1
|
Chen Y, Tan BSN, Cheng Y, Zhao Y. Artificial Polymerizations in Living Organisms for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202410579. [PMID: 39086115 DOI: 10.1002/anie.202410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Within living organisms, numerous nanomachines are constantly involved in complex polymerization processes, generating a diverse array of biomacromolecules for maintaining biological activities. Transporting artificial polymerizations from lab settings into biological contexts has expanded opportunities for understanding and managing biological events, creating novel cellular compartments, and introducing new functionalities. This review summarizes the recent advancements in artificial polymerizations, including those responding to external stimuli, internal environmental factors, and those that polymerize spontaneously. More importantly, the cutting-edge biomedical application scenarios of artificial polymerization, notably in safeguarding cells, modulating biological events, improving diagnostic performance, and facilitating therapeutic efficacy are highlighted. Finally, this review outlines the key challenges and technological obstacles that remain for polymerizations in biological organisms, as well as offers insights into potential directions for advancing their practical applications and clinical trials.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Chen Y, Xu C, Sun M, Zhao G, Wang Z, Lv C. Vertasile ferritin nanocages: Applications in detection and bioimaging. Biosens Bioelectron 2024; 262:116567. [PMID: 39013360 DOI: 10.1016/j.bios.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Food safety and human health remain significant concerns in the food industry. Detecting food contaminants and diagnosing diseases are critical aspects. Ferritin, an iron storage protein widely found in nature, offers unique advantages. Its hollow protein nanocage structure, distinct interfaces, hydrophobic or hydrophilic channels, and B-C loop regions recognized by transferrin receptor 1 make ferritin versatile for detecting heavy metals, free radicals, and bioimaging both in vitro and in vivo. This review summarizes ferritin's general characteristics, its specific properties as biosensors, and its applications in food safety and in vivo imaging. It emphasizes not only ferritin's role in detecting heavy metals like mercury and chemical hazards but also its potential in early diagnosing chronic diseases such as tumors, macrophages, and kidney diseases. Further research into ferritin promises advancements in enhancing food safety and improving human health diagnostics.
Collapse
Affiliation(s)
- Yunqi Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, PR China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China.
| |
Collapse
|
3
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
4
|
Li QX, Yuan YJ, Cheng RX, Ma Y, Tan R, Wang YW, Peng Y. An AIE-active tetra-aryl imidazole-derived chemodosimeter for turn-on recognition of hydrazine and its bioimaging in living cells. Org Biomol Chem 2024. [PMID: 39011846 DOI: 10.1039/d4ob01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A new chemodosimeter SWJT-31 with an aggregation-induced emission (AIE) effect was designed and constructed. Upon increasing the water fraction in the solution, it exhibited typical AIE, which showed bright red fluorescence at 610 nm. SWJT-31 could sensitively and specifically recognize hydrazine by the TICT effect with an LOD of 33.8 nM, which was much lower than the standard of the USEPA. A portable test strip prepared using SWJT-31 was also developed for the visual detection of hydrazine. Eventually, it was successfully used for the detection of hydrazine in water samples and HeLa cells.
Collapse
Affiliation(s)
- Qing-Xiu Li
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yan-Ju Yuan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui-Xing Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Ma
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
5
|
Yang M, Li K, Zhong L, Bu Y, Ni Y, Wang T, Huang J, Zhang J, Zhou H. Molecular engineering to elevate reactive oxygen species generation for synergetic damage on lipid droplets and mitochondria. Anal Chim Acta 2024; 1311:342734. [PMID: 38816163 DOI: 10.1016/j.aca.2024.342734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Photodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering. Theoretical calculation demonstrate that the three compounds possess good molecular planarity with calculated S1-T1 energy gaps (ΔES1-T1) of 1.04 eV for CIH, 0.92 eV for CIBr, and 0.84 eV for CIPh respectively. Notably, CIPh showcases remarkable dual subcellular targeting capability towards lipid droplets (LDs) and mitochondria owing to the synergistic effect of lipophilicity derived from coumarin's inherent properties combined with electropositivity conferred by indole salt cations. Furthermore, CIPh demonstrates exclusive release of singlet oxygen (1O2)and highly efficient superoxide anion free radicals(O2⦁-) upon light irradiation supported by its smallest S1-T1 energy gap (ΔES1-T1 = 0.84 eV). This leads to compromised integrity of LDs along with mitochondrial membrane potential, resulting in profound apoptosis induction in HepG2 cells. This successful example of molecular engineering guided by density functional theory (DFT) provides valuable experience for the development of more effective PSs with superior dual targeting specificity. It also provides a new idea for the development of advanced PSs with efficient and accurate ROS generation ability towards fluorescence imaging-guided hypoxic tumor therapy.
Collapse
Affiliation(s)
- Mingdi Yang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Liangchen Zhong
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Yingcui Bu
- School of Materials and Chemistry, Anhui Agricultural University, 230036, Hefei, PR China.
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jing Huang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jingyan Zhang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China.
| |
Collapse
|
6
|
Yang X, Wang X, Zhang X, Zhang J, Lam JWY, Sun H, Yang J, Liang Y, Tang BZ. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402182. [PMID: 38663035 DOI: 10.1002/adma.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Indexed: 05/04/2024]
Abstract
Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Bioscience and Biomedical Engineering Thrust, System Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511400, China
| | - Xinyuan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Xun Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jinglei Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
7
|
Wang Y, Song Y, Xu L, Zhou W, Wang W, Jin Q, Xie Y, Zhang J, Liu J, Wu W, Li H, Liang L, Wang J, Yang Y, Chen X, Ge S, Gao T, Zhang L, Xie M. A Membrane-Targeting Aggregation-Induced Emission Probe for Monitoring Lipid Droplet Dynamics in Ischemia/Reperfusion-Induced Cardiomyocyte Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309907. [PMID: 38696589 PMCID: PMC11234465 DOI: 10.1002/advs.202309907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/01/2024] [Indexed: 05/04/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the leading cause of irreversible myocardial damage. A pivotal pathogenic factor is ischemia/reperfusion (I/R)-induced cardiomyocyte ferroptosis, marked by iron overload and lipid peroxidation. However, the impact of lipid droplet (LD) changes on I/R-induced cardiomyocyte ferroptosis is unclear. In this study, an aggregation-induced emission probe, TPABTBP is developed that is used for imaging dynamic changes in LD during myocardial I/R-induced ferroptosis. TPABTBP exhibits excellent LD-specificity, superior capability for monitoring lipophagy, and remarkable photostability. Molecular dynamics (MD) simulation and super-resolution fluorescence imaging demonstrate that the TPABTBP is specifically localized to the phospholipid monolayer membrane of LDs. Imaging LDs in cardiomyocytes and myocardial tissue in model mice with MIRI reveals that the LD accumulation level increase in the early reperfusion stage (0-9 h) but decrease in the late reperfusion stage (>24 h) via lipophagy. The inhibition of LD breakdown significantly reduces the lipid peroxidation level in cardiomyocytes. Furthermore, it is demonstrated that chloroquine (CQ), an FDA-approved autophagy modulator, can inhibit ferroptosis, thereby attenuating MIRI in mice. This study describes the dynamic changes in LD during myocardial ischemia injury and suggests a potential therapeutic target for early MIRI intervention.
Collapse
|
8
|
Jia J, Li L, Wu Z, Li S. Fluorescent probes for imaging: a focus on atherosclerosis. NANOSCALE 2024; 16:11849-11862. [PMID: 38836376 DOI: 10.1039/d4nr01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Atherosclerosis, as a chronic cardiovascular disease driven by inflammation, can lead to arterial stenosis and thrombosis, which seriously threatens human life and health. Achieving the timely monitoring of atherosclerosis is an important measure to reduce acute cardiovascular diseases. Compared with other imaging platforms, fluorescence imaging technology has the characteristics of excellent sensitivity, high spatiotemporal resolution and real-time imaging, which is very suitable for direct visualization of molecular processes and abnormalities of atherosclerosis. Recently, researchers have strived to design a variety of fluorescent probes, from single-mode fluorescent probes to fluorescent-combined dual/multimode probes, to enrich the imaging and detection of atherosclerosis. Therefore, this review aims to provide an overview of currently investigated fluorescent probes in the context of atherosclerosis, summarize relevant published studies showing applications of different types of fluorescent probes in the early-stage and other stages to detect atherosclerosis, give effective biological targets and discuss the latest progress and some limitations. Finally, some insights are provided for the development of a new generation of more accurate and efficient fluorescent probes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
10
|
Ojha M, Banerjee M, Mandal M, Singha T, Ray S, Datta PK, Mandal M, Anoop A, Singh NDP. Two-Photon-Responsive "TICT + AIE" Active Naphthyridine-BF 2 Photoremovable Protecting Group: Application for Specific Staining and Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21486-21497. [PMID: 38640485 DOI: 10.1021/acsami.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Ray
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
11
|
Zhang Y, Du W, Liu X. Photophysics and its application in photon upconversion. NANOSCALE 2024; 16:2747-2764. [PMID: 38250819 DOI: 10.1039/d3nr05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interaction, where the energy of the emitted photons is higher than that of the incident photons. PL upconversion has promising applications in optoelectronic devices, displays, photovoltaics, imaging, diagnosis and treatment. In this review, we summarize the mechanism of PL upconversion and ultrafast PL physical processes. In particular, we highlight the advances in laser cooling, biological imaging, volumetric displays and photonics.
Collapse
Affiliation(s)
- Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zheng X, Liu M, Wu Y, Chen Y, He W, Guo Z. An AIE-based monofunctional Pt(ii) complex for photodynamic therapy through synergism of necroptosis-ferroptosis. RSC Chem Biol 2024; 5:141-147. [PMID: 38333194 PMCID: PMC10849126 DOI: 10.1039/d3cb00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 02/10/2024] Open
Abstract
Side effects and drug resistance are among the major problems of platinum-based anticancer chemotherapies. Photodynamic therapy could show improved tumor targeting ability and better anticancer effect by region-selective light irradiation. Here, we report an aggregation-induced emission (AIE)-based monofunctional Pt(ii) complex (TTC-Pt), which shows enhanced singlet oxygen production by introduction of a Pt atom to elevate the intersystem crossing (ISC) rate. Moreover, TTC-Pt exhibits decent capacity of inhibition on tumor cell growth upon light irradiation, with negligible dark toxicity compared to the commonly used chemodrug cisplatin. Mechanistic study suggests that TTC-Pt enters HeLa cells via the endocytosis pathway and locates mainly in lysosomes, causing FSP1 down-regulation and intracellular lipid peroxidation accumulation under irradiation, finally leading to ferroptosis and necroptosis. The synergistic dual cell death pathways could help to kill apoptosis-resistant tumor cells. Therefore, TTC-Pt could serve as a potent antitumor photosensitizer, which overcomes the drug resistance with minimum side effects.
Collapse
Affiliation(s)
- Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Minglun Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| |
Collapse
|
13
|
Chen L, Luo X, Wang X, Ning L, Li N, Zhao S, Zhang Q, Liu X, Jiang H. Paper-based fluorescent materials containing on-demand nanostructured brain-cells-inspired AIE self-assembles for real-time visual monitoring of seafood spoilage. Food Chem 2024; 431:137083. [PMID: 37567078 DOI: 10.1016/j.foodchem.2023.137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Biogenic amines containing NH3 are important indicators for conducting full-scale appraisal of food spoilage and disease diagnosis. However, the currently-used detection methods of NH3 have several limitations such as time-consuming high cost, and inability to provide visual real-time monitoring. Therefore, researchers have attempted to explore strategies for quantitative real-time monitoring of NH3 for food spoilage has attracted widespread attentions. Herein, we developed sustainable, fast response, hypersensitized, user-friendly and molecular-level light-emitting biomass-based materials (AFP-FP) containing on-demand nanostructured brain-cells-inspired aggregation-induced-emission (AIE) self-assembles for real-time visual monitoring of seafood spoilage. The 2-hydroxy-5-methyl-isophthalaldehyde-based AIE probe (AFP) was synthesized using a simple "one-step" route. AFP-FP exhibited high selectivity, sensitivity, repeatable and quantitative recognition (y = 7.292×103x + 7.621×104, R = 0.990) of NH3 with a low detection limit (246 ppb) and fast response (<1 s). Furthermore, we integrated AFP-FP into a user-friendly smartphone color recognition app, enabling its practical application in visual, real-time daylight monitoring of food spoilage.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaomin Luo
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xuechuan Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lulu Ning
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qian Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
14
|
Wang X, Yu H, Li Q, Tian Y, Gao X, Zhang W, Sun Z, Mou Y, Sun X, Guo Y, Li F. Development of a fluorescent sensor based on TPE-Fc and GSH-AuNCs for the detection of organophosphorus pesticide residues in vegetables. Food Chem 2024; 431:137067. [PMID: 37579609 DOI: 10.1016/j.foodchem.2023.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
A novel dual-signal fluorescent sensor was developed for detecting organophosphorus pesticides (OPs). It relies on the catalytic activities of acetylcholinesterase (AChE) and choline oxidase (ChOx) to generate hydrogen peroxide (H2O2) through the conversion of acetylcholine (ACh) to choline·H2O2 then oxidizes ferrocene-modified tetraphenylethylene (TPE-Fc) to its oxidized state (TPE-Fc+), resulting in enhanced cyan fluorescence due to aggregation. Simultaneously, ferrocene oxidation generates hydroxyl radicals (•OH), causing a decrease in orange fluorescence of glutathione-synthesized gold nanoclusters (GSH-AuNCs). The presence of OPs restricts AChE activity, reducing H2O2 production. Increasing OPs concentration leads to decreased cyan fluorescence and increased orange fluorescence, enabling visual OPs detection. The sensor has a linear dynamic range of 10-2000 ng/mL with a detection limit of 2.05 ng/mL. Smartphone-based color identification and a WeChat mini program were utilized for rapid OPs analysis with successful outcomes.
Collapse
Affiliation(s)
- Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Huajie Yu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
15
|
Li XL, Han N, Zhang RZ, Niu KK, Dong RZ, Liu H, Yu S, Wang YB, Xing LB. Host-Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55803-55812. [PMID: 37983520 DOI: 10.1021/acsami.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
16
|
Liu Q, Zhuang W, Chen J, Li S, Li C, Ma D, Chen M. A turn-on fluorescent probe for lipid-targeting imaging in human arterial aneurysm and fibrocalcific stenotic aortic valve. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123030. [PMID: 37354855 DOI: 10.1016/j.saa.2023.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Fluorescence imaging techniques have shown remarkable performance in studying the biological functions of lipid droplets (LDs). However, the biological applications of the commercially available LDs probes suffer from insufficient specificity and low signal/noise ratio (SNR). Herein, we presented a novel near-infrared (NIR) lipid activatable fluorescence probe, namely Me2NND, with extremely low emission in water but significantly enhanced emission in the lipid environment. Me2NND presented good biocompatibility and impressive LDs-specific imaging ability in cells and tissues. Moreover, Me2NND has also shown good photostability and it could efficiently locate the distribution of LDs in human pathological samples of aortic aneurysms and fibrocalcific stenotic aortic valves. This study provided a novel turn-on probe Me2NND and would improve the bio-applications of LDs-specific probes.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| | - Jingruo Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Shufen Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Chengming Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Di Ma
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| |
Collapse
|
17
|
Dar AH, Ahmad A, Kumar A, Gowri V, Jori C, Sartaliya S, K M N, Ali N, Bishnoi M, Khan R, Jayamurugan G. Superior Photophysical and Photosensitizing Properties of Nanoaggregates of Weakly Emissive Dyes for Use in Bioimaging and Photodynamic Therapy. Biomacromolecules 2023; 24:5438-5450. [PMID: 37856822 DOI: 10.1021/acs.biomac.3c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The development of luminescent dyes based on 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) is an active research area, and a quantum yield (ΦF) of 7.8% has been achieved so far in cyclohexane by appending a fluorophore. Our novel method radically refines weakly emissive 2,3-disubstituted TCBD (phenyl-TCBD 1) (ΦF = 2.3% in CH3CN) into a water-soluble, biocompatible nanoformulation as highly emissive aggregates 1NPs ⊂ PF-127 with ΦF = 7.9% in H2O and without fluorophore conjugation. Characterization of 1NPs ⊂ PF-127 was carried out using various spectroscopic techniques, and its predominant size was found to be 80-100 nm according to transmission electron microscopy and dynamic light scattering techniques. Spectroscopic studies including Fourier transform infrared spectroscopy revealed that aggregated phenyl-TCBD particles were encapsulated in a nonluminescent triblock copolymer (PF-127)-based nanomicelles with the TCBD entrapment efficiency of 77%. With increasing water fraction, the phenyl-TCBD nanoaggregates exhibited a 3-fold higher quantum yield, a greater lifetime, and a red shift (155 nm). This remarkable enhancement in red emissivity enabled them to be used as a bioprobe for bioimaging applications and in photodynamic therapy to selectively target cancer cell lines with singlet oxygen generation capability (ΦΔ = 0.25). According to the MTT assay, compared to the native molecular form (1229 nM), the aggregated 1NPs ⊂ PF-127 (13.51 nM) exhibited dose-dependent cell death when exposed to light with 91-fold increased activity. The histoarchitectures of various vital organs (liver, kidneys, heart, lungs, and spleen) were intact when tested for in vivo biocompatibility. This study has significant implications for developing nonplanar push-pull chromophore-based dyes as biosensors and with potential applications beyond bioimaging.
Collapse
Affiliation(s)
- Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Shaifali Sartaliya
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Mohali, 140306 Punjab, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306 Punjab, India
| |
Collapse
|
18
|
Yu K, Ye B, Yang H, Xu X, Mao Z, Zhang Q, Tian M, Zhang H, Zhang H, He Q. A Mitochondria-Targeted NIR-II AIEgen Induced Pyroptosis for Enhanced Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2301693. [PMID: 37285905 DOI: 10.1002/adhm.202301693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Cancer immunotherapy is a favorable strategy for facilitating anti-tumor immunity, but it shows limited benefits in clinical practice owing to the immunosuppressive tumor microenvironment. Pyroptosis shows great immunostimulatory effect on tumor, whereas the lack of pyroptotic inducer with imaging property has restricted its progress in tumor theranostics. Herein, a mitochondria-targeted aggregation-induced emission (AIE) luminogen (TPA-2TIN) with NIR-II emission is designed for highly efficient induction of tumor cell pyroptosis. The fabricated TPA-2TIN nanoparticles can be efficiently taken up by tumor cells and selectively accumulated in tumor for a long term observed by NIR-II fluorescence imaging. More importantly, the TPA-2TIN nanoparticles can effectively stimulate immune responses both in vitro and in vivo mediated by the mitochondrial dysfunctions and the subsequent activation of the pyroptotic pathway. Ultimately, the reversal of the immunosuppressive tumor microenvironment significantly enhances the immune checkpoint therapy. This study paves a new avenue for adjuvant immunotherapy of cancer.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinxin Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
19
|
Liu Y, Zhao J, Xu X, Xu Y, Cui W, Yang Y, Li J. Emodin-Based Nanoarchitectonics with Giant Two-Photon Absorption for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202308019. [PMID: 37358191 DOI: 10.1002/anie.202308019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Two-photon-excited photodynamic therapy (TPE-PDT) has significant advantages over conventional photodynamic therapy (PDT). However, obtaining easily accessible TPE photosensitizers (PSs) with high efficiency remains a challenge. Herein, we demonstrate that emodin (Emo), a natural anthraquinone (NA) derivative, is a promising TPE PS with a large two-photon absorption cross-section (TPAC: 380.9 GM) and high singlet oxygen (1 O2 ) quantum yield (31.9 %). When co-assembled with human serum albumin (HSA), the formed Emo/HSA nanoparticles (E/H NPs) possess a giant TPAC (4.02×107 GM) and desirable 1 O2 generation capability, thus showing outstanding TPE-PDT properties against cancer cells. In vivo experiments reveal that E/H NPs exhibit improved retention time in tumors and can ablate tumors at an ultra-low dosage (0.2 mg/kg) under an 800 nm femtosecond pulsed laser irradiation. This work is beneficial for the use of natural extracts NAs for high-efficiency TPE-PDT.
Collapse
Affiliation(s)
- Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
20
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
21
|
Huo Z, Cao X, Sun D, Xu W, Yang B, Xu S. Carbonized Polymer Dot Probe for Two-Photon Fluorescence Imaging of Lipid Droplets in Living Cells and Tissues. ACS Sens 2023; 8:1939-1949. [PMID: 37130122 DOI: 10.1021/acssensors.2c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a dynamic and multifunctional organelle, lipid droplets (LDs) are essential in maintaining lipid balance and transducing biological signals. LD accumulation and catabolism are closely associated with energy metabolism and cell signaling. In order to easily trace LDs in living cells, a novel carbonized polymer dot (CPD)-based fluorescent nanoprobe is reported to serve the needs of LD-targeting imaging. This probe exhibits the advantages of excellent biocompatibility, simple preparation, good lipophilicity, and high compatibility with commercial dyes. Transient absorption spectroscopy was employed to discuss the luminescence mechanism of CPDs, and the results indicate that the excellent fluorescence property and the environment-responsive feature of our CPDs are derived from the intramolecular charge transfer (ICT) characteristics and the D-π-A structure that possibly formed in CPD. This nanoprobe is available for one-photon fluorescence (OPF) and two-photon fluorescence (TPF) imaging and is also practicable for staining LDs in living/fixed cells and lipids in tissue sections. The staining process is completed within several seconds, with no washing step. The intracellular LDs involving the intranuclear LDs (nLDs) can be selectively lit up. This probe is feasible for visualizing dynamic interactions among LDs, which suggests its great potential in revealing the secret of LD metabolism. The in situ TPF spectra were analyzed to determine surrounding microenvironment according to the polarity-responsive feature of our CPDs. This work expands the applications of CPDs in biological imaging, helps design new LD-selective fluorescent probes, and has implications for studying LD-related metabolism and diseases.
Collapse
Affiliation(s)
- Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiumian Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Dong Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
22
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
23
|
Schade AH, Mei L. Applications of red light photoredox catalysis in organic synthesis. Org Biomol Chem 2023; 21:2472-2485. [PMID: 36880439 DOI: 10.1039/d3ob00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Photoredox catalysis has emerged as an efficient and versatile approach for developing novel synthetic methodologies. Particularly, red light photocatalysis has attracted more attention due to its intrinsic advantages of low energy, few health risks, few side reactions, and high penetration depth through various media. Impressive progress has been made in this field. In this review, we outline the applications of different photoredox catalysts in a wide range of red light-mediated reactions including direct red light photoredox catalysis, red light photoredox catalysis through upconversion, and dual red light photoredox catalysis. Due to the similarities between near-infrared (NIR) and red light, an overview of NIR-induced reactions is also presented. Lastly, current evidence showing the advantages of red light and NIR photoredox catalysis is also described.
Collapse
Affiliation(s)
- Alexander H Schade
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| | - Liangyong Mei
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| |
Collapse
|
24
|
Ingle J, Basu S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS OMEGA 2023; 8:8925-8935. [PMID: 36936289 PMCID: PMC10018722 DOI: 10.1021/acsomega.3c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.
Collapse
|
25
|
Huang X, Chen F, Ma Y, Zheng F, Fang Y, Feng B, Huang S, Zeng H, Zeng W. De novo design of a novel AIE fluorescent probe tailored to autophagy visualization via pH manipulation. Biomater Res 2023; 27:20. [PMID: 36915215 PMCID: PMC10012510 DOI: 10.1186/s40824-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Macroautophagy is an essential cellular self-protection mechanism, and defective autophagy has been considered to contribute to a variety of diseases. During the process, cytoplasmic components are transported via autophagosomes to acidic lysosomes for metabolism and recycling, which represents application niches for lysosome-targeted fluorescent probes. Additionally, in view of the complexity of the autophagy pathway, it entails more stringent requirements for probes suitable for monitoring autophagy. Meanwhile, aggregation-induced emission (AIE) fluorescent probes have been impressively demonstrated in the biomedical field, which bring fascinating possibilities to the autophagy visualization. METHODS We reported a generalizable de novo design of a novel pH-sensitive AIE probe ASMP-AP tailored to lysosome targeting for the interpretation of autophagy. Firstly, the theoretical calculation was carried out followed by the investigation of optical properties. Then, the performance of ASMP-AP in visualizing autophagy was corroborated by starvation or drugs treatments. Furthermore, the capability of ASMP-AP to monitor autophagy was demonstrated in ex vivo liver tissue and zebrafish in vivo. RESULTS ASMP-AP displays a large stokes shift, great cell permeability and good biocompatibility. More importantly, ASMP-AP enables a good linear response to pH, which derives from the fact that its aggregation state can be manipulated by the acidity. It was successfully applied for imaging autophagy in living cells and was proved capable of monitoring mitophagy. Moreover, this novel molecular tool was validated by ex vivo visualization of activated autophagy in drug-induced liver injury model. Interestingly, it provided a meaningful pharmacological insight that the melanin inhibitor 1-phenyl-2-thiourea (PTU)-induced autophagy was clearly presented in wild-type zebrafish. CONCLUSIONS ASMP-AP offers a simple yet effective tool for studying lysosome and autophagy. This is the first instance to visualize autophagy in zebrafish using a small-molecule probe with AIE characters, accurate lysosome targeting and simultaneous pH sensitivity. Ultimately, this novel fluorescent system has great potential for in vivo translation to fuel autophagy research.
Collapse
Affiliation(s)
- Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yeshuo Ma
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Hongliang Zeng
- Hunan Academic of Chinese Medicine, Inst Chinese Mat Med, Changsha, People's Republic of China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China. .,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China.
| |
Collapse
|
26
|
Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K, Sun Y. Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chemistry 2023; 29:e202203797. [PMID: 36545826 DOI: 10.1002/chem.202203797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Huan Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Yu X, Lyu M, Ou X, Liu W, Yang X, Ma X, Zhang T, Wang L, Zhang YC, Chen S, Kwok RTK, Zheng Z, Cui HL, Cai L, Zhang P, Tang BZ. AIEgens/Mitochondria Nanohybrids as Bioactive Microwave Sensitizers for Non-Thermal Microwave Cancer Therapy. Adv Healthc Mater 2023; 12:e2202907. [PMID: 36802128 DOI: 10.1002/adhm.202202907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are widely used as photosensitizers for image-guided photodynamic therapy (PDT). Due to the limited penetration depth of light in biological tissues, the treatments of deep-seated tumors by visible-light-sensitized aggregation-induced emission (AIE) photosensitizers are severely hampered. Microwave dynamic therapy attracts much attention because microwave irradiation can penetrate very deep tissues and sensitize the photosensitizers to generate reactive oxygen species (ROS). In this work, a mitochondrial-targeting AIEgen (DCPy) is integrated with living mitochondria to form a bioactive AIE nanohybrid. This nanohybrid can not only generate ROS under microwave irradiation to induce apoptosis of deep-seated cancer cells but also reprogram the metabolism pathway of cancer cells through retrieving oxidative phosphorylation (OXPHOS) instead of glycolysis to enhance the efficiency of microwave dynamic therapy. This work demonstrates an effective strategy to integrate synthetic AIEgens and natural living organelles, which would inspire more researchers to develop advanced bioactive nanohybrids for cancer synergistic therapy.
Collapse
Affiliation(s)
- Xinghua Yu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Ming Lyu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xupei Ou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenquan Liu
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxi Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianfu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Longnan Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ying-Chuan Zhang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zheng Zheng
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hong-Liang Cui
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of nanomedicine and nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
28
|
Wu T, Lu X, Yu Z, Zhu X, Zhang J, Wang L, Zhou H. Near-infrared light activated photosensitizer with specific imaging of lipid droplets enables two-photon excited photodynamic therapy. J Mater Chem B 2023; 11:1213-1221. [PMID: 36632783 DOI: 10.1039/d2tb02466g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-photon excited phototherapy has attracted considerable attention due to its advantages such as deeper penetration depth and higher spatial resolution. The lack of a high-performance photosensitizer with large two-photon absorption cross-sections and specific targeting ability makes the efficacy of phototherapy in the treatment of cancer unsatisfactory. Here, a new BODIPY-derived photosensitizer 6DBF2 is designed with two-photon photosensitization for two-photon excited photodynamic therapy in vivo. 6DBF2 possesses good two-photon absorption and efficient 1O2 generation upon near-infrared laser excitation. Excellent targeting specificities to lipid droplets of 6DBF2 without any encapsulation or modification at a low working concentration of 0.1 μM is in favor of efficient photodynamic therapy. In vitro cancer cell ablation and in vivo tumor ablation inside mice models upon two-photon irradiation in NIR demonstrate the outstanding therapeutic performance of 6DBF2 in two-photon excited photodynamic therapy. This work thus discusses a rare example of lipid droplets targeting two-photon excited photodynamic therapy for deep cancer tissue imaging and treatment under near-infrared light irradiation.
Collapse
Affiliation(s)
- Tengdie Wu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xin Lu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Zhipeng Yu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xiaojiao Zhu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Jie Zhang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Lianke Wang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|
29
|
Wu X, Zhou A, Zhang Y, He J, Chen K, Ning X, Xu Y. Smart Metabolism Nanovalve Reprograms Cancer Energy Homeostasis for Maximizing Photometabolism Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6456-6472. [PMID: 36700644 DOI: 10.1021/acsami.2c19638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Better understanding of important roles of metabolic reprogramming in therapeutic resistance provides insights into advancing cancer treatment. Herein, we present a photoactive metabolic reprogramming strategy (termed as photometabolism therapy, PMT), in which photoregulation of mitochondria leads to cancer cell metabolic crisis, and consequently overcomes therapeutic resistance while improving treatment efficacy. In specific, a stimuli-responsive metabolism NanoValve is developed for improving cascade cancer therapy through blocking mitochondrial energy supply. NanoValve is composed of an onion-like architecture with a gold nanorod core, a mesoporous silica shell encapsulating photosensitizer chlorin e6 and oxygen-saturated perfluorocarbon, and cationic liposomal coating with MMP2-cleavable polyethylene glycol corona, which together initiate mitochondria-specific PMT. NanoValve selectively responds to tumor-overexpressed MMP2 and achieves size decrease and charge reversal, which consequently enhances tumor penetration, cancer cell uptake, endosome escape, and most critically, mitochondrial accumulation. Importantly, NanoValve-mediated phototherapy can strongly destruct mitochondrial energy metabolism, thereby minimizing therapy resistance. Particularly, perfluorocarbon supplies oxygen to further overcome the tumor hypoxia-associated therapeutic barrier and maximizes synergistic anticancer effects. In vivo studies show that NanoValve can effectively eliminate tumors without side effects, thereby dramatically prolonging the survival of tumor-bearing mice. Thus, NanoValve provides a modular PMT approach and has the potential of advancing the treatment of malignancy.
Collapse
Affiliation(s)
- Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yiping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jielei He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
30
|
Apoptotic extracellular vesicles are metabolized regulators nurturing the skin and hair. Bioact Mater 2023; 19:626-641. [PMID: 35600968 PMCID: PMC9109130 DOI: 10.1016/j.bioactmat.2022.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Over 300 billion of cells die every day in the human body, producing a large number of endogenous apoptotic extracellular vesicles (apoEVs). Also, allogenic stem cell transplantation, a commonly used therapeutic approach in current clinical practice, generates exogenous apoEVs. It is well known that phagocytic cells engulf and digest apoEVs to maintain the body's homeostasis. In this study, we show that a fraction of exogenous apoEVs is metabolized in the integumentary skin and hair follicles. Mechanistically, apoEVs activate the Wnt/β-catenin pathway to facilitate their metabolism in a wave-like pattern. The migration of apoEVs is enhanced by treadmill exercise and inhibited by tail suspension, which is associated with the mechanical force-regulated expression of DKK1 in circulation. Furthermore, we show that exogenous apoEVs promote wound healing and hair growth via activation of Wnt/β-catenin pathway in skin and hair follicle mesenchymal stem cells. This study reveals a previously unrecognized metabolic pathway of apoEVs and opens a new avenue for exploring apoEV-based therapy for skin and hair disorders. Exogenous infused apoEVs are partly metabolized from the integumentary skin and hair follicles. ApoEVs activate Wnt/β-catenin pathway to facilitate their elimination in a wave-like pattern. Exercise can enhance apoEV metabolism through Wnt/β-catenin pathway. MSC-derived apoEVs promote wound healing and hair growth.
Collapse
|
31
|
Shi H, Wan Y, Tian X, Wang L, Shan L, Zhang C, Wu MY, Feng S. Synergistically Enhancing Tumor Chemotherapy Using an Aggregation-Induced Emission Photosensitizer on Covalently Conjugated Molecularly Imprinted Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56585-56596. [PMID: 36513426 DOI: 10.1021/acsami.2c17731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the polygenic and heterogeneous nature of the tumorigenesis process, traditional chemotherapy is far from desirable. Fabricating multifunctional nanoplatforms integrating photodynamic effect can synergistically enhance chemotherapy because they can make the cancer cells much sensitive to chemotherapeutics. However, how to assemble different units in nanoplatforms and minimize side effects caused by chemodrugs and photosensitizers (PSs) still needs to be explored. Herein, a nanoplatform CPP/PS-MIP@DOX is developed using a simultaneously covalently conjugated new aggregation-induced emission (AIE) PS and a cell-penetrating peptide (CPP) on the surface of silica-based molecularly imprinted polymer (MIP) nanoparticles, prepared with doxorubicin (DOX) as the template in the water system via a sol-gel technique. CPP/PS-MIP@DOX has good biocompatibility, high DOX-loading ability, promoted cellular uptake, and sustained and pH-sensitive drug release capability. Furthermore, it can efficiently penetrate into tumor tissue, accurately home to, and accumulate at the tumor site. As a result, a better efficacy with lower cytotoxicity is achieved with a smaller dosage of DOX by utilizing either the photodynamic effect or unique characteristics of the MIP. It is the first nanoplatform fabricated by chemically conjugating AIE PSs directly on the surface of the scaffold via the surface-decorated strategy and successfully applied in cancer therapy. This work provides an effective strategy by constructing AIE PS-based cancer nanomedicines with MIPs as scaffolds.
Collapse
Affiliation(s)
- Haizhu Shi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao Tian
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lijuan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lianhai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
32
|
Xu R, Chi W, Zhao Y, Tang Y, Jing X, Wang Z, Zhou Y, Shen Q, Zhang J, Yang Z, Dang D, Meng L. All-in-One Theranostic Platforms: Deep-Red AIE Nanocrystals to Target Dual-Organelles for Efficient Photodynamic Therapy. ACS NANO 2022; 16:20151-20162. [PMID: 36250626 DOI: 10.1021/acsnano.2c04465] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aggregation-induced emission (AIE) nanoparticles have been widely applied in photodynamic therapy (PDT) over the past few years. However, amorphous nanoaggregates usually occur in their preparation, resulting in loose packing with disordered molecular structures. This still allows free intramolecular motions, thus leading to limited brightness and PDT efficiency. Herein, we report deep-red AIE nanocrystals (NCs) of DTPA-BS-F by following the facile method of nanoprecipitation. It is observed that DTPA-BS-F NCs possess not only a high photoluminescence quantum yield value of 8% in the deep-red region (600-850 nm) but also an impressive reactive oxygen species (ROS) generation efficiency of up to 69%. Moreover, DTPA-BS-F NCs targeting dual-organelles of lysosomes and nucleus to generate ROS are also achieved, thus boosting the PDT effect in cancer therapy both in vitro and in vivo. This work provides high-performance AIE NCs to simultaneously target two organelles for efficient photodynamic therapy, indicating their promising application in all-in-one theranostic platforms.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou570228, People's Republic of China
| | - Yizhen Zhao
- School of Physics, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Ye Tang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Xunan Jing
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Yu Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Qifei Shen
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei230601, People's Republic of China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an710049, People's Republic of China
| |
Collapse
|
33
|
Li H, Kim H, Zhang C, Zeng S, Chen Q, Jia L, Wang J, Peng X, Yoon J. Mitochondria-targeted smart AIEgens: Imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
A cyclopolymer incorporating tetraphenylethene groups in its cyclic repeating units. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Lee DJ, Kim ES, Lee HW, Kim HM. Advances in small molecule two-photon fluorescent trackers for lipid droplets in live sample imaging. Front Chem 2022; 10:1072143. [PMID: 36505737 PMCID: PMC9733596 DOI: 10.3389/fchem.2022.1072143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Two-photon fluorescent trackers for monitoring of lipid droplets (LDs) would be highly effective for illustrating the critical roles of LDs in live cells or tissues. Although a number of one-photon fluorescent trackers for labeling LDs have been developed, their usability remains constrained in live sample imaging due to photo damage, shallow imaging depth, and auto-fluorescence. Recently, some two-photon fluorescent trackers for LDs have been developed to overcome these limitations. In this mini-review article, the advances in two-photon fluorescent trackers for monitoring of LDs are summarized. We summarize the chemical structures, two-photon properties, live sample imaging, and biomedical applications of the most recent representative two-photon fluorescent trackers for LDs. Additionally, the current challenges and future research trends for the two-photon fluorescent trackers of LDs are discussed.
Collapse
Affiliation(s)
- Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Eun Seo Kim
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Hyo Won Lee
- Research Institute of Basic Sciences, Suwon, South Korea,Department of Chemistry, Ajou University, Suwon, South Korea,*Correspondence: Hyo Won Lee, ; Hwan Myung Kim,
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon, South Korea,Department of Chemistry, Ajou University, Suwon, South Korea,*Correspondence: Hyo Won Lee, ; Hwan Myung Kim,
| |
Collapse
|
36
|
Liu X, Pan L, Wang K, Pan W, Li N, Tang B. Imaging strategies for monitoring the immune response. Chem Sci 2022; 13:12957-12970. [PMID: 36425502 PMCID: PMC9667917 DOI: 10.1039/d2sc03446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 08/11/2023] Open
Abstract
Real-time monitoring of the immune response can be used to evaluate the immune status of the body and to distinguish immune responders and non-responders, so as to better guide immunotherapy. Through direct labelling of immune cells and imaging specific biomarkers of different cells, the activation status of immune cells and immunosuppressive status of tumor cells can be visualized. The immunotherapeutic regimen can then be adjusted accordingly in a timely manner to improve the efficacy of immunotherapy. In this review, various imaging methods, immune-related imaging probes, current challenges and opportunities are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
37
|
Zhou R, Cui DJ, Zhao Q, Liu KK, Zhao WB, Liu Q, Ma RN, Jiao Z, Dong L, Shan CX. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem 2022; 388:132994. [PMID: 35460964 DOI: 10.1016/j.foodchem.2022.132994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
The microbial spoilage of soybeans during soaking process severely deteriorates the quality of soybean products and threatens human health. Herein, water-soluble aminated zinc oxide nanoparticles (ZnO NPs) were developed to effectively control the microbial spoilage in soybeans during soaking. ZnO NPs achieved significant inactivation of three dominant spoilage bacteria (bacillus cereus, bacillus megaterium and enterococcus faecium) isolated from the deteriorated soybeans, which could adhere to the bacterial surface and damage the cell wall/membrane, but also generate large amounts of reactive oxygen species (ROS). Compared to two commercial ZnO, water-soluble ZnO exhibited superior antibacterial properties due to producing more ROS and bacteria-adhered ability. After ZnO NPs treatment, the content of the residual Zn (51.1 mg/kg) in soybeans was the safety standards of Zn element in soybeans products for human). Therefore, the water-soluble ZnO NPs showed great potentials as efficient and safe antimicrobial agents for soybeans preservation during soaking process.
Collapse
Affiliation(s)
- Rui Zhou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Dong-Jie Cui
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qian Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ruo-Nan Ma
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
38
|
Tang X, Zhu Y, Guan W, Zhou W, Wei P. Advances in nanosensors for cardiovascular disease detection. Life Sci 2022; 305:120733. [DOI: 10.1016/j.lfs.2022.120733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/25/2022]
|
39
|
Feng Q, Yang T, Ma L, Li X, Yuan H, Zhang M, Zhang Y, Fan L. Morpholine-Functionalized Multicomponent Metallacage as a Vector for Lysosome-Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38594-38603. [PMID: 35981928 DOI: 10.1021/acsami.2c11662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lihong Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
40
|
Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2- c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022; 58:10392-10395. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Rh-catalyzed tandem reaction was performed to construct an AIE-active furo[2,3-c]pyridine-based photosensitizer, named LIQ-TF. LIQ-TF showed near-infrared emission with high quantum yield, and high 1O2 and ˙OH generation efficiency, and could be used for specific imaging and photodynamic ablation of Gram-positive bacteria in vitro and in vivo, showing great potential for combating multiple drug-resistant bacteria.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yun Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
41
|
Gu H, Liu W, Sun W, Du J, Fan J, Peng X. Single-molecule photosensitizers for NIR-II fluorescence and photoacoustic imaging guided precise anticancer phototherapy. Chem Sci 2022; 13:9719-9726. [PMID: 36091889 PMCID: PMC9400679 DOI: 10.1039/d2sc02879d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
It is ideal yet challenging to achieve precise tumor targeting and high-quality imaging guided combined photodynamic and photothermal therapy (PDT and PTT). In this study, we synthesized a series of D-π-A-type single-molecule photosensitizers (CyE-TT, CyQN-TT, and CyQN-BTT) based on quaternized 1,1,2-trimethyl-1H-benz[e]indoles as acceptors by introducing π-bridges to elongate their emission wavelength and triphenylamine as a donor to construct a twisted molecular conformation. We found that the 1O2 generation ability and the photothermal conversion efficiency (PCE) are directly correlated with the π-bridge between donors and acceptors in these molecules. When a 2,1,3-benzothiadiazole group as a π-bridge was introduced into CyQN-BTT, the singlet oxygen yield enhanced to 27.1%, PCE to 37.8%, and the emission wavelength was red-shifted to near-infrared II (NIR-II). Importantly, double-cationic CyQN-BTT displays structure-inherent cancer cell targeting ability instead of targeting normal cells. Consequently, relying on NIR-II fluorescence imaging (NIR-II FLI) and photoacoustic imaging (PAI) guided PDT and PTT, CyQN-BTT can accurately locate solid tumors in mice and effectively eliminate them with good biocompatibility and biosafety to normal tissues. This study provides insights into the design and development of a tumor-specific targeting multifunctional photosensitizer for precise cancer phototherapy.
Collapse
Affiliation(s)
- Hua Gu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
42
|
Dan Q, Yuan Z, Zheng S, Ma H, Luo W, Zhang L, Su N, Hu D, Sheng Z, Li Y. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14081645. [PMID: 36015272 PMCID: PMC9416189 DOI: 10.3390/pharmaceutics14081645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) under fluorescence imaging as a selective and non-invasive treatment approach has been widely applied for the therapy of cancer and bacterial infections. However, its treatment efficiency is hampered by high background fluorescence in the first near-infrared window (NIR-I, 700–900 nm) and oxygen-dependent photosensitizing activity of traditional photosensitizers. In this work, we employ gold nanoclusters (BSA@Au) with the second near-infrared (NIR-II, 1000–1700 nm) fluorescence and catalase-like activity as alternative photosensitizers to realize highly efficient PDT. The bright NIR-II fluorescence of BSA@Au enables the visualization of PDT for tumor with a high signal-to-background ratio (SBR = 7.3) in 4T1 tumor-bearing mouse models. Furthermore, the catalase-like activity of BSA@Au endows its oxygen self-supplied capability, contributing to a five-fold increase in the survival period of tumor-bearing mice receiving boosted PDT treatment compared to that of the control group. Moreover, we further demonstrate that BSA@Au-based PDT strategy can be applied to treat bacterial infections. Our studies show the great potential of NIR-II BSA@Au as a novel photosensitizer for boosted PDT against cancer and bacterial infections.
Collapse
Affiliation(s)
- Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huanrong Ma
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zonghai Sheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Z.S.); (Y.L.)
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Z.S.); (Y.L.)
| |
Collapse
|
43
|
A new and fast-response two-photon fluorescent probe based on (p-Nitrophenylsulfonyl) hydrazine for detecting endogenous HClO and its application in zebrafish imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Su HF, Peng QC, Liu YU, Xie T, Liu PP, Cai YC, Wen W, Yu YH, Li K, Zang SQ. A near-infrared AIE probe and its applications for specific in vitro and in vivo two-photon imaging of lipid droplets. Biomaterials 2022; 288:121691. [DOI: 10.1016/j.biomaterials.2022.121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
|
45
|
Guo X, Tang B, Wu Q, Bu W, Zhang F, Yu C, Jiao L, Hao E. Engineering BODIPY-based near-infrared nanoparticles with large Stokes shifts and aggregation-induced emission characteristics for organelle specific bioimaging. J Mater Chem B 2022; 10:5612-5623. [PMID: 35802059 DOI: 10.1039/d2tb00921h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) and lysosomes, as two important subcellular organelles, play specific and indispensable roles in various cellular processes. The development of efficient LD- and lysosome-specific fluorescent bio-probes is of great importance. However, current commercial lipid droplet- (LD) and lysosome-specific fluorescent specific bio-probes often suffer from the aggregation-caused quenching (ACQ) effect, short absorption and emission wavelengths, poor photostability and low specificity. Herein, a typical ACQ luminogen BODIPY was directly conjugated to strong electron donating triarylamine units at its α-positions, giving near-infrared (NIR) fluorescent materials TPAB and 2TPAB with aggregation-induced emission (AIE). Both TPAB and 2TPAB nanoparticles were obtained by self-assembly, and showed NIR emissions, large Stokes shifts, good photostability and two-photon absorption. These nanoparticles presented remarkable bioimaging performances and were shown to specifically localize in LDs or lysosomes, respectively, depending on the number of triarylamine units attached. They have been successfully used to detect endogenous LD overproduction, and monitor abnormal activities of LDs/lysosomes, as well as real-time track the lipophagy process in cells. Their far NIR emission and two-photon excitation further supported their promising bioimaging application for lipid droplet tracking in liver tissue and live zebrafish larvae. Our work here enriches BODIPY based NIR AIE dyes and provides organelle specific bio-probes which are superior to currently used commercial ones.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
46
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
47
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Cesaretti A, Mencaroni L, Bonaccorso C, Botti V, Calzoni E, Carlotti B, Fortuna CG, Montegiove N, Spalletti A, Elisei F. Amphiphilicity-Controlled Localization of Red Emitting Bicationic Fluorophores in Tumor Cells Acting as Bio-Probes and Anticancer Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123713. [PMID: 35744843 PMCID: PMC9230006 DOI: 10.3390/molecules27123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
- Correspondence: ; Tel.: +39-075-585-5590
| | - Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Valentina Botti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Cosimo Gianluca Fortuna
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| |
Collapse
|
49
|
Highly lipophilic coumarin fluorophore with excimer-monomer transition property for lipid droplet imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Ma X, Zhou X, Wu J, Shen F, Liu Y. Two-Photon Excited Near-Infrared Phosphorescence Based on Secondary Supramolecular Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201182. [PMID: 35466559 PMCID: PMC9218752 DOI: 10.1002/advs.202201182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Indexed: 05/13/2023]
Abstract
Organic phosphorescence materials have received wide attention in bioimaging for bio-low toxicity and large Stokes. Herein, a design strategy to achieve near-infrared (NIR) excitation and emission of organic room-temperature phosphorescence through two-stage confinement supramolecular assembly is presented. Via supramolecular macrocyclic confinement, the host-guest complexes exhibit phosphorescence with two-photon absorption (excitation wavelength up to 890 nm) and NIR emission (emission wavelength up to 800 nm) in aqueous solution, and further nano-confinement assembly significantly strengthens phosphorescence. Moreover, the nano-assemblies possess color-tunable luminescence spanning from the visible to NIR regions under different excitation wavelengths. Intriguingly, the prepared water-soluble assemblies maintain two-photon absorption and multicolor luminescence in cells or vivo.
Collapse
Affiliation(s)
- Xin‐Kun Ma
- College of ChemistryState Key Laboratory of Elemento Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Xiaolu Zhou
- College of ChemistryState Key Laboratory of Elemento Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Jing Wu
- China Medical and Health Analysis CenterPeking UniversityBeijing100191P. R. China
| | - Fang‐Fang Shen
- College of ChemistryState Key Laboratory of Elemento Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento Organic ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|