, Pei H, Fan C. Chiral Metamolecules with Active Plasmonic Transition. ACS NANO 2019; 13:4826-4833. [PMID: 30964271 DOI: 10.1021/acsnano.9b01942] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Energy-dissipating self-assembly is at the basis of many important cellular processes, such as cell organization, proliferation, and morphogenesis. Beyond equilibrium self-assembled molecular systems and materials, it is increasingly recognized that the control of assembly kinetics provides great opportunity for the next generation of molecular materials with intelligent behavior including programmed spatiotemporal organization. Here we show the transient self-assembly of active chiral plasmonic metamolecules (CPMs), which is controlled by the proton flux generated from a positive-feedback chemical reaction network. The fuel-conversion kinetics allows for temporal control and adaptive tuning of multiple structures of plasmonic metamolecules (PMs). This approach enables autonomous tuning of chiroptical properties of metamolecules with dynamic behavior. Moreover, we show that 11 types of spatial configurations of PMs are assembled, and 9 types of temporal configurations of CPMs are differentiated.
Collapse
Affiliation(s)
- Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Wei Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| |
Collapse
|
49
|
Ji W, Li D, Lai W, Yao X, Alam MF, Zhang W, Pei H, Li L, Chandrasekaran AR. pH-Operated Triplex DNA Device on MoS 2 Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5050-5053. [PMID: 30879305 DOI: 10.1021/acs.langmuir.8b04272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a triplex-based DNA device coupled with molybdenum disulfide (MoS2) nanosheets for use as a pH-sensing platform. The device transitions from a duplex state at pH 8 to a triplex state at pH 5. The interaction of the device with MoS2 nanosheets in the two states is read out as a fluorescence signal from a pH-insensitive dye attached to the device. We characterized the operation of the DNA device on MoS2 nanosheets, analyzed the pH response, and tested the reversibility of the system. Our strategy can lead to the creation of a suite of biosensors where the sensing element is a triplex DNA device and the signal response is modulated by inorganic nanomaterials.
Collapse
Affiliation(s)
- Wei Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Xiaowei Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Md Fazle Alam
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Weijia Zhang
- Institutes of Biomedical Sciences and Zhongshan Hospital , Fudan University , Shanghai 200032 , P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany , State University of New York , Albany , New York 12222 , United States
| |
Collapse
|
50
|
Li F, Xiao M, Pei H. DNA‐Based Chemical Reaction Networks. Chembiochem 2019; 20:1105-1114. [DOI: 10.1002/cbic.201800721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Fan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen University Nanhai Avenue 3688 518060 Shenzhen Guangzhou P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| |
Collapse
|